

CS 224n Final Project
Information Extraction from Housing Advertisements

David Murray (dimurray), Josh Herbach (joshy), Rohan Jain (rohanj)

Department of Computer Science, Stanford University

June 3, 2009

Abstract

The increasing popularity of sites like Craigslist7 means that more and more of the
world's classified ads are available in a digital format online. A desire for users to be able
to search these ads for some semantic meaning rather than be limited to a keyword search
is natural and requires first the ability to extract semantic meaning from ads.

In this project we designed a system to extract semantic information from Craigslist
housing advertisements. Our system is based on partitioning Craigslist ads into title and
body segments, training and running two Part-Of-Speech taggers on the resulting
segments, and finally combining the resulting chunks using a series of handwritten rules.
The resulting model is able to reliably extract many common features with high precision
and recall and offers decent performance on less commonly occurring features.

1 Introduction

1.1 The Problem

Craigslist.org is one of the web’s most pervasive sites for finding and placing personal
advertisements. Among the challenges users experience on this site are difficulty
navigating, sorting, and prioritizing advertisements. For example, upon reaching the San
Francisco Bay Area “Apts/Housing for Rent” section, the user is presented with a
reverse-chronological list of links, each of which typically has a rent value and number of
bedrooms visible in its title. After clicking a link, one views a largely unstructured
posting which may or may not match what the user is looking for. There is no way to sort
this information, categorize it into condos, apartments, and houses, or anything else of
that sort. As a result, finding exactly what you are interested in is a time-consuming task.

One approach to this task would be to define a schema for an advertising category and
then require posters to manually populate exactly this set of features. This imposes a
degree of structure which in many cases might run counter to the wishes of the advertiser.
It also puts the burden of organization on the poster, making the relatively simple task of
posting an advertisement much more complicated. For users that post many
advertisements at a time – like apartment owners and property agencies – this becomes an
arduous task. Providing an API could enable automation of such tasks, but this requires
technical expertise on behalf of the end user.

Information Extraction from Housing Advertisements Page 2�
dimurray, joshy, rohanj

An alternative to this approach is to use natural language processing techniques to
decipher this information from the text provided by posters, resulting in no burden on
either the poster or browsing user. Our goal in this project is to do just that. By using
NLP to extract the critical features of housing postings, we will enable column-by-
column sorting, viewing, and filtering of this information helping to make the search
experience on Craigslist much more positive.

1.2 Challenges

Given that we start with a website and somehow have to process it using NLP techniques,
the first challenges is to take the data from the website and automate the scraping and
tokenization of its content in some reliable way so that the resulting text could be fed into
the core NLP portion of our system.

The really interesting NLP problems are determining what the key elements of a given
posting are and how to identify them. Certain elements of a typical housing posting are
simple to parse; phone numbers, dollar amounts, and words like “rent” and “deposit” next
to these values make it relatively simple to identify this information (although of course
there are plenty of examples of “rent 1400 deposit 1600” and “1400 rent 1600 deposit”
which ensure context is not always easy to use). There are also many features which are
much harder to parse. For example, most postings have a location embedded at the
bottom. In some cases this is the exact address; in others, it is a general neighborhood. In
addition, addresses are sometimes included in the posting itself, and they may or may not
match the bottom location. Determining which location to trust is difficult.

Similarly difficult, rent and deposit costs can sometimes depend on buyer or renter
specifics, including duration of lease and presence of a pet. These statements are declared
in sometimes less-than-formal words, and they are not frequent across the postings on the
site. As a result, it is difficult to train on annotated instances of this information, because
the ways in which they appear linguistically are highly variable. Thus, processing these
nuances is challenging.

Finally, there are a significant number of fields that one may be interested in. From
smoking status to presence of a backyard, patio, or even a fireplace, the number of
potential columns on a list is huge, but frequency of each of these can be relatively low,
like presence of a pool. In terms of identifying information via training on data sets, one
is more likely to be successful by focusing on elements that are both frequency and of
interest to actual users.

2 System

Our overall system has four major components: (1) Scraping, Tokenization and
Annotation, (2) Title Tagger, (3) Body Tagger, (4) Chunking and Merging. We examine
each component below.

Information Extraction from Housing Advertisements Page 3�
dimurray, joshy, rohanj

2.1 Scraping, Tokenization and Annotation

Extracting raw postings from Craigslist proved surprisingly easy as their HTML is well
suited for screen scraping because of their relatively consistent use of certain reserved
elements to delineate posting urls, posting titles and posting bodies. A simple python
script handled extracting the HTML and dividing it into {posting url, posting id, posting
title, posting body}.a We then made use of a freely available tool for converting HTML to
text5 and ran the resulting data through another python script to XML tag the posting id,
title, and body.b We then annotated the resulting text using the Stanford NLP annotation
tool4 and finally partitioned the title and body text, and tokenized and tagged the sectionsc
so that we could use them for testing and training our taggers. Two other scriptsd were
also part of this pipeline – namely a tool for combining a collection of examples into a
single file for the tagger and a tool to strip the tags from a testing file before feeding it
into the tagger). Most of the work of gluing together this pipeline and managing it was
done by Josh. For more details on the actual data that was fed through this pipeline see
Section 3.

2.2 Taggers

With our cleanly formatted and tagged postings in hand we trained a pair of Part-Of-
Speech taggers. We decided to use a POS tagger rather than a basic classifier because of
the need to use surrounding words to help identify a token's class (without additional
context its impossible to know if '2' refers to the number of bedrooms, bathrooms, stories,
or parking spots). The decision to use a POS tagger instead of a NER was based on our
desire to try a different approach from previous work in information extraction on
Craigslist ads.6

Rather than reinvent the wheel, we downloaded and made use of the Stanford POS
Tagger (acronym aside, a very useful tool)3 for our taggers and simply added additional
features to help improve performance. The Stanford POS Tagger is a maximum entropy-
based tagger which makes use of a weighted linear combination of features (generated by
so-called extractors) to determine a token's tag.

Our decision to train two taggers was based on the intuition that the title and body text of
Craigslist postings tended to be very different. In particular, we noticed that the title text
tended to contain objective features (rent, count of bathrooms, etc) in fairly consistent
formats whereas the body text had a tendency to be much more free-form and filled with
lots of subjective descriptions. As a result we believed that with a very simple model the
title text would be able to select with very high precision a number of features whereas
the features needed for the body would be much more complex. Much of the work with
error analysis of the taggers was done by Rohan and Josh and the work on new features
was driven by Rohan.

a src/scrape/grab.py
b src/scrape/cleanup.py
c src/converter/annotated_to_tagger_data.py
d src/converter/combine_files.py and src/converter/detag_file.py

Information Extraction from Housing Advertisements Page 4�
dimurray, joshy, rohanj

2.3 Chunking and Merging

The final component of our system was a small tool to take the output from our taggers,
chunk sequences of tokens that shared a tag, and then choose the most appropriate chunk
for each tag.e This portion of our system is largely rule based. For example if a tag only
appears in the title (or conversely in the body) the chunk for that tag is used (and if there
are multiple such chunks the most frequently occurring chunk is used). For cases where a
tag appears in both the title and body text, we look for chunks that appear in both (with
some normalization to help recognize equivalent chunks) and if no such chunks exist, we
fall back on the most frequently occurring chunk from either tagger (with a slight
upweighting for the title text based on our belief that it tends to be higher precision).
Most of the work for the Chunking and Merging script was done by Josh.

3 Corpus and Data

Our original focus was along the four major housing sections in craigslist: “Apts /
housing”, “Rooms / Shared”, “Sublets / Temporary”, and “Housing Wanted”. From
reviewing several postings from each of these categories, we quickly discovered a high
variance between sections with respect to what information people included and what
they omitted. For example, in the “Apts / Housing” section, most postings were focused
on the elements of housing, like square footage, beds, and bathrooms. In the “Rooms /
Shared” section, however, this information was not always present, and many posts
focused around searching for ideal roommates – in some cases, information on a
particular type of housing was completely omitted. We thus decided it would be
worthwhile to focus on a particular section, as this would allow us to rely on a generally
consistent set of attributes to work with. In the spirit of housing, we focused on the most
housing-centric section, “Apts / Housing”.

We began exploring this section in more detail by enumerating each of the different
classes or pieces of information that were discussed across an informal sampling of 10-20
postings. The following data set is the union of elements we found in this sample:

Type (e.g. condo) Monthly rent Deposit amount Bedrooms
Bathrooms Size (sqft) Furnished or not Available date
Contact email Contact phone # Name of poster Smoking
Number of floors On a cul-de-sac Has pool Has air conditioning
Garage/# of cars Parking spot Address Backyard
Frontyard Fireplace Patio List of floor types
Adjective list Dogs allowed Cats allowed Other pets allowed
References required Credit check List of outside links Remodeled/Upgraded
Washer/dryer Wireless internet Walk-in-closet Sites nearby
Room list Utilities included Year built Home style
Gas BBQ Breakfast nook

e src/merge_results.py

Information Extraction from Housing Advertisements Page 5�
dimurray, joshy, rohanj

Upon further review, we reduced this set to contain mainly elements that were of high
frequency across posts on the site and likely to be of high interest to most end users.
Moreover, we decided not to include boolean attributes, like whether or not a credit check
or breakfast nook was included, as our system architecture was incapable of recognizing
such features. In the end, our final set of attributes we chose to focus on was as follows:

Type Rent Deposit Bedrooms
Bathrooms Size Available date Built year
Floors Email Phone Address

For our corpus we downloaded 500 postings. Of these, we identified 10 postings in our
corpus that were not appropriate for training or testing, as they were not categorized
correctly. For example, the following is an actual posting in this section that we
consciously removed from our data set:

Can't refinance?? Protect your Home. Easier than a Refi (brentwood / oakley)

Artafdmwf ekdpb omgywa uzwpmzwoce ekdpb hmva ekdpb rtafdmwf ekdpb.

Jyglbu jumukkwm vgn mvbwimmwcgvn vgn uakbep ucgenwnpoc yglbu.

We divided the 500 postings in the San Francisco bay area Apts/Housing section between
the three of us and then to try and enforce consistency between our annotations David did
a second pass through all of the postings to ensure uniformity. As mentioned in Section
2.1 we used the Stanford annotator to identify this information for use in training and
testing. It is worth noting that many of the posts have several references to the same piece
of data, so on occasion, multiple instances of bedroom and bathroom, for example, were
identified in the annotation.

The resulting annotated data looked something like:

http://sfbay.craigslist.org/eby/apa/1176224104.html 1176224104
<title><tag name="rent" value="start"/>$1725<tag name="rent" value="end"/> / <tag name="bedrooms" value="start"/>2<tag
name="bedrooms" value="end"/>br - Furnished Large Sunny Quiet 2nd Flr <tag name="bedrooms" value="start"/>2<tag
name="bedrooms" value="end"/>-bed Avail <tag name="available_date" value="start"/>5/17/09<tag name="available_date"
value="end"/> (berkeley) (map)</title>

Fully Furnished large (<tag name="size" value="start"/>800+<tag name="size" value="end"/>sqft) Sunny 2nd Flr <tag
name="bedrooms" value="start"/>2<tag name="bedrooms" value="end"/>- Bed apt., quiet building, quiet neighborhood, very private,
hardwood floor, tasteful furnishings, lots of
light, two large bedrooms with 2 large closets, eat in kitchen, very quiet, including T.V., DVD, VCR, microwave, linens, kitchen
supplies, toaster, kettle, coffee maker, and many other extras for a home away from home. Close to U.C., LBL shuttle, downtown
BART, and shops. This is a quiet family centered neighborhood, very popular with postdocs and visiting scholars.
Located at <tag name="address" value="start"/>2315 Grant St<tag name="address" value="end"/>., at Bancroft. Pics available <tag
name="available_date" value="start"/>May 17, 2009<tag name="available_date" value="end"/>. rent is <tag name="rent"
value="start"/>$1,725 <tag name="rent" value="end"/>plus utilities. Will rent month-to-month and short or long term.
Call or email Bob at <tag name="phone" value="start"/>510-915-2288<tag name="phone" value="end"/> <tag name="email"
value="start"/>rwr.korman@comcast.net
<tag name="email" value="end"/>

Information Extraction from Housing Advertisements Page 6�
dimurray, joshy, rohanj

<tag name="address" value="start"/>2315 Grant St. at Bancroft<tag
name="address" value="end"/> (google map) (yahoo map)

As can be seen, in cases like “3br” or “1600
sqft” we focused on annotating only the
number. Despite our efforts to be consistent in
our annotations and second reviews, we
identified a number of issues in our
annotations helping to demonstrate just how
hard it can be to get good data from humans.
Interestingly enough, we found these errors
during our test phase when we looked at the
'errors' in our system and saw that frequently
the errors were in the goldens themselves. We
discuss this more in Section 4.

4 Initial Model

In our initial exploration with the POS taggers
we stuck with built-in architectures and extractors and we used wordshapes(1),
bidirectional, generic, and prefixsuffix(3) for our initial exploration. We chose
bidrectional because of the importance of context words, prefixsuffix and wordshapes
primarily to capture some of the random character sequences embedded in some key
tokens. generic similarly looks at some of the surrounding context as well as extended
prefixsuffix features.

We then trained our taggers on the first 300 postings in our corpus and used the last 200
postings for testing. Unfortunately, given the uneven distribution of tags (the vast
majority of our tokens were tagged as O), we
found the accuracy numbers reported by the
tagger to be basically useless. To work around
this, we wrote another scriptf to scrape the results
and produce precision and recall number for each
tag. The results can be found in Table 1 and 2.

As expected the title classifier tended to have
very high precision for some of the most
common features such as bedrooms and rent but
had no results for many of the tags which rarely
appear in the title (in Table 2 the zero rows
usually had between 1 and 5 examples). In
contrast, the body tagger was able to identify
tags for a lot more of the tokens although often
with lower precision (although surprisingly it did
better on bathrooms).

f src/compute_results.py

Table 1: Initial Body Tagging Results

Table 2: Initial Title Tagging Results

Information Extraction from Housing Advertisements Page 7�
dimurray, joshy, rohanj

Passing the results into the final conflict
resolution Chunker and Merger was then
fascinating because it led to the question of
“how can we evaluate these results” because in
many examples there were multiple correct
results in our annotation. Our solution to this
was simply to accept a result if it matched one
of the chunks marked as correct in the golden
set.

Even with this method of evaluation, we found
our initial results to be somewhat poor.
However, when we started analyzing the results
we discovered that in many cases this was
because of annotation errors. For example, we
often had our model choose a string like “apt”
or “apartment” as the type when the golden set
marked other answers like “Apart” or “Apt” and failed to mark the “apartment” or “apt”
strings. Other obvious issues we saw included numerical mismatches between “1600”
and “1,600.0”, or between “1800 sq. ft.” vs “1800”. We even identified a few cases of a
string being mis-tagged (a handful of street addresses were marked instead as email). To
more fairly evaluate our model we introduced a series of equivalences classes. With these
extra modifications to the merger's evaluation tool, we found that the combination of the
two models often produced better results than the individual models (although this begs
the question of whether the taggers are being unfairly evaluated because of bad
annotations and no mechanism to detect equivalence classes). In particular we found that
the final model tended to yield extraordinarily high precision for most of our features.
Table 3 contains the final results.

The few features we did very poorly on were mostly because of low recall. In the case of
built_year, we suffered from the problem that there were only ~10 instances in the test
set. For available_date the problem was something different. available_date tends to
come in many vastly different formats such as {date/month, immediately, now, first of
the month, mid-April, ...} making it hard to identify a canonical format. Similarly, floors
and cars tended to vary between numbers and those same numbers spelled out (e.g. one,
two, etc), and sometimes cars was non numerical (e.g. street parking). Another feature
with highly variable formatting was phone which could be anything from 123.456.1234
to (123) 456-1234 or 123-456-1234. As for address, a careful analysis of the data shows
that our results tend to just focus on substrings of the golden address explaining the low
recall. We also did a terrible job of detecting emails despite there being many clear
signals a token is an email address.

Even for some of the features we did very well on, the error cases presented interesting
challenges. For example, deposit often was expressed as “one month's rent” which is a
perfectly reasonable answer, but we would hope the deposit could be easily expressed as

Table 3: Initial Final Results

Information Extraction from Housing Advertisements Page 8�
dimurray, joshy, rohanj

a number. Another interesting case where our simple approach to looking at context
broke down was “rent and deposit are $1895 and $1000 respectively”.

5 Extensions

Based on our analysis of the results from the
basic model described in Section 4 we
considered a number of extensions, both in
terms of additional features and in terms of
changes to our preprocessing of the postings.

• To detect emails better, we added
extractors that detected the presence of
an @ sign, the presence of ‘.net.’, ‘.com
‘or ‘.edu’ in the word.

• To distinguish between rent/deposit and
size we added an extractor to identify
the presence of a $ sign in front of the
word.

• To address our poor performance on
built_year we added a feature that
detected whether the word contained a
number between 1800 and 2000.

• To improve the performance of
address, we added features that detected
whether the word was one of ‘Street’,
‘Parkway’, ‘Boulevard’, ‘Road’ or
‘Avenue’ and all their common known
abbreviations.

• To address the issue of numbers being
formatted differently (one versus 1) we
created a second dataset in which we
converted the written out form into the
decimal one.

To make the comparison simpler we only
present the results for the addition of our new
extractors although we do discuss the impact of
using the dataset with numbers converted into
decimal form.

As shown in Table 4 adding the extra extractors discussed above often improved our
body tagger's performance dramatically. The F-Score of bathroom increased from .78 to
.89, the F-score of deposit increased from .55 to .61, and the recall of built_year doubled
(although given the number of examples this means we just correctly identified a couple
of extra strings) to name a few. In no case did a feature's F-Score lower with the
additional extractors; although floors was not affected. Because the new extractors were

Table 5: Title Tagging Results with Extended
Extractors

Table 4: Body Tagging Results with
Extended Extractors

Information Extraction from Housing Advertisements Page 9�
dimurray, joshy, rohanj

designed for rarely occurring features which
mostly appeared in the body text, the
additional extractors had no impact on the title
tagger as shown in Table 5.

In terms of their effect on the final results of
our model we found that the new extractors'
impact was somewhat reduced given the
already excellent performance of the title
tagger. As shown in Table 6 we did see notable
improvements in F-Score for built_year (.22 to
.36), phone (.82 to .86), address (.38 to .45)
and email (.67 to .7). In all of these cases the
improvement came from increasing recall
which makes a lot of sense given the intuition
behind the newly added features. Like with our
experience with our basic model, in looking at
the final results we found that many of the
false positives were in fact still results of annotation errors.

As for our other extension, we found the impact of converting written out numbers to
decimal numbers to be relatively small. For the title tagger, the only effect of this
extension was to slightly reduce the precision and recall scores for bathrooms. In the
body tagger its effects were a mixed bag. It did improve the recall score for cars
(although at the cost of a lot of precision), but it reduced the precision from floors with no
corresponding improvement in recall. It also had slightly negative effects on
available_date and type.

6 Conclusion and Future Work

It is clear from our results that we have demonstrated a working system that applies NLP
techniques to the real-world problem of extracting meaningful features from Craigslist
housing postings. Our system offers 90+% precision for almost all categories of interest
and for many of the most common and important categories (e.g. rent, bedrooms,
bathrooms) offers very high recall.

Nevertheless, our system falls short in a few ways. For one, in our architecture there is no
easy way to identify boolean features (e.g. is there a pool) because there are so many
different ways to negate a word many of which are not going to show up in the text in a
sequence which our architecture requires. Another major issue is that because we have no
understanding of the meaning of words our system is incapable or taking a line like
“deposit is one month's rent” and making the connection with the result for rent. It would
be interesting to explore deeper semantic elements of the postings to discover this
information (say through parsing and semantic role labeling).

Table 6: Final Results with Extended
Extractors

Also, although we improved performance via the addition of many new extractors to our
taggers, it is clear that one of our system's major failings is its low recall for many
features. To address this shortcoming there are a number of additional features we
considered adding but did not have time to implement. For example there are a number of
regular expressions we could use to improve recall of phone numbers and built_years (for
built_years “\d\d\d0's” is one potentially useful extractor). We could have also used
features such as detecting a word that is 5 digits in succession to identify zip codes for
addresses. It might also be useful to assemble additional sets of word lists (e.g.
{townhouse, condo, apartment}) and make features to detect memberships in those sets.
These word lists could also include a set like {one, two, three, four,...} to try and capture
our intuitions about spelled out numbers without making them appear exactly the same as
a series of digits.

One of the best things we could do to improve our recall numbers, and help the wider
research community, would be to produce a set of well-annotated Craigslist postings.
With a series of correctly annotated postings we would expect our recall numbers to
improve, and if we produced a much larger corpus we would hopefully overcome some
of the issues of sparsity we encountered with our rarer features.

Another area to explore more is our method for combining title and body tagging results.
Because our system was restrictive and relatively manual it would be interesting to
investigate a more automated approach. For example, a system that made use of
validation data to learn relative per-tag weightings between body and title chunks would
be interesting and potentially have a lot to offer, especially for features where the title
tagger has near perfect performance. Another interesting extension would be to have the
tagger output a probability for each tag it assigns and then make use of those values in
our merging,

7 Acknowledgement

We would like to thank Professor Manning and all of the TAs for CS224n for their advice
and feedback during the development of our project. We are especially appreciative of
the references to already-existing Stanford software used to classify and tag data; this
allowed us to focus on the core problem

8 References

1. “The Stanford Natural Language Processing Group”. 2009. Stanford University. 3
Jun. 2009 <http://nlp.stanford.edu/software/index.shtml>.

2. “The Stanford Classifier”. The Stanford NLP Group. 2009. Stanford University. 3
Jun. 2009 <http://nlp.stanford.edu/software/classifier.shtml>.

3. “The Stanford POS Tagger”. The Stanford NLP Group. 2009. Stanford
University. 3 Jun. 2009 <http://nlp.stanford.edu/software/tagger.shtml>.

4. “Simple manual annotation tool”. The Stanford NLP Group. 2009. Stanford
University. 3 Jun. 2009 <http://nlp.stanford.edu/software/stanford-manual-
annotation-tool-2004-05-16.tar.gz>.

5. “HTMLasText v1.06”. NirSoft. 3 Jun. 2009
<http://www.nirsoft.net/utils/htmlastext.html>.

6. Nipun Bhatia, Rakshit Kumar, and Shashank Senapaty. 2008. Extraction of
Structured Information From Online Automobile Advertisements.

7. Craigslist. May 2009. <http://www.craigslist.org>.
8. Kristina Toutanova and Christopher D. Manning. 2000. Enriching the Knowledge

Sources Used in a Maximum Entropy Part-of-Speech Tagger. In Proceedings of
the Joint SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora (EMNLP/VLC-2000), pp. 63-70.

9. Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer. 2003.
Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In
Proceedings of HLT-NAACL 2003, pp. 252-259.

