
November 4, 2004

Ch 12

Probabilistic Parsing

1

Outline

• Why probabilistic parsing?

• Probabilistic CFGs

• Uses of probabilities

• Learning probabilities

• Probabilistic chart parsing

• Midterm

2

Why parsing?

• Linguistic research

• Natural language understanding systems

• Language modeling for speech recognition (possibly)

• Machine translation (possibly)

• Because it’s there...

3

Statistical methods in NLP/speech

• Apply machine learning techniques to linguistic problems

• Work from large data set (corpora, treebanks, . . .)

• Supervised or unsupervised

• Tend to be “robust”: come up with an answer for everything

(or multiple ranked answers).

• Strive for portability across languages and domains

• Sort of like origami...

• We’ll see just one example in this course: PCFGs

• Modern successful systems merge stochastic and symbolic

techniques.

4

Why probabilistic parsing?

• Ambiguity resolution

• Best-first search

• Modeling human processing (computational

psycholinguistics)

• Robustness

• Ambiguity resolution with robust grammars

5

PCFGs

• G = (N,Σ, P, S,D)

• N : A set of non-terminal symbols

• Σ: A set of terminal symbols (disjoint fromN)

• P : A set of productions (or phrase structure rules)

A→ β whereA ∈ N andβ ∈ (Σ ∪N)∗

• S: A designated start symbol, selected fromN .

• D: a function assigning probabilities to each rule inP .

6

A closer look atD

• Domain: rules of the grammar (P)

• Range: probabilitiesp (values between 0 and 1)

• For each non-terminal inN , the probabilities of all the

rules rewritingN must sum to 1.

• Formally eachp is a conditional probability:

P (A→ β | A)

7

Sample grammar

S→ NP VP [.80] Det→ that [.05]| the [.80]| a [.15]
S→ Aux NP VP [.15] Noun→ book [.10]
S→ VP [.05] Noun→ flights [.50]
NP→ Det Nom [.20] Noun→meal [.40]
NP→ Proper-Noun [.35] Verb→ book [.30]
NP→ Nom [.05] Verb→ include [.30]
NP→ Pronoun [.40] Verb→ want [.40]
Nom→ Noun [.75] Aux→ can [.40]
Nom→ Noun Nom [.20] Aux→ does [.30]
Nom→ Proper-Noun Nom [.05] Aux→ do [.30]
VP→ Verb [.55] Proper-Noun→ TWA [.40]
VP→ Verb NP [.40] Proper-Noun→ Denver [.60]
VP→ Verb NP NP [.05] Pronoun→ you [.40] | I [.60]

8

Using the probabilities

• Estimate the joint probability of a parse tree and a

sentence:
P (T, S) =

∏

n∈T

p(r(n))

• Joint probability = the probability of the parse:

P (T, S) = P (T)P (S | T) def of joint probability

P (S | T) = 1 the parse tree includes

P (T, S) = P (T) the sentence

• → parse selection: T̂ (S) = argmax
T ∈ τ(S)

P (T | S)

9

Using the probabilities

• T̂ (S) = argmax
T ∈ τ(S)

P (T | S)

• P (T | S) = P (T,S)
P (S)

• T̂ (S) = argmax
T ∈ τ(S)

P (T,S)
P (S)

• P (S) will be constant, if we’re considering the parses of

one sentence.

• T̂ (S) = argmax
T ∈ τ(S)

P (T)

10

Using the probabilities II

• Estimate the probability of a string of words constituting

a sentence:

• Unambiguous strings:P (T)

• Ambiguous strings:
∑

T∈τ(S)

P (T)

• → language modeling in speech recognition

• Probability that a string is aprefixof a sentence

generated by the grammar (Stolcke 1995), also useful in

speech recognition.

11

Where do the probabilities come from?

• From a treebank, whose trees (can be made to)

correspond to the grammar.

P (α→ β | α) =
Count(α→ β)

ΣγCount(α→ γ)
=

Count(α→ β)

Count(α)

• By parsing a corpus, and counting rule occurrences as

weighted by the probability of each parse – do this

iteratively with theInside-Outside algorithm.

12

Another Chart Parser (CKY)

Create and clearchart[#words,#words]

for i← 1 to#words

chart[i,i] ← {α | α→ inputi}

for span← 2 to #words

for begin← 1 to#words− span+ 1

end← begin+ span− 1

for m← beginto end−1

if (α→ β1β2 ∈ P∧

β1 ∈ chart[begin,m] ∧ β2 ∈ chart[m+1,end]) then

chart[begin,end] ← chart[begin,end] ∪ {α};

13

Probabilistic CKY

function CKY(words, grammar) returns most probable parse w/probability
Create, clearπ[#words,#words,#non-terms], back[#words,#words,#non-terms]
for i← 1 to #words

for A← 1 to #non-terms
if (A→ wi is in grammar) then

π[i, i, A]← P (A→ wi)
for span← 2 to #words

for begin← 1 to #words− span +1
end← begin+ span− 1
for m← beginto end− 1

for A, B, C ← 1 to #non-terms
prob = π[begin,m,B] × π[m + 1,end,C]× P (A→ BC)
if (prob> π[begin,end,A]) then

π[begin,end,A] = prob
back[begin,end,A] = {m,B,C}

returnBUILD TREE(back[1,#words,1]), π[1,#words,1]

14

Summary

• Probabilistic CFGs

• Uses of probabilities

• Learning probabilities

• Probabilistic chart parsing

• Next time: inside-outside, problems with PCFGs,

probabilistic lexicalized CFGs, evaluating parsers

• Now: on to the midterm

15

