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Why parsing?

Linguistic research

Natural language understanding systems

Language modeling for speech recognition (possibly)
Machine translation (possibly)

Because It's there...



Statistical methods in NLP/speech

Apply machine learning techniques to linguistic problems
Work from large data set (corpora, treebanks, ...)
Supervised or unsupervised

Tend to be “robust”™. come up with an answer for everything
(or multiple ranked answers).

Strive for portability across languages and domains
Sort of like origami...
We’'ll see just one example in this course: PCFGs

Modern successful systems merge stochastic and symbolic
techniques.



Why probabillistic parsing?

Ambiguity resolution

Best-first search

Modeling human processing (computational
psycholinguistics)

Robustness

Ambiguity resolution with robust grammars



PCFGS

G=(N,X,PS D)
N: A set of non-terminal symbols
.. A set of terminal symbols (disjoint frony)

P: A set of productions (or phrase structure rules)
A — pwhereAd € N andg € (XU N)x

S: A designated start symbol, selected fram

D: a function assigning probabilities to each rulefn



A closer look atD

Domain: rules of the grammap)|
Range: probabilitiep (values between 0 and 1)

For each non-terminal iV, the probabilities of all the
rules rewriting/N must sum to 1.

Formally eaclp Is a conditional probability:
P(A— B[ A)



Sample grammar

S— NP VP

S — Aux NP VP
S— VP

NP — Det Nom
NP — Proper-Noun
NP — Nom

NP — Pronoun
Nom — Noun

Nom — Noun Nom
Nom — Proper-Noun Nom
VP — Verb

VP — Verb NP

VP — Verb NP NP

[.80]
[.15]
.05]
[.20]
[.35]
.05]
[.40]
.75]
[.20]
[.05]
[.55]
[.40]
.05]

Det — that [.05]]| the [.80]| a [.15]

Noun — book [.10]
Noun— flights [.50]
Noun— meal .40]
Verb — book .30]

Verb — include .30]
Verb — want .40]

Aux — can .40]
Aux — does [.30]
Aux — do [.30]
Proper-Noun— TWA [.40]

Proper-Noun— Denver [.60]

Pronoun— you [.40]]| 1 [.60]



Using the probabillities

e Estimate the joint probability of a parse tree and a

sentence: P(T,S) = Hp(?“(n))

nerl

¢ Joint probability = the probability of the parse:
P(T,S)=P(T)P(S|T) defofjoint probability
PS|T)=1 the parse tree includes
P(T,S)= P(T) the sentence

e — parse selection: 7'(S) = argmaxP (T | S)
T € 7(5)



Using the probabilities

A

T(S)=argmaxP(T | S)

T € 7(S5)
P(T,S
P(T | S) = 53
~ P(T,S)

T'(S) = argmax— -
T € 7(5)

P(S) will be constant, if we're considering the parses of
one sentence.

A

T(S)=argmaxP(T)
T € 7(5)
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Using the probabillities |l

e Estimate the probability of a string of words constituting
a sentence:

e Unambiguous stringsP(7)

e Ambiguous strings: Z P(T)
Ter(S)

e — language modeling in speech recognition

e Probabillity that a string Is prefixof a sentence
generated by the grammar (Stolcke 1995), also useful In
speech recognition.
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Where do the probabilities come from?

e From a treebank, whose trees (can be made to)
correspond to the grammar.
Count(aw — )  Count(a — 3)

Pla= Gla)= ¥, Count(a —v)  Count(a)

e By parsing a corpus, and counting rule occurrences as
weighted by the probability of each parse — do this
iteratively with thel nside-Outside algorithm.
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Another Chart Parser (CKY)
Create and clearharf{#words#wordg

for ¢+ +— 1 to#words

charty g «— {o| o — input;}
for span«< 2 to#words

for begin«+— 1 to#words— span+ 1

end« begin+ span— 1

for m < beginto end—1
if (a« — (152 € PA
B1 € chartipeginm) N B2 € chartmii1 enq) then

chartpegin,end) < Chartpeginena U {0};
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Probabilistic CKY

function CKY (words, grammayreturns most probable parse w/probability
Create, clearr[#words,#words,#non-terfackK#words,#words,#non-terms
for i — 1 to#words
for A — 1 to#non-terms
If ( A — w; IS ingrammar) then
mli, i, Al — P(A — w;)
for span<— 2 to #words
for begin«+— 1 to #words— span +1
end«< begin+ span— 1
for m «— begintoend— 1
for A, B,C < 1to#non-terms
prob = n[beginm,B] x n[m + 1,endC] x P(A — BC)
If (prob > w[begin,end,f) then
w[begin,end,A= prob
bacKkbegin,end,p= {m,B,C
returnBUILD _TREE(bacK1,#wordsl]), =[1,#wordsl]
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Summary

Probabilistic CFGs

Uses of probabilities
Learning probabilities
Probabillistic chart parsing

Next time: inside-outside, problems with PCFGs,
probabillistic lexicalized CFGs, evaluating parsers

Now: on to the midterm
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