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1 Summary

In this final assignment, we attempted to implement an algorithm for unsupervised learning of hierarchical
dependency parsing, based on the Klein & Manning’s Dependency Model with Valence (DMV) of 2004.
The nominal goal, which sadly did not meet with success, was to match their numbers on The Wall Street
Journal section of the Penn Treebank Project. However, we are more satisfied with the real educational
goals of learning the Inside-Outside algorithm (building on what we learned about the Expectation Maxi-
mization in the second programming assignment), re-deriving Klein’s model (some formulae were omitted
from the appendix of his thesis, while others appeared to be incorrect), implementing a probabilistic de-
pendency parser for the DMV (building on what we learned about [P]JCFGs in the third programming
assignment), solidifying our understanding of hierarchical dependencies (from lectures) as well as their
pseudo-isomorphism with constituency grammars (by means of head percolation rules, from readings).
Given a bit of extra time, we intend to debug our implementation and go on to learn dependency parsing
on significantly larger quantities of data. Until then, we short-circuited the problem by computing the sur-
face level statistics for the probabilities tracked by the DMV, evaluating the faked model’s performance,
and considering its linguistic short-comings and potential improvements.

2 Motivation

Klein points out several reasons to focus on dependency parsing. One is that “A central motivation for
using tree structures in computational linguistics is to enable the extraction of dependencies — function-
argument and modification structures — and it might be more advantageous to induce such structures
directly.” Another is that “For languages such as Chinese, which have few function words, and for which
the definition of lexical categories is much less clear, dependency structures may be easier to detect.”

For us, our connection to Google dictates at least two obvious applications (most likely, there will be
many others): 1) search query refinement may improve if certain dependent words or clauses were dropped
in a clever way; and 2) statistical machine translation could perhaps benefit from having a dependency
structure imposed on a sentence, allowing for somewhat more modular translation of clauses. Google’s
raw processing power and sheer volumes of unannotated data would eagerly make heavy use of a good
unsupervised learning technique.
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3 History

3.1 Original Project Proposal

CS 224N: Natural Language Processing
Prof. Christopher D. Manning
Spring 2007-2008

Valentin I. Spitkovsky (vals@stanford.edu)
Final Project Abstract
2008-05-07

Problem Being Investigated

Unsupervised learning of hierarchical dependency parsing.

This is a joint project that I am undertaking with Prof. Daniel
Jurafsky at Stanford and Dr. Hiyan Alshawi at Google. Presently,
my understanding is that most successful parsers are supervised.
But if we could devise some useful novel unsupervised techniques,
then we could unleash Google’s supply of data and raw power at
the problem, possibly allowing us to climb to greater heights...

We see at least two obvious applications (most likely, there
will be many others): 1) search query refinement may improve if
certain dependent words or clauses were dropped in a clever way;
2) statistical machine translation could perhaps benefit from
having a dependency structure imposed on a sentence,

allowing for somewhat more modular translation of clauses...

Approach / Plan

I am still very vague on the potential implementation details,
but I see at least two clear options: 1) learn about the state
of the art unsupervised methods for parsing, implement them,

and test how they scale with more data, using Google’s machines;
2) somehow make use of parallel data -- assuming that this isn’t
something that’s already being done by state-of-the art parsers:
we could use the bi-texts available at Stanford, or Google’s
stores of parallel data, or even the sentence-aligned
intermediates from Google’s MT systems (before

they are fed into word-alignment training).

In terms of testing, I suppose we could simply reuse some
data from the TreeBank bake-offs (I’ve been told that
Ryan McDonald, who was closely involved with these,

now works for Google New York).

Achievements So Far / Relevant References Found

Not much to report in terms of achievements thus far: the term
has really kept me busy as it was... Also, we just started going
over parsing in general this week, so I am very much a newbie,
but hope to know much more by the time I submit the third
programming assignment. In any case, I was very happy

to see dependency parsing in Monday’s lecture. :)



I’ve been pointed to several references so far:

A Tutorial on Dependency Parsing:
- http://dp.ess1lli07.googlepages.com/

A Paper on Isomorphism:
- Marie-Catherine de Marneffe, Bill MacCartney and Christopher D.
Manning. 2006. Generating Typed Dependency Parses from Phrase
Structure Parses. In LREC 2006.

A Nivre Paper:
- http://www.msi.vxu.se/users/nivre/papers/acl05.pdf

Dan Klein’s Work on Unsupervised Learning:
- Corpus-Based Induction of Syntactic Structure: Models of
Dependency and Constituency, Dan Klein and Chris Manning,
In Proceedings of (ACL) 2004.
- The Unsupervised Learning of Natural Language Structure,
Dan Klein, Ph.D. Thesis, Stanford University 2005.

Other Recent Theses:
- Head-Driven Statistical Models for Natural Language Parsing,
Michael Collins, Ph.D. Thesis, MIT 1999.
- Discovery of Linguistic Relations Using Lexical Attraction,
Deniz Yuret, Ph.D. Thesis, MIT 1998.

this will probably be too much to absorb during the term
(and still have time to build a system), but I hope that we
could narrow it down to a small set of key references once
we prune down the scope of the project and have have a
face-to-face conversation or two.

Plan for the Remainder of the Quarter

Focus on lectures and the remaining programming assignment to
learn about parsing in general, then get acquainted with the
literature and have some in-person conversations with the
staff, then get to work -- the term is short!

The longer-term plan is to make use of my time in the NLP
class to get an introduction to the field, have the final
project turn into a base-line for judging the full time

summer project, then before next year decide whether or not
this sort of collaboration would make sense going forward

(if not, I would leave Google and find another project at
Stanford; if yes, I would remain at Google on a one-day-a-week
basis, which would still allow me access to data and machines).

One very important question: if I were to do a lot of

the computation at Google, I probably couldn’t share the code
in its entirety, since it is bound to touch some proprietary
stuff... how big of a problem would this be? Would it be
okay to isolate the relevant classes and submit those,

even if they wouldn’t run stand-alone for the course staff?

P.S. In addition to the above, I will also be doing a final
project in a class on nonparametric statistics. I am toying
with the idea of perhaps coaxing some of the methods we learned
there into an algorithm for judging translation similarity, as
a potential competitor to BLEU. If that ends up working out,
I’d be happy to report on those results as well. :)



3.2 Instructor’s Feedback / Clarifications

CC: c¢s224n-spr0708-staff@mailman.stanford.edu, vspitkovsky@yahoo.com
From: "Christopher Manning" <manning@stanford.edu>

To: "Valentin I. Spitkovsky" <valentin@google.com>

Subject: Re: [cs224n-spr0708-staff] Final Project Abstract

Date: Tue, 27 May 2008 08:32:17 -0700

Hi, here’s some (very slow - sorry!) feedback on your cs224n project
proposal:

SCOPE It’s obviously something you can keep working on, but for
cs224n, you should be careful that the scope doesn’t become too

large. Getting an existing unsupervised dependency parser
reimplemented, working and evaluated on some data is already I think a
large project for a single person. Doable. For instance, someone (a
current PhD student, Chuong Do) did reimplement Klein’s CCM model for
a c¢s224n final project, and got it working. But there probably isn’t
also a ton of time to then investigating scaling. In particular,
Klein never ran his stuff on anything bigger than the Penn treebank.
To run it on 10 million words of data would already be an order of
magnitude more data. You don’t immediately need terabytes. (I do
believe that dependency parsing accuracy should be able to improve
with a lot of data, whereas it’s not so clear that is true for the CCM
model.) So, doing less than you suggest for 1) would be quite
sufficient. It seems to me a little harder to see how to keep (2) to
an appropriate scale.

LITERATURE The tutorial you cite is probably the best way to get up
to speed on the active recent thread of work on supervised dependency
parsing. I don’t think it covers unsupervised work, though. I may be
biased, but I really think there is still no better place to start
than the Klein and Manning 2004 DMV model.

There has been some work on dependency-based models in MT, most
noticeably a whole bunch of papers at Microsoft Research, and also
some at BBN. But I see this as beyond the scope of the cs224n project.

Here’s one paper that uses bilingual data for unsupervised (PCFG)
syntax induction that looked quite interesting:

http://acl.ldc.upenn.edu/P/P04/P04-1060.pdf
EXCITING PROBLEM  Yes.

EVALUATION Straightforward, as you say, within the limits of
unsupervised systems in principle being hard to evaluate.

CLEAR PLAN I think there now is.
OVERALL Fine.

One very important question: if I were to do a lot of

the computation at Google, I probably couldn’t share the code
in its entirety, since it is bound to touch some proprietary
stuff... how big of a problem would this be? Would it be
okay to isolate the relevant classes and submit those,

even if they wouldn’t run stand-alone for the course staff?

VvV V.V V V VvV

It would be. The best case for us is if we can just run things, but
we’ve dealt with situations before where we’ve done similar
compromises. But I rather think that in this situation, you’d be
genuinely better off writing something standalone and using it as the
cs224n project, and leaving an integrated model until later. That is,
if at some point you wanted to run something large scale and using
parallel texts then you may well want/need to have a distributed
MapReduce implementation and interface to other google goo. But I



don’t see how this would do anything other than distract you and slow
you down for the purposes of writing a c¢s224n project.

> P.S. In addition to the above, I will also be doing a final

> project in a class on nonparametric statistics. I am toying

> with the idea of perhaps coaxing some of the methods we learned
> there into an algorithm for judging translation similarity, as
> a potential competitor to BLEU. If that ends up working out,

> I’d be happy to report on those results as well. :)

DanJ and me would be interested to hear what you do. We’ve actually
been given money to come up with more sophisticated approaches to MT
evaluation ... though the direction of that work is more in the line
of exploiting parsing, and semantic equivalence (RTE-style
equivalanece/semantic similarity).

Chris.

On May 7, 2008, at 10:49 PM, Valentin I. Spitkovsky wrote:

For some reason Yahoo! Mail is giving me trouble, so

I am sending out this proposal from my work address,
just to make sure that it will be time-stamped on time.
Best,

Val.

P.S. Page two of the hand-out still lists a pervious

year’s mailing list, so you may want to be on a

look-out for submissions to cs224n-spr0607-staff...
<abstract.txt>___________________
cs224n-spr0708-staff mailing list
cs224n-spr0708-staff@lists.stanford.edu

https://mailman.stanford.edu/mailman/listinfo/cs224n-spr0708-staff

VVVVVVVVVVVVYVVYV



4 Investigation / Research Question

Although we outlined a number of potential applications when motivating the subject, for the purposes of
this project, we limited our scope to simply replicating the work of Klein and Manning. The clear question
we set out to answer was whether or not we could reproduce their results.

We feel that in the short amount of time given to work on this project we have arrived at a fairly
good understanding of their methods. It would have been nicer if our implementation of the algorithm
had also worked as advertised, but thankfully the project guidelines state that “You will not be penalized
if your system performs poorly, providing your initial design decisions weren’t obviously unjustifiable, and
you have made reasonable attempts to analyze why it failed, and to examine how the system might be
improved.” And while we will make every effort to debug our system after the quarter is over, given that
there is a 10% daily penalty for late submissions, it made little sense to delay writing up this report, since
we failed to secure an extension...

Why our implementation fails to exhibit the expected behavior is still an open question. It’s possible,
though we imagine it to be extremely unlikely, that the model simply doesn’t work. A more plausible
explanation is that its performance is highly sensitive to tiny little (e.g. off-by-one) bugs, which are very
likely to creep into any algorithm that’s complicated enough to drum up sufficiently many inner loops to
score an O(n®) running time for itself... It could also be that we either misunderstood the model or made
errors in our derivations (we are fairly certain that some of the few formulae presented by Klein himself are
incorrect). And while we made every effort to assert all of our invariants (e.g. multiple ways to compute
the probability of a sentence, given the inside and outside charts), there are no guarantees from silly (or
not so silly) errors...

5 Algorithms / Methods Used

Klein mentions several existing generative dependency models intended for unsupervised learning. However,
these models — even when trained on large amounts of data, “using EM, in an entirely unsupervised fashion,
and at great computational cost” — “... resulted in parsers which predicted dependencies at below chance
level (measured by choosing a random dependency structure).” Klein partly attributes this below-random
performance to the models’ linking word pairs which have high mutual information (e.g. occurrences of
Congress and bill), regardless of whether their syntactical relation is plausible. Klein also criticizes these
models for lacking a means to encode valence, a term he uses to broadly refer to the regularities in number
and type of arguments a word or word class takes (e.g. not all occurrences of New and York should be
attached, especially those which are not adjacent).

5.1 Dependency Model with Valence

Assume a reserved non-terminal ROOT, whose sole dependent is the head of the sentence (this simplifies the
notation, math and the evaluation metric). Consider a simple head-outward dependency model over word
classes, now including a model of valence. It begins at the ROOT. Each head generates a series of non-STOP
arguments to one side, then a STOP argument to that side, then non-STOP arguments to the other side, then
a second STOP. The deciding left-first versus right-first head choice incurs a cost according to Pgrper(w),
the probability that in this derivation the head will attach its left arguments before its right arguments.
In this process, there are two kinds of derivation events, whose local probability factors constitute
the model’s parameters. First, there is the binary decision whether or not to stop: Pgrop(h, dir, adj),
conditioned on the head h (the word class), the direction dir (generating to the left or right of the head),



and the adjacency adj (whether or not an argument has already been generated in the current direction).
This stopping decision is estimated directly, without smoothing.

If a stop is generated, then no more arguments will be produced for the current head to the current side.
Otherwise, another argument is chosen, according to probability Pyrracu(h, dir, arg), where the argument
arg is picked conditionally on the identity of the head h (again, a word class) and the direction dir. This
term too is not smoothed in any way, only now adjacency has no effect on the identity of the argument (it
only affects the likelihood of termination). Every new argument’s sub-tree in the dependency structure is
generated recursively.

5.1.1 A Mathematical Formalism

For a dependency structure S, with each word h having left dependents Dg(h,L) and right dependents
Dg(h,R), the probability of the fragment S(h) of the dependency tree rooted at h is defined as follows:

P(S(h)) = ][] Pswe(h.dir,adi) [  P(S(arg))Purmaca(h, dir,arg)(1 — Psyop(h, dir, ady)).
dire{L,R} arg€Dg (h,dir)

5.1.2 A Context-Free Grammar

The structure generated by this derivational process can be viewed as a lexicalized tree composed of the
following local binary and unary context-free configurations:

Right-first Head Choice w — w
Left-first Head Choice w — w
— —
Right-first Right Attachment p — h @
Right-first  Left Attachment ﬁ — a ﬁ
— —
Left-first Left Attachment p — a h
Left-first Right Attachment Z — Z a
= —
Right-first Right Stop h — h
Left-first Left Stop Z — Z
Right-first Seal h — ﬁ
Left-first Seal h — Z

Each of the four configurations equivalently represents either a head-outward derivation step or a context-
free rewrite rule. The terminal symbols are w € W (here, the terminal vocabulary W is the set of word

classes). The non-terminal symbols are B, E, w, w and W, for w € W U {0}
Sentences are imagined to end with the ROOT symbol {, with <> always serving as the start symbol. Trees
rooted at h are called sealed, since their head h cannot take any further arguments to either side, in this

—

grammar’s topology. Trees with roots ; and Z are called half-sealed, since they can only take arguments



— —

to the final attachment side (L and R, respectively). Trees rooted at h and h are called unsealed, since
they can take arguments to either side (initially R and L, but eventually L and R, respectively).

5.2 Inside-Outside Algorithm

The model can be re-estimated using the basic inside-outside algorithm, which gives for each sentence
s € ) the expected fraction of parses of s with a node labeled = extending from position 4 to position j:

cs(x 2 i,7).

Klein states that the inside and outside recurrences over items (z : i, j) are defined in the standard way. We
expand on his notation, to make things more precise: let s be a sentence sy ... s;_1<{ (originally containing
length [ words s; # <) and recall the various derivation styles (or types) t € {—, <, <, =, —}. Then the
items of interest are

t
(i, h,7), fori €[0,1), j € (3,1] and h € [4, ),

representing s; ... s; 1 derived from s;. The standard unknowns of interest are the inside probabilities

t
Pz(i,h,j) = P(éh derives s;...5;_1)

and the outside probabilities

ot - . t
Po(i, h,j) = P({ derives sg...si-1545;...5-1),

whose product yields the desired fractions of parses, from the inherent assumptions of independence:

t t t
Cs(iahaj) = PI(ZahaJ)PO(ZahaJ)

5.2.1 The Inside Chart (Bottom-Up)

e Base Cases: projections of the terminals, which represent the point where it is decided whether a
word w will take its arguments to the left, then right, or to the right, then left; using our notation,

A Sal
Pz(i, i,7+ 1) = Poroer(Si),
. % . . F .
PI(Za 1,0+ 1) =1 _PI(Za 1,0+ 1)7
for 7 € [0,1); to simplify what follows, assume also that
t
Pr(i,5,i+1)=0

fort ¢ {—,«}, ie forte{s,=,-}.

e Inductive Updates (Binary Propagation): spans greater than one (j > 4 + 1) arise from summing
over various shorter decompositions. Half-sealed scores are expressed in terms of smaller half-sealed
scores, and similarly for the unsealed scores:

h k1
t t

Pr(i,h,G) = Y Pz(k,hy§)(1 = Psnop(sn, L, 1e=n)) D Parracu(sn, L, 5a)Pz(i, @, k), for t € {,S};
k=i+1 a=i
Jj—1 Jj—1

. t . . t . — .

PI(Za ha]) = Z PI(Za ka])(l_PSTUP(ShaRa ]-k:h-l-l)) ZPATTACH(ShaRa SG)PI(kaaaj)a for t € {_>7 ‘:)}

k=ht1 a=k

10



e Inductive Updates (Unary Propagation): all spans, regardless of their length, must be adjusted
by summing over further decompositions of equal length. Sealed scores are expressed in terms of
half-sealed scores; analogously, half-sealed scores are expressed in terms of smaller half-sealed scores:

=

N
PI(ILa 7.7) ; PI(ia haj)PSTUP(ShaRa 1j=h+1)7

=

N+ L
PI(Za 7.7) = PI(ILa ha])PSTOP(ShaLa ]-iZh);
in turn (order matters here),

= =

Pz (i, h,5) £ Pz(i, h,7)Pstop(shsR, Li=pt1) + Pz (%, h,5)Pstop(sh, L, Li=p).

In the end, the probability of this sentence is Py = P7(0, 1+ 1).

5.2.2 The Outside Chart (Top-Down)

Klein simply states that the outside recurrences are similar. Nevertheless, we found this exercise for the
reader quite tedious, labor-intensive and worse error-prone — we spotted several typos in Klein’s inside
recurrences and therefore now proceed to rederive the outside recurrences anew as well, decorating all sums
with their limits of summation throughout, since this work may be of future use to ourselves or others:

e Base Cases: enforce the structural assumption that the ROOT symbol derives all possible parses.
Po(0,0,1+1) = 1;
to simplify what follows, assume also that every other cell of the chart has been zeroed out...

e Inductive Cases: for every symbol’s appearance on the right-hand side of a rule, work back to the
production which generated it (most aren’t too bad, but sealed parses appear in four places):

i—1 -1

LT t . t .
Po(i,h,j) = 22(1 — Pstop(Sas R, liza+1))Pataca(sa, R, 5n) Z Pz(k,a,i)Po(k,a,j)
k=0 a=k te{—,2}
l k—1 ' .
+ Z Z(l _PSTOP(SaaLa 1j:a))PATTACH(5aaL75h) Z PI(ja a, k)PO(iaaak)a
k=j+1 a=j te{+,5}
l k—1
- t . . t P—
PO(Za haj) = (I_PSTUP(Sha R, lj:h+1)) Z PO(Za h, k) Z PATTACH(Sha R, Sa)PI(jv a, k)v for t € {_>’ (:)}’
k=j+1 a—j
i—1 i—1
- t . . — .
PO(Za haj) = (1 - PSTUP(Sha L, li:h)) Z Po(ka ha]) Z PATTACH(Sha L, SG)PI(ka a, 7’)’ for t € {<_’ :}’
k=0 a=k

lastly (once again, order matters),

.. ;

P(’)(ia 7]) ; PSTOP(ShaRa ]-th—l-l)PO(Za 7]) and P(’)(ia 7.7) ; PSTOP(ShaLa ]-iZh)P(’)('L.aEaj)a

o>

Po(i, h,7) = Pstop(sn, R, Li—h+1)Po(3,

=

. S+ L=
7]) and P(’)(ILa ha]) = PSTOP(Sha La ]-i:h)P(’)('L, ha])
Now the probability of this sentence can be re-computed in multiple alternative — yet equivalent! — ways:

— —
Ps = Po(i, 7 ,’i + ]-)PORDER(Si) + Po(i, 7 ,’i + ].)(]_ — PURDER(Si))a V'L c [O,Z], Wlth PURDER(O) =1.

11



5.2.3 Remarks

Both charts lend themselves to straight-forward algorithms with O(n®) running times, based on the re-
currences given above. And while O(n?) solutions exist, making use of various triangular and trapezoidal
sub-structures, we found no urgent need to chase such efficiency prematurely...

However, as we already hinted multiple times, the intricate details of these algorithms leave much room
for errors. Thus, we sprinkled into our code numerous asserts, which verify structural invariants, including
the known probabilities associated with ROOT <, as well via multiple calculations and comparisons of P.

5.2.4 Re-Estimation

Klein claims that given the inside and outside scores, the fraction of trees over a given sentence which
contain any of the structural configurations which are necessary to re-estimate the model multi-nomials
can be calculated easily. For the most part, we did not find this to be the case...

e Pgsrop: as an example, Klein explains that Psrgp(sp,L,0), according to a current model ©, could be

—

computed as the ratio of two quantities: 1) the (expected) number of trees headed by s, whose start
position i is strictly left of h; to 2) the (expected) number of trees headed by s, with start position
i strictly left of h. Their ratio is the maximum likelihood estimator of the local probability factor:

h—1 l ..
Zsen Zi:o Zj:i+1 Cs(Za ha])
h—1 ! .5
Zseﬂ >ico Zj:prl cs(iy h

Klein points out that this can be intuitively thought of as the relative number of times a tree headed
by sp had already taken at least one argument to the left, had an opportunity to take another, but
didn’t. Sadly, this formulation tripped some of our assertions. Upon closer examination, we were left
confused about two issues: 1) shouldn’t only a fraction of the numerator’s probability mass associated

Psrop(sp, L, 0) =
v J)-

with 55, stem from ?h, with the remainder having been derived from Sh (indeed, as is, the formula
sometimes yields “probabilities” greater than one)? and 2) doesn’t this miss an entire spectrum of

stopping observations generated in the other direction, when ?h morphs into Zh?

We attempted to reason our way towards a more appealing ratio, but we found this business quite
tricky, since there is a lot of very subtle aggregation going on. Instead, we implemented a more
direct brute force approach, which is more obviously a sound probability distribution. For each
position A in every sentence s € 2, various sealed events (i, h, j) must be disjoint and occurring with
likelihood ¢, (4, h, 7). Furthermore, each event corresponds to 5, having exactly h — i left-attachments
and j — h — 1 right-attachments. Focusing on a particular direction dir € {L,R}, we could compute
p; — the weighted-average fraction of time that position A had ¢ children in this direction. Then
estimating the adjacent probability of stopping becomes straight-forward:

Psrop (sp, dir, 1) = po,
the probability of having no children in direction dir. Now, this contribution must itself be weighted

by > cs(i, h, §), since there may be other instances of s;, in the sentence, but that’s a detail...

The non-adjacent case is only slightly trickier. If pg = 1, then there isn’t any data to make an informed
contribution. Otherwise, let p! = p;/(1 — po) for i > 0 and note that we are faced with an instance
of the Geometric distribution: if the probability of stopping is p, then the probability of having ¢
children is p(1 — p)*~!, given that the first child was already generated by an independent process.

12



The expected number of trials up to and including the final stop, for the Geometric distribution, is
1/p. Thus, we compute the sample mean of the number of attempted stops — letting the first child
represent the actual stop symbol, to make accounting simpler — and find the method of moments
estimate:

o0

1
Zipé =j=< — p= and let Pgrgp(sy, dir,0) = p,
i=1

1
D oo 1P
also to be weighted down, only even further, to exclude the likelihood of adjacent events...

Porper: Klein does not explain how this probability is to be inferred from ©, but in this case we did
see an entirely trivial calculation:

—
_ > hesy—w Po(w,w,w +1)
Z 15y = Po(w,a,w+1)+Po(w,1_u),w+1)
h:sp=w

PDRDER(w)

Pyrraca: Klein neglects to explain how to infer this distribution as well, which was a problem for us,
since it wasn’t entirely clear what it even means — at first glance, it could be interpreted as the
probability that arg attaches to w versus the alternative that w attaches to arg, which may seem
reasonable as we decide how to merge two trees. But given the context, we chose to interpret it as
the probability that a particular arg (of all word classes) attaches to w, given that something does:
the long-run frequency of arg among all of w’s attachments.

We hope that this is the intended interpretation, but we found it to be quite tricky, since again,
the tree has aggregated and co-mingled various information, making it difficult (if not impossible)
to recover what we want. After experimenting with multiple strategies, we once again resorted to
a “crazy hack” (see the crh array in our code), since we don’t believe there is enough information

t
accessible in the tree itself. Roughly speaking, we hacked together crh(i,h,7)[a] into the inside

t
phase of the algorithm to track the fraction of the total inside probability Pz (i, h, j) that arrived via
attaching the argument a. We then went on with Klein’s earlier line of reasoning, by taking the ratio
of actual frequency of attachment, to the total number of opportunities to attach:

. t . . t . —
Zh:sh:w Z?:O Zé’:h—l—l ZtE{F,S} PO(Zv hvj) Z‘“S“:” crh(z, b ])[a]

i<a<h

h l Lt
Zh:sh:w Zi:O Zj:h+1 Zte{e,:} PO(Za haj)

Parraca(w,L,v) = )

- t . . t . —
Zh:sh:w E?:O Zé’:h—l—l ZtE{—hﬁ} PO(Za h, .7) Z a:5q =1 Crh(Z’ haj)[a’]

h+1<a<y

h ! Lt
Zh:sh:w Zi:O Zj:h+1 Zte{a,:} PO(Za haj)

Parraca(w, R, v) =

With Pstop, Porper and Pprrace re-estimated for each sentence, we simply point-wise averaged them across
sentences, without any kind of smoothing, to generate the next generation model.

5.2.5 Initialization

Klein stresses that initialization is important to the success of any local search procedure and emphasizes
that a specific approach was crucial for getting reasonable patterns out of this model. In it, the ROOT always
had a single argument and took each word with equal probability; all other words took the same number
of arguments, each taking other words as arguments in inverse proportion to a constant plus the distance
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between them. Klein does not specify which constant was used in this somewhat ad-hoc “harmonic”
completion. We took all this to imply uniform priors

1 1
Poroer = Psrop = o Pyrracu(¢, L w) = ik

with the exceptions

Poroer (¢) = 1, Pgrop (¢, L, 1) =0, Psrop(<,L,0) = Pgrop(¢,R, 1) =1,

as well as 1
PATTACH(Q,R,w) =0, PATTACH(Si,diT, 3]') = ma for Siy Sj # <.

Klein points to two advantages of this approach: 1) it offers a common way for starting off and testing
multiple models; and 2) it allows the model to be pointed in the vague general direction of what linguistic
dependency structures should look like.

5.3 Constituency Conversions

Since Klein tested his model using the Penn Treebank data, we implemented several more or less trivial
algorithms for parsing the relevant tree structures, extracting the flattened terminals, along with their
part-of-speech word classes, and converting the constituency parses into dependency parses, for evaluation.

5.3.1 Head Percolation

One of the few interesting stops along this detour is the accepted conversion process, used by Klein, which
we first encountered in our course reader. We implemented Collins’ rules as follows:

1. Refer to all word class names by their prefixes, up to the first hyphen or equals sign (if any), so that
NP-SBJ would be an instance of NP, PP-CLR would be handled as if it were PP, ADVP=3 as ADVP, etc.

2. Truncate coordinating phrases by focusing only on the children up to the first CC term.
3. If fewer than two children remain, return the first child.
4. Special-case the NP rules as follows:

e If the last word is P0OS, return it;
e Otherwise, search R—L for the first child in {NN, NNP, NNPS, NNS, NX, POS or JJR};
e Otherwise, search L—R for the first child which is an NP;
e Otherwise, search R—L for the first child in {$, ADJP or PRN};
e Otherwise, search R—L for the first child which is a CD;
e Otherwise, search R—L for the first child in {JJ, JJS, RB or QP};
e Otherwise, return the last word.
5. For all other rules, use the following prioritized heads (from left to right down the list), searching

in the specified direction (we interpreted this to mean that, in the absence of a match, L—R non-
terminals would return their first child, while R—L non-terminals would return their left child):
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Parent

Direction

Priority List

ADJP
ADVP
CONJP
FRAG
INTJ
LST
NAC

PP

PRN
PRT

QP

RRC

S

SBAR
SBARQ
SINV
sQ
UCP

VP
WHADJP
WHADVP
WHNP
WHPP

R—L
L—R
L—R
L—R
R—L
L—R
R—L
L—R
R—L
L—R
R—L
L—R
R—L
R—L
R—L
R—L
R—L
L—R
R—L
R—L
L—R
R—L
L—R

NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT FW RBR RBS SBAR RB
RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN
CC RB IN

LS :
NN NNS NNP NNPS NP NAC EX $ CD QP PRP VBG JJ JJS JJR ADJP FW
IN TO VBG VBN RP FW

RP

$ IN NNS NN JJ RB DT CD NCD QP JJR JJS

VP NP ADVP ADJP PP

TO IN VP S SBAR ADJP UCP NP

WHNP WHPP WHADVP WHADJP IN DT S SQ SINV SBAR FRAG
SQ S SINV SBARQ FRAG

VBZ VBD VBP VB MD VP S SINV ADJP NP

VBZ VBD VBP VB MD VP SQ

TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP
CC WRB JJ ADJP

CC WRB

WDT WP WP$ WHADJP WHPP WHNP

IN TO Fw

Of the 49,208 sentences in the The Wall Street Journal section, we dropped 10 which exceeded length

100 (maximum length was 271). Training on the remaining 49,198 sentences, an additional 590 had

to be excluded because they contained non-terminals which our implementation could not percolate

all the way up. All of these had to do with productions relating to NX and X; here are those which

occurred more than once, sorted by frequency:

NX — NN NNS

NX — JJ NN

NX — NN NN

NX — JJ NNS

NX — NNP NNP
NX — NX , NX CC NX
NX — NX PP

NX — JJ JJ NN

NX — NNP NNP NNP

X — DT
NX — JJ
NX — NX
NX — JJ

JJR

NN NN

, NX , NX CC NX
NN NNS

NX — NX PRN
NX — NNP NN
X — DT RBR
NX — NP PP
NX — NX , CC NX
NX — NN NN NN
X — X NP
NX — NNP NNPS
NX — NNS NN
NX — ADJP NN
NX — CD NN

NX — NX

, CC NX ,

NX — VBN NNS

109 X—X: PP . 6 NX — NN JJ NN
102 NX — DT NN 5 NX — NN PP
86 NX — NN VBG NN 5 NX — NN S
82 NX — JJ JJ NNS 4 NX — NNP NNP PP
66 NX — NN NN NNS 4 NX — NNP NNS
49 NX — NNP NNP NNP NNP 4 NX — NNS NNS
47 NX — NX ADJP 4 NX — NP NNP
26 X — DT ADJP 4 NX — NP NNS
23 NX — CD JJ NX 3 NX — NP SBAR
23 NX — JJ CD 3 NX — NP VP
22 NX — JJ NNP NN 3 NX — NX , NX , CC NX
16 NX — NNP NNP NN 3 NX — NX , NX , NX
14 NX — NNP POS 3 NX — NX NP
13 NX — NX , NX , NX , NX CC NX 3 NX — NX PP PP
12 NX — QP 3 NX — PRP$ NNS
11 NX — RB NNS 3 NX — VBG NNS
10 NX — VBG NN 3 NX — VBN JJ NN
9 NX — $ CD 2 NX — VBN NN
8 NX — ADJP NNS 2 NX — ¢ NX ’? CC ‘¢ NX
8 NX — CD NNP NX 2 NX — ‘¢ NX , >’ SBAR
7 NX — CD NNS 2 X — ADVP , NP .
7 NX — DT JJ NN 2 X — DT JJR NN
6 NX — FW FW 2 X — SBAR , X NP
6 NX — JJ NN SBAR 2 X—X : ADJP .
6 NX — JJ VBG NN 2 X—X : NP .
6 NX — JJS NN 2 X — X PP
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5.3.2 (P)CFG for the DMV

In order to score using the same metric as used by Klein, we had to find the most probable parse, given
the probabilistic model ©. Although in itself an interesting exercise, the dynamic programming involved in
our standard CYK implementation was quite similar to (just simpler than) the inside chart computation
of the inside-outside algorithm and did not offer any intellectual insights beyond what was covered in
programming assignment three. Thus, we omit those details here.

6 Evaluation / Testing / Performance / Results

Since a dependency parse always consists of exactly as many dependencies as there are words in the
sentence, the quality of a hypothesized dependency structure can be evaluated by accuracy as compared
to a gold-standard, by reporting the percentage of shared links between the two analyses.

Klein advocates reporting an accuracy figure for both directed and undirected dependencies, as undi-
rected numbers offer two advantages: 1) they facilitate comparison with earlier work; and, more impor-
tantly, 2) they allow one to partially obscure the effects of alternate analyses, such as the systematic choice
between a modal and a main verb for the head of a sentence, as in either case the two verbs would be
linked, but the direction would vary.

6.1 DMV

We now attempt to decouple the unsupervised learning aspects of this project from the intrinsic value of a
potential model, if there were an efficient way to learn it. Luckily, the DMV lends itself to such analyses,
given the head-percolated Penn Treebank dependency parses.

6.1.1 A Base-Line

To keep our experimentation cycle reasonably snappy, we lowered the threshold for maximum sentence
length down to 25 — O(n®) is no joking matter, since a single very long sentence can take a disproportionate
fraction of the time (see #define MAX LEN in our code). This takes us down to 26,251 reference parses,
which is slightly more than half of the total available number of sentences.

Using a “zero knowledge” model, without even the ad-hoc harmonic smoothing — instead, using the
uniform prior for everything except for the hard-wired ROOT probabilities — already gives a score of 14.4%
for the directed edges (29.9% for undirected). Not surprisingly, this is not quite as high as the 33.6% scored
by the adjacent-word heuristic, mentioned by Klein.

6.1.2 An Acid-Line?

Since we had already spent quite some time thinking about how to estimate the DVM from data, it occurred
to us that we could create an oracle-like model, simply by inferring probabilities from the surface statistics
presented by our reference parses. Unfortunately, there is no obvious way to estimate Pogpggr, S0 it remains
uniform at one half. But Pyrracy could be extracted simply by tracking the fraction of attachments’ classes
for each head’s word class. And Pgsrgp could be gleaned using the simple estimators associated with the
Bernoulli and the Geometric probability distributions, as before. This gave us an upper bound of 75.5%
for the directed edges (77.5% for undirected). Once again, we are not surprised that these numbers are
higher than Klein’s scores of 43.2% (63.7% undirected), but it’s impressive how close his unsupervised
training came to the theoretical limit, modulo a dumbed down Pggpgg. We find it note-worthy that 1) this
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theoretical ceiling is so far away from 100%; and 2) that the directed and undirected scores came out so
close to one another.

6.1.3 Further Dissection

In order to investigate which parts of the model are contributing to the theoretical ceiling, we tried
training it piece-meal: 1) with Pyrracy alone, leaving both Pprper and Pgpop uniform, it scored 60.0%
(63.6% undirected); 2) with Pgrgp alone, without Pogpgg or Pyrracs, it scored 53.9% (57.7% undirected);
3) using just the adjacent portion of Pgrgp gave 50.0% (54.8% undirected); and finally, 4) using only the
non-adjacent portion of Pgrgp gave 12.5% (30.8% undirected), which isn’t much better than the chance base-
line, strictly speaking. This confirms the usefulness of the attachment probabilities and the probabilities of
whether or not there are attachments to speak of, but questions the contribution of non-adjacent stopping,
at least in its present bucketed form.

6.1.4 Error Analysis

We now present several pseudo-randomly selected sentences, which indicate the kinds of mistakes which
are likely to be made even by the oracle-trained DMV:

Reference: 1

0 1 1 D Pierre[NNP]
1 7 7 D Vinken[NNP]
2 1 7 , 0,1

3 4 4 D 61[CD]

4 5 7 years [NNS]

5 1 4 U o01d[JJ]

6 1 7 , 0,1

7 18 18 D will[MD]

8 7 7 D join[VB]

9 10 10 D the[DT]

10 8 8 D board[NN]

11 8 10 as [IN]

12 14 14 D a[DT]

13 14 14 D nonexecutive[JJ]
14 11 11 D director[NN]
15 8 8 D Nov.[NNP]

16 15 15 D 29[CD]

17 7 7 D .[.]

pos head guess

Above, we notice that the model struggles with punctuations, such as commas.

Reference: 115

0 1 1 D Al1[DT]

1 6 6 D came[VBD]

2 1 1 D from[IN]

3 4 4 D Crayl[NNP]

4 2 2 D Research[NNP]
5 1 1 D .[.]

pos head guess

And here is a rare (small) case when it gets entirely right!

Rather than eye-ball the sentences and spot-check sporadically on, we implemented a verbose option
in our program (see #define VERBOSE, which, among other things, produces a sorted dump of all of the
mistakes. Specifically, we track the correct attachments when the model is entirely wrong, as well as the
incorrect attachments that were suggested, in addition to the swapped attachments when the model is
almost right. Many of the top offenders can also be found at the top of Klein’s list of top over- and
under-proposed dependency types.
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Wrongly Claimed (1011 Unique)

NN
DT
NNP
JJ
IN
NNS
VBN
VBD
NN
IN
NNP
VBD
VBZ
NN
NN
NN
VBD
NN
NN

NNS

IN
VBD
VBD
VBD
NNP
VBZ
NNS
NNS
NNS

JJ
VBZ

VB
VBD
CD
VBP
RB
VBD
VBP
RB
NNP
-NONE-
NNP
VBN
VBZ
cD
DT
POS
PRP$
IN
VB
VBD
(4
VBD
NNP
VBZ
-NONE-
-NONE-
VBZ
MD
VBZ
VBP
VBG
RB
NNP
VBD

N A A O e O O B A A 2 2 B

IN
NN
NNP
NN
NN
IN
IN
NN
NNS

NN

VBD
NNS
DIAMOND
VBZ

cC

VBD

cC

NNP
-NONE-
TO

IN

NN
DIAMOND
VBD
VBP
NNS

NN

VBZ

NN

VBD

NN

RB

VBN

RB

JJ

cC

TO

VBD
-NONE-
RB

NNS
NNS

NN

NN

VBD
NNS
VBZ
NNS
NNP

TO

VBZ
-NONE-
VBG

RB

IN
DIAMOND
NN

VBD
VBZ
VBN

5925
4642
3568
3396
2971
2260
2175
1891
1855
1663
1561
1297
1285
1269
1179
1096
1084
1082
1037
1027
1000
971
967
954
946
943
935
932
888
873
859
844
678
661
651
647
623
617
597
596
582
579
571
556
551
545
523
506
502
456
451
446
435
420
393
386
385
381
361
358
357
355
353
351
346
341
337

Totally Missed (1549 Unique)

DT
NN
VBD
NN
VB
IN
NN
NNP
NNP
JJ
NNS
NNP
VBD
JJ
DT
VBZ
NN
NNP
NN
IN
VBP
IN
NNS
VBD
NNP
DT
NNP
-NONE-
VBD
VBG

VBZ
IN
VBN
NN
JJ
NN
VBZ
VBD
NN
NNS
IN
NN
MD
VBD
RB
RB
NNP
RB
IN
NNS
VBZ
DT
NN
VBZ
NNS
NN
cC
VBP
cC
VBZ
NNS
VBD
VBZ

JJ
JJ

R S A e A A R A A B A I A Ay e A A A o B R A A

NN
IN
IN
NN
IN
NN
NN
NN
NNP
NN
IN
NNP
NNS
POS

NNS
NNS
NNP
NNS
NN

NN

NNS

NNS
VBD

IN
VBD
IN
VBD
IN
NNS
IN
cC
RB
cC
VBD
NN
CD
TO
RB
NN
IN
IN
IN
VBZ

NNP
-NONE-
NN

NN

VBZ

NN

IN

NNS

cC

VBD
DIAMOND
DIAMOND
VBZ

JJ

TO

18

2998
2525
1920
1696
1668
1663
1606
1537
1500
1486
1383
1375
1354
1228
1074
1067
1034
991
958
866
810
802
774
771
737
729
729
725
714
709
699
694
676
667
639
608
596
587
586
575
570
561
561
521
512
497
478
ATT7
474
467
466
466
451
449
444
438
435
431
424
401
399
390
382
376
372
361
358

Simply Swapped (422 Unique)

NNP

NN

IN

IN

IN

VBG
VBD
VBG
NNP

IN

NN

VBZ

IN
-NONE-
CD
-NONE-
-NONE-
NNP
JJR

RB

VBN
NNP

NN

IN

VBN

IN

RB
-NONE-
RB

IN

-NONE-
VBZ
VBZ

JJ
VBD
JJR

NN

JJ

-NONE-

-NONE-
NNS

-NONE-
NNS
NNS
VBP

NNPS
NNS
CD
NN
NNS
JJ
NN
NNS
VBD
NNP
NNP

VBG
VBG
VBP
IN
IN
NN
IN
IN

I e e I I 2 e O B A A A A I A I N A i )

NNP
NN
VBD
NNS
NN
NN
VBD
NNS
NN

NNS
VBZ
VBZ
VBP
CD
VBD
VBZ
NNP
IN
IN
NNS
NN
MD
VBD
NN
VBP
IN
MD
JJ
IN
VBZ
VBZ
VBZ
VBD
IN
VBZ
IN
IN
NN
VBD
MD
VBN
VBP
JJ
TO
VBZ
NNP
NN
VBD
IN
NNS
VBN
NNS
VBD
NNS
VBZ
NN
NNS
VBD
RB
VBZ
TO
VBD
NN

760
494
275
234
226
205
182
174
166
159
159
156
155
128
120
118
113
109
107
100
96
94
88
83
82
75
74
74
73
73
71
69
64
64
63
62
59
58
56
52
50
45
45
44
44
44
43
42
42
40
39
39
37
37
37
36
34
34
32
32
32
32
31
31
30
28
27



We note that the ROOT <) isn’t to be found at the top of any lists (not that it could appear in the swapped
list), which creates hope that the model is fairly good at identifying the overall head. At the same time,
we observe an abundance of improper subordination to punctuation and lots of confusing -NONE- nodes.

We hesitate to draw any serious linguistical claims from this, since our model is inbred directly from the
Treebank parses themselves. Klein, however, stresses that in his experience the model’s top mis-matches
come from systematically choosing determiners to be the heads of noun phrases, where the test trees have
the right-most noun as the head, clarifying that the model’s choice is supported by a good deal of linguistic
research (in fact, Klein modified the head-percolation rules to favor determiners when present, in case
of NP, and quoted improved scores of 55.7% directed, 67.9% undirected, with this modification). Other
common sources of errors included modals dominating main verbs, the choice of the wrong noun as the
head of a noun cluster, and having some sentences headed by conjunctions.

6.2 EM

In this sub-section, we focus on how well (our implementation) of expectation maximization is able to
arrive at a decent set of probability distributions.

6.2.1 A Base-Line

As advertised, without special initialization, EM doesn’t take us much farther from the zero-knowledge
base-line: 18.4% directed, 38.4% undirected. Strangely, EM gets these scores on the very first iteration,
then makes very little progress going forward, usually slipping back...

We programmed EM to bail out when the maximum point-wise change in probability has gone down
sufficiently low, or when the number of iterations of the algorithm has reached a threshold (see #define
MIN_EM_ERR and #define MAX_EM_ITER). But in addition to printing the maximum point-wise change found
so far, we also make use of the oracle’s probability distributions and take advantage of our ability to track
the average discrepancy in point-wise probabilities between our current best and the goal.

In this case, the [, losses are 1.72% for Pyrmacu, 60.60% for Pa ., and 38.29% for Padt .

6.2.2 An Ad-Hoc Harmonic

As advised, we tried initializing our model using the ad-hoc harmonic function for valence-sensitive Pyrracn,
which immediately brought the scores up to 21.5% directed, 47.1% undirected, before even the first iteration
of EM. Here, we used a constant of 5, though we found that many small numbers perform almost equally
as well.

The very first iteration of EM makes things slightly worse: 20.9% directed, 45.7% undirected. Sadly,

things don’t improve much from there, with the losses lingering around 1.73% for Pyrrack, 59.66% for Pg%P

and 38.29% for P4d .

6.2.3 An Acid-Line?!?

Curious about how EM would behave if we started it at the optimum, we were disappointed to find it
drop after the very first step: 72.5% directed, 74.5% undirected, and drifting down, with losses of 1.65%

for Pyrract, 55.01% for PS¥ . and 38.09% for PA4 .

6.2.4 Further Dissection

In order to investigate which parts of the model are contributing to this degradation, we short-circuited
the updating rules for both Pyrracy an Pgrgp, leaving only Pgrper open to mutation. EM still managed
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to lose a little bit of the edge, but nevertheless maintained the high level set by the oracle almost intact,
around 75.5% directed, 77.4% undirected after some iterations.

With Pyrrace alone updating, the scores drop immediately to 72.4% directed, 74.5% undirected, then
continue to slide, reaching 68.1% directed, 70.5% undirected after just a few iterations, thus Pjyrrcy is
suspect; with Pgrgp alone updating, the scores drop even faster, reaching 66.8% directed, 69.9% undirected

after just a few iterations, rendering Pgrop suspect as well and casting doubts over (our implementation
of) EM.

6.2.5 Error Analysis

We are not entirely sure what is going wrong with our implementation of EM. There are many potential
reasons: it’s possible that we misunderstood the model, although the oracle’s solid performance makes this
unlikely. It could be that the surface estimate is better than what EM could do, since it gathers statistics
across all sentences before averaging, whereas EM is forced to aggregate at the sentence level. There are
the more likely possibilities that either our re-estimation is incorrect or that we have bugs in the innards
of the inside-outside algorithm (or both). Still, the fact that the oracle performs well suggests that our
(P)CFG is good, and that code is quite similar to what’s in T10...

7 Forward-Looking Statements

Despite the botched experience with EM, we feel that the DMV is a simple, powerful and extensible model,
based on our experiments with the oracle and Klein’s unsupervised successes. We are very interested in
exploring the issue of scaling to much larger corpora — perhaps even using the oracle itself as a seed for
an unsupervised algorithm, once we figure out why our implementation of EM can’t hang on to a good
solution even when one is staring at it... It’s tempting to think of the ways in which the DMV could be
extended (e.g. lexicalization, better bucketing, perhaps a Poisson distribution over the number of children,
which worked well for us in the second programming assignment on EM for word alignment models).
Nevertheless, we hear Klein’s advice and plan to be careful:

In contrast to what’s generally done in supervised parsers, the DM V’s lexical identity is a word class, not
the identity of the head word itself. However, in Klein’s unsupervised experiments, having lexical items in
the model led to distant topical associations being preferentially modeled over class-level syntactic patterns.
Supervised parsers’ decisions to stop or continue generating arguments are also typically conditioned on
finer notions of distance than simple adjacency (e.g. using buckets or punctuation-defined distance).
Moreover, decisions about argument identity are conditioned on the identities of any previous arguments,
not just a binary indicator of whether there were any... But, in the unsupervised case, this much freedom
can be dangerous. Such features’ success in supervised systems suggests that they could be exploited
in this setting too, perhaps in a system which originally ignored richer context, then gradually began to
model it. Part of the beauty of this model is in its simplicity: Klein reports that it worked quite well (at
above-base-line levels) for both Chinese and German, without any modifications.

8 Conclusions

Even though the EM experiment did not work out, we still learned a great deal about NLP over the course
of the last few weeks, exploring the fields of unsupervised and dependency parsing.

Thank you for a great class!! :)
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A Makefile

#!gmake

fp: fp.cc
g++ -o fp -06 fp.cc
strip fp

B Data

C Usage

./fp < /tmp/ptb.wsj.full > /tmp/ptb.wsj.full.out

D The Code

Although what follows has neither been polished for readability nor optimized for efficiency, we hope that
— at least in the context of the preceding report — our code strikes you as moderately clean and intelligible
enough to be useful.
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// Valentin I. Spitkovsky

// CS224N: Spring 2008
// Prof. Christopher D. Manning

// Final Project: Dependency Model with Valence
// (Unsupervised Learning)
// 2008-06-04

#define VERBOSE (false)

#define MAX_EM_ITER (20)

#define MIN_EM_ERR (1.0/(1024))

#define MAX_TOL (1.0/(1024%1024))

#define MAX_LEN ((25)+1) // a cap on sentence lengths, for efficiency...

static bool harmonic = false;
static double harmonic_c = 5;

#include <string>
#include <vector>

#include <ext/hash_map>

#include <iomanip>
#include <iostream>

#include <assert.h>
#include <math.h>

using namespace std;
using namespace __gnu_cxx;

namespace __gnu_cxx {
template<> struct hash<std::string> {
size_t operator() (const std::string &x) const {
return hash<const char *>()(x.c_str());

¥

¥

const string TERMINATOR = "DIAMOND";

enum {
IN = 0, // inside
0uT, // outside
N_DIRS

¥

enum {
L =0, // left
R, // right
LR, // right, left
RL, // left, right
S, // sealed
N_TYPES

3

typedef struct {
double x[2]1[2];

} stop_type;

typedef struct {
double *x[2];

} attach_type;

static vector<string> words;
typedef hash_map<string,unsigned> hm_su_type;
static hm_su_type word_ids, unheaded;

static string word(const unsigned id) {
assert(id < words.size());
return words[id];
i
static unsigned word_id(const string &w) {
assert(w.size() > 0);
const hm_su_type::const_iterator q = word_ids.find(w);
if (q == word_ids.end()) {
const unsigned int len = words.size();
words .push_back (w) ;
word_ids[w] = len;
return len;
}

return g->second;

static inline double Porder( // left-first
const unsigned wc,
const double *const p) {
return plwcl;



}

static inline bool adj(
const unsigned dir,
const unsigned pos,
const unsigned w) {
switch(dir) {
case L:
assert(pos <= w);
return (pos == w);
case R:
assert(pos > w);
return (pos == w + 1);
default:
assert (false);
}
¥

static inline double Pstop( // stop
const unsigned wc,
const unsigned dir,
const unsigned pos,
const unsigned w,
const stop_type *comnst p) {
return plwc].x[dir][adj(dir,pos,w)];
¥

static inline double Pattach(const unsigned ac,

const unsigned wc,
const unsigned a,
const unsigned w,
const attach_type *const p) {

if (harmonic) { // ad-hoc harmonic..

return 1 / (harmonic_c + fabs(a - w));
}

return plac]l.x[a < w ? L : R][wcl;

static inline void prccess(

const vector<unsigned> &sentence,
const double *const p_order,
double *const 1_order,
double *const r_order,
const stop_type *const p_stop,
stop_type *const c_stop,
stop_type *const t_stop,
const attach_type *const p_attach,
attach_type *const c_attach,
double t_attach[1[2],
const unsigned nwords) {

const unsigned len = sentence.size();

assert(len <= MAX_LEN);

assert(len > 0);

// The generic charts for computing Inside and Outside probabilites:
static double (*const mem)[MAX_LEN][N_TYPES][MAX_LEN] [MAX_LEN+1]

= new double[N_DIRS][MAX_LEN][N_TYPES][MAX_LEN] [MAX_LEN+1];
// For each of two directions (IN / OUT), for every head word h, and
// for its every possible annotation (L,R,LR,RL,S), associates a
// computation for the range i...j.

// A crazy hack for learning Pattach -- for every head word h, tracks
// the contributions of attachments a, when spanning i...j (over IN):
static double (*const crh_attach)[MAX_LEN][MAX_LEN] [MAX_LEN+1]

= new double[MAX_LEN] [MAX_LEN] [MAX_LEN] [MAX_LEN+1];

// Another crazy hack for learning Pstop -- for some (transient) head
// word h, track enough information to compute the fraction of

// childless sub-trees, as well as the average number of children,

// in both directions:

static double crh_zero[N_DIRS], crh_weighted[N_DIRS], crh_sum[N_DIRS];

for (unsigned h = 0; h < len; ++h) {
for (unsigned i = 0; i <= h; ++i) {
for (unsigned j = h + 1; j <= len; ++j) {
for (unsigned d = 0; d < N_DIRS; ++d) {
for (unsigned t = 0; t < N_TYPES; ++t) {
mem[d] [h] [¢]1[i1[j1 = 0;
¥
i
for (unsigned a = i; a < h; ++a) {
crh_attach[h][al [i]1[j] =
¥
for (unsigned a = h + 1; a < j; ++a) {
crh_attach[h][al [i1[j] = 0;
¥

}
¥
}

for (unsigned i = 0; i < nwords; ++i) {



1_order[i] = r_order[i] =
c_stop[il.x[L][true]l = c_stop[i].x[L][false] =
c_stop[il.x[R][true]l = c_stop[il.x[R][false]
t_stop[il.x[L][true]l = t_stoplil.x[L][falsel
t_stop[il.x[R][true]l = t_stoplil.x[R][falsel
t_attach[i][L] = t_attach[i][R] = 0;

for (unsigned j = 0; j < nwords; ++j) {

c_attach[il.x[L1[j1 = c_attach[il.x[R1[j1 = 0;
i
¥

// Inside (Bottom-Up)
for (unsigned i = 0; i < len; ++i) {
const double p = Porder(sentence[i], p_order);
mem[IN] [i] [L][i][i+1] = p;
mem[IN] [i][RI[i1[i+1] =1 - p;
mem[IN] [i][LRI[i1[i+1] = mem[IN][il[RL][i][i+1]
= mem[INI[i1[S1[i][i+1] = 0;
}

for (unsigned d = 1; d <= len; ++d) {
for (unsigned i = 0; ; ++i) {
const unsigned j i+d;
if (j > lem)
break;

for (unsigned w = i; w < j; ++w) {
const unsigned wc = sentencel[w];

unsigned k = i;
while (++k <= w) {
const double
go = 1 - Pstop(we, L, k, w, p_stop),
go-1 = go = mem[IN][w][L][kI[j],
go_lr = go * mem[IN][w][LR][k][j],
go_sum = go_l + go_lr;

if (go_sum > 0) {
double p = 0;
for (unsigned a = i; a < k; ++a) {
const unsigned ac = sentencelal;
const double q = Pattach(ac, wc, a, w, p_attach)
* mem[IN] [a] [S1[i][k];
P *=q;
crh_attach[w] [al[i1[j] += q * go_sum;
¥
mem[IN] [w]l [LI[i][j] += p * go_1;
mem[IN] [w] [LRI[i1[j] += p * go_lr;
}
¥

for (5 k < j; ++k) {
const double
go = 1 - Pstop(wc, R, k, w, p_stop),
go_r = go * mem[IN][w][R][i][k],
go_rl = go * mem[IN][w][RLI[il[k],
go_sum = go_r + go_rl;

if (go_sum > 0) {
double p = 0;
for (unsigned a = k; a < j; ++a) {
const unsigned ac = sentencelal;
const double q = Pattach(ac, wc, a, w, p_attach)
* mem[IN] [al[S1[k][j1;
P *=q;
crh_attach[w] [a]l [i]1[j] += q * go_sum;
¥
mem[IN] [w] [RI[i][j] += p * go_r;
mem[IN] [w] [RLI[i1[j] += p * go_rl;
}
¥

const double
sl = Pstop(we, L, i, w, p_stop),
sr = Pstop(wc, R, j, w, p_stop);

mem [IN] [w] [LRI[i1[j] += mem[INI[wl[RI[il[jl * sr;
mem[IN] [w] [RLI[il[j] += mem[IN][w]l[LI[il[jl * s1;

mem [IN] [w] [S][i1[j]
+= mem[IN] [w][RLI[i]l[j] * sr
+ mem[IN][w][LRI[i][j] * s1;
}
¥
}

// Normalize the Crazy Hack (Attachment Probabilities)
for (unsigned w = 0; w < len; ++w) {
for (unsigned i = 0; i <= w; ++i) {
for (unsigned j = w + 1; j <= len; ++j) {
{ // left



¥
{

const double lnorm = mem[IN][w][L][il[j] + mem[IN][w][LRI[il[j];
if (lnorm > 0) {
for (unsigned a = i; a < w; ++a) {
crh_attach[w][al[i]1[j] /= lnorm;
i
¥

// right
const double rnorm = mem[IN][w][R][il[j] + mem[IN][wl[RLI[il[j]1;
if (rmorm > 0) {
for (unsigned a = w + 1; a < j; ++a) {
crh_attach[w] [a]l [i1[j] /= rnorm;

// Dutside (Top-Down)

mem[0UT] [1en-1]1 [S1[0] [1en]
mem[0UT] [1en-1]1 [R]1[0] [1en]

em[0UT] [len-11[LR1[0] [1len] = 1;

1l =m
] = (len ==1 7 1 : 0);

for (unsigned d = len - 1; d > 0; --d) {

for (unsigned i = 0; ; ++i) {
const unsigned j = i + d;
if (j > lem)
break;

for (unsigned w = i; w < j; ++w) {
const unsigned wc = sentence[w];

}
¥
}

for (unsigned k = 0; k < i; ++k) {

double p = 0;
for (unsigned a = k; a < i; ++a) {
const u.nsigned ac = sentencel[a];
p += Pattach(ac, wc, a, w, p_attach) * mem[IN][a][S][k][i];
mem[0UT] [w] [ST[i1[5]
+= Pattach(wc, ac, w, a, p_attach)
* (1 - Pstop(ac, R, i, a, p_stop))
* ((mem[IN][al[R 1[kI[il * mem[0UT][al[R 1[kI[j1)
+(mem[IN] [a] [RL] [k1[i] * mem[0UT][al[RL][k1[j1));
¥
p *= 1 - Pstop(we, L, i, w, p_stop);
mem[0UT] [w] [L1[i]1[j] += p * mem[0UT] [w][L][k1[j1;
mem[0UT] [w] [LRI[i]1[j] += p * mem[0UT] [w] [LRI[k1[j]1;

for (unsigned k = j + 1; k <= len; ++k) {

¥

double p = 0;
for (unsigned a = j; a < k; ++a) {
const u.nsigned ac = sentencel[a];
p += Pattach(ac, wc, a, w, p_attach) * mem[IN][al[S]1[j][k];
mem[0UT] [w] [ST[i1[5]
+= Pattach(wc, ac, w, a, p_attach)
* (1 - Pstop(ac, L, j, a, p_stop))
* ((mem[IN][al[L 1[j]1[k] * mem[0UT][allL 1[i][k1)
+(mem[IN] [al [LRI[j1[k] * mem[0UT][al [LRI[il[k1));
¥
p *= 1 - Pstop(wc, R, j, w, p_stop);
mem[0UT] [w] [RI[i]1[j] += p * mem[0UT] [w][R][il[k];
mem[0UT] [w] [RLI[i1[j] += p * mem[0UT] [w] [RLI[i][k];

const double

sl = Pstop(wc, L, i, w, p_stop),
sr = Pstop(wc, R, j, w, p_stop);

mem[0UT] [w] [RL][i]1[j] += mem[0UT][wI[S1[il[j] * sr;
mem[0UT] [w] [LRI[i1[j] += mem[0UT][wl[SI[il[j] * s1;

mem[0UT] [w] [RI[i1[j] += mem[OUT] [wl[LRI[il[j]l * sr;
mem[0UT] [w] [LI[i1[j] += mem[OUT][w][RLI[il[j]l * s1;

// Sanity Checks; destroy charts to make counts...
const double p_sentence = mem[IN][len-1]1[S][0][len];
for (unsigned w = 0; w < len; ++w) {

const unsignad wc = sentence[w];

const double
p = Porder(wc, p_order),
alternative = mem[0UT][w][L][w][w+i] * p

+ mem[0UT] [w] [R] [w] [w+1] * (1-p);

assert(fabs(p_sentence - alternative) < MAX_TOL);

for (unsigned i = 0; i <= w; ++i) {

for (unsigned j = w
for (unsigned t =

+ 1; j <= len; ++j) {
0; t < N_TYPES; ++t) {

25



mem[0] [w] [t1[4i1[j] *= mem[1][w][t]1[il[j]1;

}
¥

// re-estimate counts for Porder
1_order[wc] += mem[0][w][L][w] [w+1];
r_order[wc] += mem[0] [w][R][w] [w+1];

// prepare to Aggregate the other Crazy Hack (Stopping Probabilities)
for (unsigned d = 0; d < N_DIRS; ++d) {

crh_zero[d] = crh_weighted[d] = crh_sum[d] = 0;
¥

// re-estimate counts for Pattach
for (unsigned i = 0; i <= w; ++i) {
for (unsigned j = w + 1; j <= len; ++j) {
{ // but first, aggregate the other crazy hack (see above)
const double p = mem[0][w][SI[il[jl;
for (unsigned d = 0; d < N_DIRS; ++d) {
const unsigned nkids = (d ==L ? w -1 : j -w - 1);
if (nkids == 0) {
crh_zero[d] += p;

} else {
crh_weighted[d] += p * nkids;
i
crh_sum[d] += p;
¥
¥
{ // left
const double pl = mem[0][w][L]1[il[j] + mem[0][w][LRI[il[j1;
for (unsigned a = i; a < w; ++a) {
const unsigned ac = sentence[al;
c_attach[ac] .x[L]1[wc] += pl * crh_attach[w][al[il[j];
}
t_attach[we]l[L] += pl;
i
{ // right
const double pr = mem[0][wl[RI[il[j] + mem[0][wl[RLI[il[j1;
for (unsigned a = w + 1; a < j; ++a) {
const unsigned ac = sentence[a];
c_attach[ac].x[R][wc] += pr * crh_attach[wl[al[il[jl;
¥
t_attach[wc][R] += pr;
¥
}

¥

// re-estimate counts for Pstop
for (unsigned d = 0; d < N_DIRS; ++d) {
const double z = crh_zero[d], w = crh_weighted[d], s = crh_sum[d];
c_stoplwc]l.x[d] [true] += z;
t_stoplwe].x[d] [true] += s;
const double q = s - z;
if (9 > 0) {
c_stoplwcl .x[d][falsel += q / (w + 1);
t_stoplwc].x[d] [falsel += q;

¥
i
¥
assert (1_order[0] == 0);
assert (c_stop[0].x[L][true]l == 0);

//assert (fabs(c_stop[0] .x[R] [true] - t_stop[0].x[R][truel) < MAX_TOL);
//assert (fabs(c_stop[0].x[L] [false] - t_stop[0].x[L]1[false]) < MAX_TOL);
assert (t_stop[0].x[R] [false] == 0);

¥

typedef struct dep_type {
string::size_type overlord;
string word, word_class;
unsigned class_id;
¥
typedef struct parse {
string name, prefix;
string::size_type head;
vector<parse> children;
vector<dep_type> deps;
bool dep_ok;
EH
static inline string::size_type left_head(
const string pqll,
const unsigned pqlen,
const vector<parse> &children) {
const unsigned kids = children.size();
for (unsigned j = 0; j < pqlen; ++j) {
for (unsigned i = 0; i < kids; ++i) {
if (children[i].prefix == pq[jl) {
return i;

}



¥
}
if (pqlen > 0) {
; // sign of trouble?
}
return 0;
¥
static inline string::size_type right_head(
const string pqll,
const unsigned pqlen,
const vector<parse> &children) {
const unsigned kids = children.size();
for (unsigned j = 0; j < pqlen; ++j) {
for (unsigned i = kids; i-- > 0; ) {
if (children[i].prefix == pq[jl) {
return i;
}
¥
}
if (pqlen > 0) {
; // sign of trouble?
}
return kids - 1;
¥
static inline unsigned handle_cc(const vector<parse> &children) {
const unsigned kids = children.size();
unsigned effective = 0;
while (effective < kids) {
if (children[effective].prefix
break;
} else {
++effective;
¥
}
return effective;
¥
static inline string::size_type find_head(
const string &prefix,
const vector<parse> &children) {
const unsigned kids = handle_cc(children);
if (kids < 2) {

"ee) {

return 0;
}
const unsigned last = kids - 1;
if (prefix == "NP") {
if (children[last].prefix == "POS") {
return last;
¥

for (unsigned i = kids; i-- > 0; ) { // right
const string &s = children[i].prefix;

if (s "ol s "NNP" || s == "NNPS" || s == "NNS" ||
s "Xl s "POS" || s "JIR") {
return i;
}
¥
for (unsigned i = 0; i < kids; ++i) { // left
if (children[i].prefix == "NP") {
return i;
}
¥

for (unsigned i = kids; i-- > 0; ) { // right
const string &s = children[i].prefix;

if (s == "$" || s == "ADJP" || s == "PRN") {
return i;
¥
for (unsigned i = kids; i-- > 0; ) { // right
if (children[i].prefix == "CD") {
return i;
}
i

for (unsigned i = kids; i-- > 0; ) { // right
const string &s = children[il.prefix;

if (s == "JJ" || s == "JJS" || s == "RB" || s == "QP") {
return i;
}
¥
return last;
} else if (prefix == "ADJP") {
static const string pq[l = {

UNNS™, "QP", "NN", "$", "ADVP", "JJ", "VBN", "VBG", "ADJP",
WJJR™, “NP", "JJS", "DT", "FW", "RBR", "RBS", "SBAR", "RB"

EH
return left_head(pq, sizeof(pq) / sizeof(string), children);
} else if (prefix == "ADVP") {

static const string pq[l = {
"RB", "RBR", “RBS", "FW", "ADVP", "TQO", "CD", "JJR",
wygm, “IN®, WNPM, "JJSM, MNN'
¥
return right_head(pq, sizeof(pq) / sizeof(string), children);
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else if (prefix == "CONJP") {
static const string pq[l = {
ngC™, “RB, "IN

};
return right_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "FRAG") {
return right_head(NULL, 0, children);
else if (prefix == "INTJ") {
return left_head(NULL, 0, children);
else if (prefix == "LST") {
static const string pq[l = {
npgn, myn
EH

return right_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "NAC") {
static const string pqll = {
IINNII, IINNSII, IINNPII, IINNPSII, IINPII, IINACII, IIEXII, Il$|l, IICDII,
nQpn, UPRPM, UYBGM, "JJ", "JJS, "JJR, YADJPM, MFWM

EH
return left_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "PP") {

static const string pq[l = {
WIN", "TQ, "VBG", "VBN", “RP", "Fy"

};
return right_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "PRN") {
return left_head(NULL, 0, children);
else if (prefix == "PRT") {
static const string pql[l = {
WRpH
EH

return right_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "QP") {
static const string pq[l = {
ugn, wIyY, UNNS", UNN", “JJ", “RB", “DT", "CD", "NCD",
nQPM, "JJRM, "JJS"
return left_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "RRC") {
static const string pq[l = {
WYpn MNPH, “ADVPY, "ADJP", "PP"

};
return right_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "S") {

static const string pq[l = {
wpgn, wIyn, uypn, ugh, “SBARM, YADJPM, "UCP", "NP"
return left_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "SBAR") {
static const string pqll = {
"WHNP", "WHPP", "WHADVP", "WHADJP", "IN", "DT",
ngn, wgQu, “SINY", "SBAR", "FRAG!
return left_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "SBARQ") {
static const string pq[l = {
"SQr, "S", "SINV", "SBARQ", "FRAG",

};
return left_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "SINV") {

static const string pq[l = {
“yBZ", "VBD", “VBP", "VB", "MD", "VP", "S*, “SINV",
"ADJP", "NP"
EH
return left_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "SQ") {
static const string pqll = {
wyBZ", "VBD", "VEPM, MYBM, MMDM, "ypU, ngQn
return left_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "UCP") {
return right_head(NULL, 0, children);
else if (prefix == "VP") {
static const string pq[l = {
“TQ", "VBD", “VBN", "MD", "VBZ", "VB", “VBG", "VBP", "VP",
“ADJPY, "NN", "NNS", “NP"

};
return left_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "WHADJP") {

static const string pq[l = {
ngeM, "WRBM, "JJM, WADIP"

return left_head(pq, sizeof(pq) / sizeof(string), children);

else if (prefix == "WHADVP") {

static const string pq[l = {
ngen, "WRBM

};

return right_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "WHNP") {
static const string pq[l = {

WWDT","WP", "WP$","WHADJP", "WHPP", "WHNP"
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EH
return left_head(pq, sizeof(pq) / sizeof(string), children);
else if (prefix == "WHPP") {
static const string pq[l = {
WINY, "TQR, CFWM

o

};
return right_head(pq, sizeof(pq) / sizeof(string), children);

return string::npos;

i

static inline parse make_parse(const char * &s) {
parse p;
p.dep_ok = true;

while (xs == 7 7) ++s;
const bool terminal = (xs != ’(’);
const char target = (terminal 7 ’)’ : ’ ’);

const char *q = s;
while (*(++q) != target);

if (terminal) {
p.name.assign(s, q - s);
s =4q;
} else {
p.name.assign(s + 1, q - s - 1);
if (p.name.size() == 0) {
p.name = p.prefix = "BLANK";
} else {
const string::size_type
hyphen = p.name.find(’-’),
equals = p.name.find(’=’);
string::size_type split = hyphen;
if (equals string::npos &&
(hyphen == string::npos || hyphen > equals)) {
split = equals;
}
if (split != string::npos) {
p.prefix = p.name.substr(0, split);
} else {
p.prefix = p.name;

i
while (true) {
while (xq ==’ ?) ++q;
if (xq == )?) {
s =q+1;
break;
} else {
const parse pq = make_parse(q);
p.children.push_back(pq) ;
if (!pg.dep_ok) {
p.dep_ok = false;
¥
i
¥

p-head = find_head(p.prefix, p.children);
const unsigned kids = p.children.size();
if (p.head == string::npos) {

string prod = p.prefix + " -->";

for (unsigned i = 0; i < kids; ++i) {
prod += " " + p.children[i].prefix;

¥

const hm_su_type::iterator q = unheaded.find(prod);
if (q == unheaded.end()) {
unheaded.insert (hm_su_type::value_type(prod, 1));
} else {
++g->second;
¥
p.dep_ok = false;
¥

if (!terminal && p.dep_ok) {
const unsigned nkids = p.children.size();
bool done = false;

if (nkids == 1) {
const parse &q = p.children[0];
if (q.children.empty()) {
dep_type d;
d.word = q.name;
d.word_class = p.name;
d.overlord = string::npos;
p.deps.push_back(d);
done = true;
}
¥

if (!done) {
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string::size_type overlord 0;
const vector<dep_type> &h = p.children[p.head].deps;
while (h[overlord].overlord != string::npos) {
++overlord;
¥
for (unsigned i = 0; i < p.head; ++i) {
overlord += p.children[il.deps.size();
¥
unsigned shift = 0;
for (unsigned i = 0; i < nkids; ++i) {
const vector<dep_type> &q = p.children[il.deps;
const unsigned gqlen = q.size();
for (unsigned j = 0; j < qlen; ++j) {
dep_type d = q[jl;
if (d.overlord != string::npos) {
d.overlord += shift;
} else if (i !'= p.head) {
d.overlord = overlord;
}
p-deps.push_back(d);

shift += qlen;

return p;
¥
static inline void make_sentence(const parse &p, vector<string> *const v) {
const unsigned kids = p.children.size();
if (kids > 0) {
for (unsigned i = 0; i < kids; ++i) {
const parse &kid = p.children[il;
if (kid.children.size() == 0) {
v->push_back(p.name) ;
} else {
make_sentence (kid, v);
}
¥
}
¥
static inline vector<string> make_sentence(const parse &p) {
vector<string> v;
make_sentence(p, &v);
return v;

}

typedef struct {
string::size_type a, k;
double p;
} score_type;
static inline void maxim(const score_type &src,
score_type *const dst) {
if (src.p > dst->p) {
*dst = src;
¥
i
typedef struct {
unsigned root, i, j, t;
} task_type;
static inline void pcfg(
vector<dep_type> &deps,
const double *const p_order,
const stop_type *const p_stop,
const attach_type *const p_attach) {
const unsigned len = deps.size();
assert(len <= MAX_LEN);
assert(len > 0);

// The chart for computing the best (P)CFG parses:

static score_type (xconst mem)[N_TYPES][MAX_LEN][MAX_LEN+1]
= new score_type [MAX_LEN][N_TYPES] [MAX_LEN] [MAX_LEN+1];

// For every head word h, and for its every possible

// annotation (L,R,LR,RL,S), associates a crumb

// leading to the best parse of i...j.

score_type s;
memset (&s, 0, sizeof (score_type));
for (unsigned i = 0; i < len; ++i) {
for (unsigned j = i + 1; j <= len; ++j) {
for (unsigned w = i; w < j; ++w) {
for (unsigned t = 0; t < N_TYPES; ++t) {
mem[w][$]1[i]1[j]1 = s;
¥
}
¥
}

// Base Case: initialize the terminal directioms...
for (unsigned w = 0; w < len; ++w) {
const unsigned wc = deps[w].class_id;



const double p = Porder(wc, p_order);
mem[w] [L] [w] [w+1]l.p = p;
mem[w] [R][w][w+1]l.p = 1 - p;

}

// Inductive Step: build up bigger parses...
for (unsigned d = 1; d <= len; ++d) {

for (unsigned i 0; i < len; ++i) {
const unsigned j = i + d;
if (j > lem) {
break;
}

for (unsigned h = i; h < j; ++h) {
const unsigned hc = deps[h].class_id;
if (d > 1) { // propagate the binaries...
for (unsigned t = 0; t < N_TYPES; ++t) {
if (¢ ==L || t == LR) { // left
for (s.k = i + 1; s.k <= h; ++s.k) {
const double ns = 1 - Pstop(hc, L, s.k, h, p_stop);
for (s.a = i; s.a < s.k; ++s.a) {
const unsigned ac = deps[s.a].class_id;
s.p = ns * Pattach(ac, hc, s.a, h, p_attach)
* mem[s.al[S1[il[s.k].p * mem[h][t][s.k]1[jl.p;
maxim(s, &mem[h][t]1[il[j1);
¥
i
} else if (t == R || t == RL) { // right
for (s.k = h + 1; s.k <= j; ++s.k) {
const double ns = 1 - Pstop(hc, R, s.k, h, p_stop);
for (s.a = s.k; s.a < j; ++s.a) {
const unsigned ac = deps[s.al.class_id;
s.p = ns * Pattach(ac, hc, s.a, h, p_attach)
* mem[s.al[S][s.k]1[j1.p * mem[h][t]1[il[s.k].p;
maxim(s, &mem[h][t]1[il1[j1);

}
} else { // sealed
¥
}
¥
{ // ... and don’t forget the unaries!
s.a = h;

const double
sl = Pstop(hc, L, i, h, p_stop),
sr = Pstop(hc, R, j, h, p_stop);

s.p = mem[h][L1[il[jl.p * sl;
maxim(s, &mem[h][RLI[il1[j1);

s.p = mem[h][RI[i1[j]l.p * sr;
maxim(s, &mem[h][LRI[il1[j1);

s.k = RL; // slight abuse of notation...
s.p = sr * mem[h][RLI[i]1[j].p;
maxim(s, &mem[h][SI1[il1[jl);

s.k = LR; // ... and again
s.p = sl * mem[h][LRI[i]1[j].p;
maxim(s, &mem[h][SI1[il1[jl);

i

for (unsigned t = 0; t < N_TYPES; ++t) {
const score_type &s = mem[h][t]1[il[j];
¥
}
¥
}

vector<task_type> tasks; {
task_type task;

task.i = 0;
task.j = len;
task.t = S;

double best_p = 0;
for (unsigned h = 0; h < len; ++h) {
const unsigned hc = deps[h].class_id;
const double p = mem[h][S]1[0][len].p * Pattach(hc, 0, h, len, p_attach);
if (p > best_p) {
best_p = p;
task.root = h;
}
¥
assert(best_p > 0);
tasks.push_back(task) ;
deps[task.root].overlord = len;
}
for (unsigned q = 0; q < tasks.size(); ++q) {
task_type &task = tasks[ql;



const score_type &s = mem[task.root] [task.t][task.i][task.j]l;
if (task.j > task.i + 1) {
if (task.root == s.a) {
switch(task.t) {
case S:
task.t = s.k;
break;
case LR:
task.t = R;
break;
case RL:
task.t = L;
break;
default:
assert(false);
¥
} else {
task_type a;
deps[a.root = s.a].overlord = task.root;
a.t = §;
switch(task.t) {
case L:
case LR:
a.i task.ij;
a.j = task.i = s.k;
break;
case R:
case RL:
a.j = task.j;
a.i = task.j = s.k;
break;
default:
assert(false);

tasks.push_back(a);
}
4
¥
}
¥
static inline void example(const string &attach,
const unsigned apos,
const string &head,
const unsigned hpos,
hm_su_type *const hm) {
const string s = (apos < hpos
7 attach + " <-- " + head
: head + " --> " + attach);
const hm_su_type::iterator q = hm->find(s);
if (q == hm->end()) {
hm->insert(hm_su_type: :value_type(s, 1));
} else {
++q->second;
}
¥
static inline void appraise(
const vector<vector<dep_type> > references,
const double *const p_order,
const stop_type *const p_stop,
const attach_type *const p_attach,
const bool verbose) {
const unsigned n = references.size();
double tdir = 0, tundir = 0;

hm_su_type claimed, actual, swapped;
for (unsigned i = 0; i < n; ++i) {
if (verbose) {
cout << endl << "Reference: " << (i+l) << endl;

const vector<dep_type> &deps = references[i];
const unsigned int len = deps.size();
vector<dep_type> copy;

for (unsigned j = 0; j < len; ++j) {
dep_type g = deps[jl;
g.overlord = string::npos; // just to be sure...
copy.push_back(g) ;

pcfg(copy, p_order, p_stop, p_attach);

unsigned dir = 0, undir = 0;
for (unsigned j = 0; j < len; ++j) {
const dep_type &d = deps[jl, &g = copyljl;
char hit =’ 73
if (d.overlord == g.overlord) {
hit = ’D’;
++undir;
++dir;
} else if (g.overlord != len && (deps[g.overlord].overlord == j))
hit = U



++undir;

}
if (verbose) {
if (hit == ? ?) {
example(d.word_class, j,
(d.overlord == len ? TERMINATOR : deps[d.overlord].word_class),
d.overlord, &actual);
example(d.word_class, j,
(g.overlord == len ? TERMINATOR : deps[g.overlord].word_class),
g.overlord, &claimed);
} else if (hit == 'U’) {
example(d.word_class, j,
(g.overlord == len ? TERMINATOR : deps[g.overlord].word _class),
g.overlord, &swapped);
¥
cout << setw(5) << j << setw(5) << d.overlord
<< setw(5) << g.overlord << " " << hit
<< "M\t" << d.word << "[" << d.word_class << "]" << endl;
}

}
tdir += static_cast<double>(dir) / len;
tundir += static_cast<double>(undir) / len;

¥
if (!'verbose) {
cout << "Undirected: " << setw(8) << setprecision(5) << (100 * tundir / n) << ’%’ << endl
<< " Directed: " << setw(8) << setprecision(5) << (100 * tdir / n) << )’ << endl
} else {

const hm_su_type *const anall[l = { &claimed, &actual, &swapped };
for (unsigned i = 0; i < 3; ++i) {
const hm_su_type &hm = *(anallil);
cout << endl << (i == 0 ? "Claimed"
(i == 1 7 "Actual" : "Swapped"))
<< " [" << hm.size() << "]" << endl;

typedef vector<pair<unsigned, string> > o_type;

o_type offending; {
const hm_su_type::const_iterator end = hm.end();
for (hm_su_type::const_iterator j = hm.begin(); j != end; ++j) {

offending.push_back(pair<unsigned, string>(-j->second, j->first));

i

¥

sort (offending.begin(), offending.end());

const o_type::const_iterator end = cffending.end();

for (o_type::const_iterator j = offending.begin(); j != end; ++j) {
cout << "\t" << j->second << " [ << -j->first <<

}
¥
}
¥

int main() {
words.push_back (TERMINATOR) ;
word_ids [TERMINATOR] = 0;

unsigned max_len = 0, skipped = 0, kept = 0;
vector<vector<dep_type> > references;
vector<vector<unsigned> > sentences; {
string item, tree;
unsigned level = 0;
while (cin >> item) {
string::size_type pair;

while ((pair = item.find("((")) != string::npos) {
item.replace(pair, 1, "( ", 2);

}

tree += " " + item;

const string::size_type len = item.size();
for (string::size_type pos = 0; pos < len; ++pos) {
switch(item[pos]) {
case ’(’:
++level;
break;
case ’)’:
--level;
default:

H

¥
}

if (level == 0) {
const char *str = tree.c_str();
const parse p = make_parse(str);
const vector(string> sentence = make_santanca(p);
const unsigned len = sentence.size();
if (len > max_len) {
max_len = len;
¥
if (len >= MAX_LEN) {
++skipped;
} else {
+tkept;
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if (p.dep_ok) {
vector<unsigned> v;
for (unsigned i = 0; i < len; ++i) {
v.push_back(word_id(sentence[il));
i
v.push_back(0);
sentences.push_back(v);
references.push_back(p.deps);
¥
i
tree.clear();
}
¥
}
const unsigned
nwords = words.size(),
nsentences = sentences.size(),
nreferences = references.size();

cout << endl << "Parsed " << (kept + skipped)
<< " sentences (maximum length " << max_len << ");" << endl << "Skipped "

<< skipped << " sentences (those exceeding length " << (MAX_LEN-1) << ")." << endl
<< endl << "Training on the remaining " << kept << " sentences..."

<< endl << "Identified " << nwords

<< " unique word classes (including the diamond)." << endl

cout << endl << "Percolated various head rules to make "

<< nreferences << " reference" << endl << "dependency parses"
if (!unheaded.empty()) {
cout << "; offending productions follow (sorted by frequency):" << endl << endl;
typedef vector<pair<unsigned, string> > o_type;
o_type offending; {
const hm_su_type::const_iterator end = unheaded.end();
for (hm_su_type::const_iterator i = unheaded.begin(); i != end; ++i) {
offending.push_back(pair(unsigned, string>(—i—>second, i->first));

}
¥
sort (offending.begin(), offending.end());
const o_type::const_iterator end = offending.end();

for (o_type::const_iterator i = offending.begin(); i end; ++i) {
cout << "\t" << i->second << " [" << -i->first << "]" << endl;
i
} else {
cout << "." << endl;
¥
if (nsentences == 0 || nreferences == 0) {
cout << endl << "Not much can be done here!!" << endl;
exit(1);

for (unsigned i = 0; i < nreferences; ++i) {
vector<dep_type> &deps = references[il;
const unsigned len = deps.size();
for (unsigned j = 0; j < len; ++j) {
dep_type &d = deps[jl;
if (d.overlord == string::npos) {
d.overlord = len;
¥

d.class_id = word_id(d.word_class);

double p_order[nwords], l_order[nwords], r_order[nwords], n_order[nwords];
p_order[0] = 0;
for (unsigned i = 1; i < nwords; ++i) {
p_order[i] = 0.5;
}

stop_type p_stop[nwords], c_stop[nwords], t_stop[nwords], n_stop[nwords], z_stop[nwords];
for (unsigned i = 1; i < nwords; ++i) {
p_stopl[il.x[L]1[false] = p_stop[il.x[L]1[true] =
p_stop[il.x[R][falsel = p_stop[il.x[R]1[true]l = 0.5;
¥
p_stop[0].x[RI[false] = p_stop[0].x[R][true] =
p_stop[0].x[L][false]l = 1;
p_stop[0].x[LI[truel = 0;

attach_type p_attach[nwords], c_attach[nwords], n_attach[nwords], z_attachl[nwords];
double t_attach[nwords][N_DIRS];
for (unsigned i = 0; i < nwords; ++i) {
for (unsigned s = 0; s < N_DIRS; ++s) {
p-attach[il.x[s] = (double *)calloc(nwords, sizeof (double));
c_attach[il.x[s] = (double x)calloc(nwords, sizeof (double));
n_attach[i]l.x[s] = (double *)calloc(nwords, sizeof(double));
z_attach[il.x[s] = (double x*)calloc(nwords, sizeof(double));
¥
t_attach[i][L] = t_attach[il[R] = 0;
z_stop[il.x[L][false] = z_stop[il.x[L][true] =
z_stop[i].x[R][false]l = z_stop[il.x[R]1[true]l = 0;
t_stopl[il.x[L][false]l = t_stop[il.x[L1[true]l =
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t_stop[i] .x[R][false] = t_stop[il.x[R][true] = 0;
}
for (unsigned i = 1; i < nwords; ++i) {
p_attach[i].x[L1[0] = 1.0 / (nwords - 1);
¥
for (unsigned i = 1; i < nwords; ++i) {
for (unsigned j = 1; j < nwords; ++j) {
p_attach[il.x[LI1[j1 = 1.0 / (nwords - 1);
p_attach[il.x[RI[j1 = 1.0 / (nwords - 1);
i
¥

cout << endl << "Zero knowledge:'" << endl;
appraise(references, p_order, p_stop, p_attach, VERBOSE);

cout << endl << "Perfect knowledge:'" << endl;
for (unsigned i = 0; i < nreferences; ++i) {
const vector<dep_type> &r = references[il;
const unsigned len = r.size();
for (unsigned j = 0; j < len; ++j) {
const dep_type &d = r[jl;
const unsigned
ac = d.class_id,
hc = (d.overlord == len ? 0 : r[d.overlord].class_id);
const unsigned dir = (j < d.overlord ? L : R);
++z_attach[ac].x[dir] [hc];
++t_attachl[hc][dir];
{
unsigned 1s = 0;
for (unsigned k = 0; k < j; ++k) {
if (rl[k].overlord == j) {
++ls;
}
¥
if (1s == 0) {
++z_stop[ac].x[L] [truel;
} else {
z_stoplac].x[L][false] += 1s;
++t_stoplac].x[L] [falsel;
i
++t_stoplac] .x[L] [truel;

unsigned rs = 0;
for (unsigned k = j + 1; k < len; ++k) {
if (rl[k].overlord == j) {
+4rs;
}
¥
if (rs == 0) {
++z_stop[ac].x[R] [truel;
} else {
z_stoplac].x[R] [false] += rs;
++t_stop[ac].x[R] [false];
i
++t_stoplac] .x[R] [truel;
¥
i
¥
for (unsigned hc = 0; hc < nwords; ++hc) {
for (unsigned ac = 1; ac < nwords; ++ac) {
if (t_attach[hc][L] > 0) {
z_attach[ac].x[L][hc] /= t_attach[hc][L];
p_attach[ac].x[L]1[hc] = z_attachl[ac].x[L][hcl;
}
if (t_attach[hc][R] > 0) {
z_attach[ac].x[R]1[hc] /= t_attach[hc][R];
p_attach[ac].x[R]1[hc] = z_attachl[ac].x[R][hcl;

¥
for (unsigned d = 0; d < N_DIRS; ++d) {
if (hc == 0) {
z_stopl[hc].x[d] [true]l = p_stoplhcl.x[d] [truel;
z_stopl[hc]l.x[d] [false]l = p_stoplhc]l.x[d][falsel;
} else {
if (t_stoplhcl.x[d][truel > 0) {
z_stoplhc].x[d] [true] /= t_stoplhcl.x[d][truel;
i
if (t_stoplhc].x[d][false]l > 0) { // Geometric distributionm...
z_stoplhc].x[d] [false]l = t_stoplhc]l.x[d][false]
/ z_stoplhc].x[d][false];
¥
}
¥
}

appraise(references, p_order, z_stop, z_attach, VERBOSE);
harmonic = true;

cout << endl << "Ad-hoc harmonic: [" << harmonic_c << "]" << endl;
appraise(references, p_order, p_stop, p_attach, VERBOSE);
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double delta = 1;
unsigned iter = 0;
while (delta > MIN_EM_ERR && iter < MAX_EM_ITER) {
cout << endl << endl << "EM Iteration: " << ++iter << endl;

delta = 0;
for (unsigned w = 0; w < nwords; ++w) {
n_order[w] = 0; // Porder

for (unsigned d = 0; d < N_DIRS; ++d) { // Pstop
for (unsigned a = 0; a < 2; ++a) {
n_stop[w].x[d][a] = 0;
¥
}

for (unsigned a = 0; a < nwords; ++a) {
n_attach[al.x[L]1[w] = n_attach[a].x[R1[w] = 0;

}

for (unsigned j = 0; j < nsentences; ++j) {
process(sentences[j],
p_order, 1_order, r_order,
p_stop, c_stop, t_stop,
p_attach, c_attach, t_attach,
nwords) ;

for (unsigned w = 0; w < nwords; ++w) {
{ // Porder
const double 1 = 1_order[w], r = r_order[w], sum = 1 + r;
if (sum > 0) {
n_order[w] += 1 / sum;
}
¥

{ // Pstop
for (unsigned d = 0; d < N_DIRS; ++d) {
for (unsigned a = 0; a < 2; ++a) {
const double t = t_stopl[w].x[d][al;
if (¢ > 0) {
const double ¢ = c_stoplwl.x[d][al;
n_stoplwl.x[dl[a]l += c / t;
i
i
¥
¥

{ // Pattach
const double t1 = t_attach[wl[L], tr = t_attach[w][R];
if (¢1 > 0) {
for (unsigned a = 0; a < nwords; ++a) {
n_attach[a].x[L]1[w] += c_attach[al.x[LI1[w] / t1;

}
if (¢r > 0) {
for (unsigned a = 0; a < nwords; ++a) {
n_attach[al.x[R]1[w] += c_attachl[al.x[RI[w] / tr;

double lossStopAdj = 0, lossStopNon = 0, lossAttach = 0;
unsigned lossStopAdjN = 0, lossStoplonN = 0, lossAttachN = 0;
for (unsigned w = 0; w < nwords; ++w) {
{ // Porder
const double before = p_order[w];
if (w > 0) {
const double
after = n_order[w] / nsentences,
diff = fabs(before - after);
if (diff > delta) {
delta = diff;
cout << "\tPorder[" << words[w] << "J[L]: "

<< diff << " (" << before << " --> " << after << ")" << endl;
¥
p_order[w] = after;
} else {
p_order[w] = before;
¥
}
{ // Pstop

for (unsigned d = 0; d < N_DIRS; ++d) {
for (unsigned a = 0; a < 2; ++a) {
const double before = p_stop[w].x[d][al;
if (w > 0) {
const double
after = n_stopl[w].x[d][a]l / nsentences,
diff = fabs(before - after);
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}
}
}

/7

for

"
~

<<

for (unsigned d

if (diff > delta) {
delta = diff;
cout << "\tPstop[" << words[w] << "]["
<< (d == L 7 ’L*” : ’R’) << "]["
<< (a ? "adj" : "nmot") << "]: "

<< diff << " (" << before << " --> " << after << ") vs

<< z_stopl[w].x[d][a]l << endl;
¥
p-stop[w].x[d]1[a]l = after;
} else {
p-stop[w].x[d][a] = before;

if (a == 0) {

lossStopNon += fabs(p_stop[wl.x[d][a]l - z_stop[wl.x[dl[a]l);
++lossStoplNonN;

else {

lossStopAdj += fabs(p_stop[w]l.x[d][a]l - z_stop[wl.x[dl[a]l);
++lossStopAdjN;

[

Pattach
(unsigned a 0; a < nwords; ++a) {
= 0; d < N_DIRS; ++d) {
const double
before = p_attach[al.x[d][w],
after = n_attach[al.x[d][w] / nsentences,
diff = fabs(before - after);
if (diff > delta) {
delta = diff;
cout << "\tPattach[" << words[a] << "]["
<< words[w] << "][" << (d == L 7 ’L” : ’R?) << "]: "

<< diff << " (" << before << " --> " << after << ") vs.

<< z_attach[a].x[d][w] << endl;
¥
p_attach[al.x[d][w] = after;
lossAttach += fabs(after - z_attachl[al.x[d][w]);
++lossAttachl;

"OracleLoss: " << setw(8) << setprecision(5)
(-100 * lossStopAdj / lossStopAdjN) << "% (PstopAdj)" << endl
"DracleLoss: " << setw(8) << setprecision(5)
(-100 * lossStopNon / lossStoplonN) << "% (PstopNon)" << endl
"DracleLoss: " << setw(8) << setprecision(5)

(-100 * lossAttach / lossAttachN) << "% (Pattach)" << endl;

harmonic = false;
appraise(references, p_order, p_stop, p_attach, false)

}

if (VERBOSE) {
appraise(references, p_order, p_stop, p_attach, true);
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