
This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

p

i i

11 Probabilistic Context Free

Grammars

People write and say lots of different things, but the way people say
things – even in drunken casual conversation – has some structure and
regularity. The goal of syntax within linguistics is to try to isolate that
structure. Until now, the only form of syntax we have allowed ourselves
is methods for describing the ordering and arrangement of words, either
directly in terms of the words, or in terms of word categories. In this
chapter, we wish to escape the linear tyranny of these n-gram models
and HMM tagging models, and to start to explore more complex notions
of grammar.

Even in the most traditional forms of grammar, syntax is meant to
show something more that just linear order. It shows how words group
together and relate to each other as heads and dependents. The dominant
method used for doing this within the last 50 or so years has been to
place tree structures over sentences, as we saw in chapter 3. Language
has a complex recursive structure, and such tree-based models – unlike
Markov models – allow us to capture this. For instance Kupiec (1992b)
notes that his HMM-based tagger has problems with constructions like:

(11.1) The velocity of the seismic waves rises to . . .

because a singular verb (here, rises) is unexpected after a plural noun.
Kupiec’s solution is to augment the HMM model so it can recognize a
rudimentary amount of NP structure, which in his model is encoded as
a higher-order context extension glued on to his basic first order HMM.
Leaving aside the technical details of the solution, the essential observa-
tion about verb agreement is that it is reflecting the hierarchical structure
of the sentence, as shown in (11.2), and not the linear order of words.

p

i i

382 11 Probabilistic Context Free Grammars

(11.2) S

NPsg

DT

The

NN

velocity

PP

IN

of

NPpl

the seismic waves

VPsg

rises to . . .

The verb agrees in number with the noun velocity which is the head of the
preceding noun phrase, and not with the noun that linearly precedes it.

The simplest probabilistic model for recursive embedding is a PCFG,PCFG

a Probabilistic (sometimes also called Stochastic) Context Free GrammarProbabilistic

Context Free

Grammar

– which is simply a CFG with probabilities added to the rules, indicating
how likely different rewritings are. We provide a detailed discussion of
PCFGs in this chapter for a number of reasons: PCFGs are the simplest
and most natural probabilistic model for tree structures, the mathemat-
ics behind them is well understood, the algorithms for them are a natural
development of the algorithms employed with HMMs, and PCFGs pro-
vide a sufficiently general computational device that they can simulate
various other forms of probabilistic conditioning (as we describe in sec-
tion 12.1.9). Nevertheless, it is important to realize that PCFGs are only
one of many ways of building probabilistic models of syntactic structure,
and in the next chapter we study the domain of probabilistic parsing
more generally.

A PCFG G consists of:

� A set of terminals, {wk}, k = 1, . . . , V

� A set of nonterminals, {Ni}, i = 1, . . . , n

� A designated start symbol, N1

� A set of rules, {Ni → ζj}, (where ζj is a sequence of terminals and
nonterminals)

� A corresponding set of probabilities on rules such that:

∀i
∑
j
P(Ni → ζj) = 1(11.3)

p

i i

383

Notation Meaning

G Grammar (PCFG)
L Language (generated or accepted by a grammar)
t Parse tree
{N1, . . . , Nn} Nonterminal vocabulary (N1 is start symbol)
{w1, . . . , wV} Terminal vocabulary
w1 · · ·wm Sentence to be parsed

Njpq Nonterminal Nj spans positions p through q in string
αj(p, q) Outside probabilities (11.15)
βj(p, q) Inside probabilities (11.14)

Table 11.1 Notation for the PCFG chapter.

Note that when we write P(Ni → ζj) in this chapter, we always mean
P(Ni → ζj|Ni). That is, we are giving the probability distribution of the
daughters for a certain head. Such a grammar can be used either to parse
or generate sentences of the language, and we will switch between these
terminologies quite freely.

Before parsing sentences with a PCFG, we need to establish some no-
tation. We will represent the sentence to be parsed as a sequence of
words w1 · · ·wm, and use wab to denote the subsequence wa · · ·wb. We
denote a single rewriting operation of the grammar by a single arrow →.
If as a result of one or more rewriting operations we are able to rewrite
a nonterminal Nj as a sequence of words wa · · ·wb, then we will say

that Nj dominates the words wa · · ·wb, and write either Nj
∗
=⇒ wa · · ·wbdomination

or yield(Nj) = wa · · ·wb. This situation is illustrated in (11.4): a sub-
tree with root nonterminal Nj dominating all and only the words from
wa · · ·wb in the string:

(11.4) Nj

wa · · ·wb
To say that a nonterminal Nj spans positions a through b in the string,
but not to specify what words are actually contained in this subsequence,
we will write Njab. This notation is summarized in table 11.1.

The probability of a sentence (according to a grammar G) is given by:

P(w1m) =
∑
t
P(w1m, t) where t is a parse tree of the sentence(11.5)

p

i i

384 11 Probabilistic Context Free Grammars

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

Table 11.2 A simple Probabilistic Context Free Grammar (PCFG). The nontermi-
nals are S, NP, PP, VP, P, V. We adopt the common convention whereby the start
symbol N1 is denoted by S. The terminals are the words in italics. The table
shows the grammar rules and their probabilities. The slightly unusual NP rules
have been chosen so that this grammar is in Chomsky Normal Form, for use as
an example later in the section.

=
∑

{t :yield(t)=w1m}
P(t)

Moreover, it is easy to find the probability of a tree in a PCFG model. One
just multiplies the probabilities of the rules that built its local subtrees.

Example 1: Assuming the grammar in table 11.2, the sentence as-
tronomers saw stars with ears has two parses with probabilities as shown
in figure 11.1.

What are the assumptions of this model? The conditions that we need
are:

� Place invariance. The probability of a subtree does not depend on
where in the string the words it dominates are (this is like time invari-
ance in HMMs):

∀k P(Njk(k+c) → ζ) is the same(11.6)

� Context-free. The probability of a subtree does not depend on words
not dominated by the subtree.

P(Njkl → ζ|anything outside k through l) = P(Njkl → ζ)(11.7)

� Ancestor-free. The probability of a subtree does not depend on nodes
in the derivation outside the subtree.

P(Njkl → ζ|any ancestor nodes outside Njkl) = P(Njkl → ζ)(11.8)

p

i i

385

t1: S1.0

NP0.1

astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

t2: S1.0

NP0.1

astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t1) = 1.0× 0.1× 0.7× 1.0× 0.4× 0.18× 1.0× 1.0× 0.18

= 0.0009072

P(t2) = 1.0× 0.1× 0.3× 0.7× 1.0× 0.18× 1.0× 1.0× 0.18

= 0.0006804

P(w15) = P(t1)+ P(t2) = 0.0015876

Figure 11.1 The two parse trees, their probabilities, and the sentence probabil-
ity. This is for the sentence astronomers saw stars with ears, according to the
grammar in table 11.2. Nonterminal nodes in the trees have been subscripted
with the probability of the local tree that they head.

p

i i

386 11 Probabilistic Context Free Grammars

Using these conditions we can justify the calculation of the probability of
a tree in terms of just multiplying probabilities attached to rules. But to
show an example, we need to be able to distinguish tokens of a nontermi-
nal. Therefore, let the upper left index in iNj be an arbitrary identifying
index for a particular token of a nonterminal. Then,

P


1S

2NP

the man

3VP

snores


= P(1S13 → 2NP12

3VP33, 2NP12 → the1 man2, 3VP33 → snores3)

= P(1S13 → 2NP12
3VP33)P(2NP12 → the1 man2|1S13 → 2NP12

3VP33)

P(3VP33 → snores3|1S13 → 2NP12
3VP33, 2NP12 → the1 man2)

= P(1S13 → 2NP12
3VP33)P(2NP12 → the1 man2)P(3VP33 → snores3)

= P(S → NP VP)P(NP → the man)P(VP → snores)

where, after expanding the probability by the chain rule, we impose
first the context-freeness assumption, and then the position-invariant as-
sumption.

11.1 Some Features of PCFGs

Here we give some reasons to use a PCFG, and also some idea of their
limitations:

� As grammars expand to give coverage of a large and diverse corpus of
text, the grammars become increasingly ambiguous. There start to be
many structurally different parses for most word sequences. A PCFG

gives some idea of the plausibility of different parses.

� A PCFG does not give a very good idea of the plausibility of different
parses, since its probability estimates are based purely on structural
factors, and do not factor in lexical co-occurrence.

� PCFGs are good for grammar induction. Gold (1967) showed that CFGsgrammar induction

cannot be learned (in the sense of identification in the limit – that is,identification in

the limit whether one can identify a grammar if one is allowed to see as much
data produced by the grammar as one wants) without the use of neg-negative evidence

ative evidence (the provision of ungrammatical examples). But PCFGs

p

i i

11.1 Some Features of PCFGs 387

can be learned from positive data alone (Horning 1969). (However, do-
ing grammar induction from scratch is still a difficult, largely unsolved
problem, and hence much emphasis has been placed on learning from
bracketed corpora, as we will see in chapter 12.)

� Robustness. Real text tends to have grammatical mistakes, disfluen-
cies, and errors. This problem can be avoided to some extent with a
PCFG by ruling out nothing in the grammar, but by just giving implau-
sible sentences a low probability.

� PCFGs give a probabilistic language model for English (whereas a CFG

does not).

� The predictive power of a PCFG as measured by entropy tends to be
greater than that for a finite state grammar (i.e., an HMM) with the
same number of parameters. (For such comparisons, we compute the
number of parameters as follows. A V terminal, n nonterminal PCFG

has n3 + nV parameters, while a K state M output HMM has K2 +
MK parameters. While the exponent is higher in the PCFG case, the
number of nonterminals used is normally quite small. See Lari and
Young (1990) for a discussion of this with respect to certain artificial
grammars.)

� In practice, a PCFG is a worse language model for English than an n-
gram model (for n > 1). An n-gram model takes some local lexical
context into account, while a PCFG uses none.

� PCFGs are not good models by themselves, but we could hope to com-
bine the strengths of a PCFG and a trigram model. An early experiment
that conditions the rules of a PCFG by word trigrams (and some addi-
tional context sensitive knowledge of the tree) is presented in Mager-
man and Marcus (1991) and Magerman and Weir (1992). Better solu-
tions are discussed in chapter 12.

� PCFGs have certain biases, which may not be appropriate. All else be-
ing equal, in a PCFG, the probability of a smaller tree is greater than
a larger tree. This is not totally wild – it is consonant with Frazier’s
(1978) Minimal Attachment heuristic – but it does not give a sensible
model of actual sentences, which peak in frequency at some interme-
diate length. For instance, table 4.3 showed that the most frequent
length for Wall Street Journal sentences is around 23 words. A PCFG

p

i i

388 11 Probabilistic Context Free Grammars

gives too much of the probability mass to very short sentences. Sim-
ilarly, all else being equal, nonterminals with a small number of ex-
pansions will be favored over nonterminals with many expansions in
PCFG parsing, since the individual rewritings will have much higher
probability (see exercise 12.3).

The one item here that deserves further comment is the claim that PCFGs
define a language model. Initially, one might suspect that providing that
the rules all obey equation (11.3), then

∑
ω∈L P(ω) =

∑
t P(t) = 1. But

actually this is only true if the probability mass of rules is accumulatingprobability mass of

rules in finite derivations. For instance, consider the grammar:

(11.9) S → rhubarb P = 1
3

S → S S P = 2
3

This grammar will generate all strings rhubarb . . . rhubarb. However, we
find that the probability of those strings is:

(11.10) rhubarb 1
3

rhubarb rhubarb 2
3 × 1

3 × 1
3 = 2

27

rhubarb rhubarb rhubarb
(

2
3

)2 ×
(

1
3

)3 × 2 = 8
243

. . .

The probability of the language is the sum of this infinite series 1
3 + 2

27 +
8

243 + . . ., which turns out to be 1
2 . Thus half the probability mass has

disappeared into infinite trees which do not generate strings of the lan-
guage! Such a distribution is often termed inconsistent in the probabilityinconsistent

literature, but since this word has a rather different meaning in other
fields related to NLP, we will term such a distribution improper. In prac-improper

tice, improper distributions are not much of a problem. Often, it doesn’t
really matter if probability distributions are improper, especially if we are
mainly only comparing the magnitude of different probability estimates.
Moreover, providing we estimate our PCFG parameters from parsed train-
ing corpora (see chapter 12), Chi and Geman (1998) show that one always
gets a proper probability distribution.

11.2 Questions for PCFGs

Just as for HMMs, there are three basic questions we wish to answer:

p

i i

11.2 Questions for PCFGs 389

� What is the probability of a sentence w1m according to a grammar G:
P(w1m|G)?

� What is the most likely parse for a sentence: arg maxt P(t|w1m,G)?

� How can we choose rule probabilities for the grammar G that maxi-
mize the probability of a sentence, arg maxG P(w1m|G)?

In this chapter, we will only consider the case of Chomsky Normal FormChomsky Normal

Form grammars, which only have unary and binary rules of the form:

Ni → Nj Nk

Ni → wj

The parameters of a PCFG in Chomsky Normal Form are:

(11.11) P(Nj → Nr Ns|G) If n nonterminals, an n3 matrix of parameters
P(Nj → wk|G) If V terminals, nV parameters

For j = 1, . . . , n,∑
r ,s
P(Nj → Nr Ns)+

∑
k
P(Nj → wk) = 1(11.12)

This constraint is seen to be satisfied for the grammar in table 11.2 (un-
der the convention whereby all probabilities not shown are zero). Any
CFG can be represented by a weakly equivalent CFG in Chomsky Normal
Form.1

To see how we might efficiently compute probabilities for PCFGs, let
us work from HMMs to probabilistic regular grammars, and then fromprobabilistic

regular grammars there to PCFGs. Consider a probabilistic regular grammar (PRG), which
has rules of the form:

Ni → wj Nk or Ni → wj and start state N1

This is similar to what we had for an HMM. The difference is that in an
HMM there is a probability distribution over strings of a certain length:

∀n
∑
w1n

P(w1n) = 1

1. Two grammars G1 and G2 are weakly equivalent if they both generate the same lan-
guage L (with the same probabilities on sentences for stochastic equivalence). Two gram-
mars are strongly equivalent if they additionally assign sentences the same tree structures
(with the same probabilities, for the stochastic case).

p

i i

390 11 Probabilistic Context Free Grammars

Start HMM Finish
Π

Figure 11.2 A Probabilistic Regular Grammar (PRG).

whereas in a PCFG or a PRG, there is a probability distribution over the
set of all strings that are in the language L generated by the grammar:∑
ω∈L

P(ω) = 1

To see the difference, consider:

P(John decided to bake a)

This would have a high probability in an HMM, since this is a quite likely
beginning to a sentence, but a very low probability in a PRG or a PCFG,
because it isn’t a complete utterance.

We can think of a PRG as related to an HMM roughly as in figure 11.2.
We add a start state and the transitions from it to the states of the HMM

mirror the initial probabilities Π. To represent ending the string, we ad-
join to the HMM a finish state, often called a sink state, which one neversink state

leaves once one has entered it. From each HMM state one can continue in
the basic HMM or shift to the sink state, which we interpret as the end of
string in the PRG.

This gives the basic idea of how PRGs are related to HMMs. We can
implement the PRG as an HMM where the states are nonterminals and the
terminals are the output symbols, as follows:

States: NP -→ N′ -→ N′ -→ N′ -→ sink state
| | | |

Outputs: the big brown box

Recall how for an HMM we were able to efficiently do calculations in terms
of forward and backward probabilities:

Forward probability αi(t) = P(w1(t−1), Xt = i)
Backward probability βi(t) = P(wtT |Xt = i)

p

i i

11.2 Questions for PCFGs 391

w1 wmwp−1 wp wq wq+1

N1

Nj

· · · · · · · · ·

α

β

Figure 11.3 Inside and outside probabilities in PCFGs.

But now consider the PRG parse again, drawn as a tree:

(11.13) NP

the N′

big N′

brown N0

box

In the tree, the forward probability corresponds to the probability of ev-
erything above and including a certain node, while the backward proba-
bility corresponds to the probability of everything below a certain node
(given the node). This suggests an approach to dealing with the more
general case of PCFGs. We introduce Inside and Outside probabilities, as
indicated in figure 11.3, and defined as follows:

p

i i

392 11 Probabilistic Context Free Grammars

Outside probability αj(p, q) = P(w1(p−1),N
j
pq,w(q+1)m|G)(11.14)

Inside probability βj(p, q) = P(wpq|Njpq,G)(11.15)

The inside probability βj(p, q) is the total probability of generating words
wp · · ·wq given that one is starting off with the nonterminal Nj . The
outside probability αj(p, q) is the total probability of beginning with the

start symbol N1 and generating the nonterminal Njpq and all the words
outside wp · · ·wq.

11.3 The Probability of a String

11.3.1 Using inside probabilities

In general, we cannot efficiently calculate the probability of a string by
simply summing the probabilities of all possible parse trees for the string,
as there will be exponentially many of them. An efficient way to calcu-
late the total probability of a string is by the inside algorithm, a dynamicinside algorithm

programming algorithm based on the inside probabilities:

P(w1m|G) = P(N1 ∗
=⇒ w1m|G)(11.16)

= P(w1m|N1
1m,G) = β1(1,m)(11.17)

The inside probability of a substring is calculated by induction on the
length of the string subsequence:

Base case: We want to find βj(k, k) (the probability of a rule Nj → wk):
βj(k, k) = P(wk|Njkk,G)

= P(Nj → wk|G)

Induction: We want to find βj(p, q), for p < q. As this is the inductive
step using a Chomsky Normal Form grammar, the first rule must be of
the formNj → Nr Ns , so we can proceed by induction, dividing the string
in two in various places and summing the result:

Nj

Nr

wp wd

Ns

wd+1 wq

p

i i

11.3 The Probability of a String 393

Then, ∀j,1 ≤ p < q ≤m,

βj(p, q) = P(wpq|Njpq,G)

=
∑
r ,s

q−1∑
d=p
P(wpd,Nrpd,w(d+1)q,Ns(d+1)q|Njpq,G)

=
∑
r ,s

q−1∑
d=p
P(Nrpd,N

s
(d+1)q|Njpq,G)P(wpd|Njpq,Nrpd,Ns(d+1)q,G)

×P(w(d+1)q|Njpq,Nrpd,Ns(d+1)q,wpd,G)

=
∑
r ,s

q−1∑
d=p
P(Nrpd,N

s
(d+1)q|Njpq,G)P(wpd|Nrpd,G)

×P(w(d+1)q|Ns(d+1)q,G)

=
∑
r ,s

q−1∑
d=p
P(Nj → NrNs)βr(p, d)βs(d + 1, q)

Above, we first divided things up using the chain rule, then we made
use of the context-free assumptions of PCFGs, and then rewrote the re-
sult using the definition of the inside probabilities. Using this recurrence
relation, inside probabilities can be efficiently calculated bottom up.

Example 2: The above equation looks scary, but the calculation of in-
side probabilities is actually relatively straightforward. We’re just trying
to find all ways that a certain constituent can be built out of two smaller
constituents by varying what the labels of the two smaller constituents
are and which words each spans. In table 11.3, we show the computations
of inside probabilities using the grammar of table 11.2 and the sentence
explored in figure 11.1. The computations are shown using a parse tri-parse triangle

angle where each box records nodes that span from the row index to the
column index.
� Further calculations using this example grammar and sentence are left
to the reader in the Exercises.

p

i i

394 11 Probabilistic Context Free Grammars

1 2 3 4 5
1 βNP = 0.1 βS = 0.0126 βS = 0.0015876

2 βNP = 0.04
βV = 1.0

βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296
4 βP = 1.0 βPP = 0.18

5 βNP = 0.18

astronomers saw stars with ears

Table 11.3 Calculation of inside probabilities. Table cell (p, q) shows non-zero
probabilities βi(p, q) calculated via the inside algorithm. The recursive com-
putation of inside probabilities is done starting along the diagonal, and then
moving in diagonal rows towards the top right corner. For the simple gram-
mar of table 11.2, the only non-trivial case is cell (2,5), which we calculate as:
P(VP → V NP)βV(2,2)βNP(3,5)+ P(VP → VP PP)βVP(2,3)βPP(4,5)

11.3.2 Using outside probabilities

We can also calculate the probability of a string via the use of the outside
probabilities. For any k, 1 ≤ k ≤m,

P(w1m|G) =
∑
j
P(w1(k−1), wk,w(k+1)m,N

j
kk|G)(11.18)

=
∑
j
P(w1(k−1),N

j
kk,w(k+1)m|G)

×P(wk|w1(k−1),N
j
kk,w(k+1)n,G)

=
∑
j
αj(k, k)P(Nj → wk)(11.19)

The outside probabilities are calculated top down. As we shall see,
the inductive calculation of outside probabilities requires reference to
inside probabilities, so we calculate outside probabilities second, using
the outside algorithm.outside algorithm

Base Case: The base case is the probability of the root of the tree being
nonterminal Ni with nothing outside it:

α1(1,m) = 1

αj(1,m) = 0 for j 6= 1

p

i i

11.3 The Probability of a String 395

Inductive case: In terms of the previous step of the derivation, a node
Njpq with which we are concerned might be on the left:

(11.20) N1

Nfpe

Njpq

w1 · · ·wp−1 wp · · ·wq

Ng(q+1)e

wq+1 · · ·we we+1 · · ·wm
or right branch of the parent node:

(11.21) N1

Nfeq

Nge(p−1)

w1 · · ·we−1 we · · ·wp−1

Njpq

wp · · ·wq wq+1 · · ·wm
We sum over both possibilities, but restrict the first sum to g 6= j so as
not to double count in the case of rules of the form X → NjNj :

αj(p, q) =
[∑
f ,g 6=j

m∑
e=q+1

P
(
w1(p−1), w(q+1)m,N

f
pe,N

j
pq,N

g
(q+1)e

)]

+
[∑
f ,g

p−1∑
e=1

P
(
w1(p−1), w(q+1)m,N

f
eq,N

g
e(p−1),N

j
pq
)]

=
[∑
f ,g 6=j

m∑
e=q+1

P
(
w1(p−1), w(e+1)m,N

f
pe
)
P
(
Njpq,N

g
(q+1)e|Nfpe

)

×P(w(q+1)e|Ng(q+1)e
)]+ [∑

f ,g

p−1∑
e=1

P
(
w1(e−1), w(q+1)m,N

f
eq
)

×P(Nge(p−1),N
j
pq|Nfeq

)
P
(
we(p−1)|Nge(p−1

)]

p

i i

396 11 Probabilistic Context Free Grammars

=
[∑
f ,g 6=j

m∑
e=q+1

αf (p, e)P(Nf → Nj Ng)βg(q + 1, e)
]

+
[∑
f ,g

p−1∑
e=1

αf (e, q)P(Nf → Ng Nj)βg(e, p − 1)
]

As with an HMM, we can form a product of the inside and the outside
probabilities:

αj(p, q)βj(p, q) = P(w1(p−1),N
j
pq,w(q+1)m|G)P(wpq|Njpq,G)

= P(w1m,N
j
pq|G)

But this time, the fact that we postulate a nonterminal node is important
(whereas in the HMM case it is trivial that we are in some state at each
point in time). Therefore, the probability of the sentence and that there
is some constituent spanning from word p to q is given by:

P(w1m,Npq|G) =
∑
j
αj(p, q)βj(p, q)(11.22)

However, we know that there will always be some nonterminal spanning
the whole tree and each individual terminal (in a Chomsky Normal Form
grammar). The nonterminal nodes whose only daughter is a single ter-
minal node are referred to as preterminal nodes. Just in these casespreterminal

this gives us the equations in (11.17) and (11.19) for the total prob-
ability of a string. Equation (11.17) is equivalent to α1(1,m)β1(1,m)
and makes use of the root node, while equation (11.19) is equivalent to∑
j αj(k, k)βj(k, k) and makes use of the fact that there must be some

preterminal Nj above each word wk.

11.3.3 Finding the most likely parse for a sentence

A Viterbi-style algorithm for finding the most likely parse for a sentence
can be constructed by adapting the inside algorithm to find the element
of the sum that is maximum, and to record which rule gave this maxi-
mum. This works as in the HMM case because of the independence as-
sumptions of PCFGs. The result is an O(m3n3) PCFG parsing algorithm.

The secret to the Viterbi algorithm for HMMs is to define accumulators
δj(t) which record the highest probability of a path through the trellis
that leaves us at state j at time t . Recalling the link between HMMs and
PCFGs through looking at PRGs, this time we wish to find the highest

p

i i

11.3 The Probability of a String 397

probability partial parse tree spanning a certain substring that is rooted
with a certain nonterminal. We will retain the name δ and use accumula-
tors:

δi(p, q) = the highest inside probability parse of a subtree Nipq

Using dynamic programming, we can then calculate the most probable
parse for a sentence as follows. The initialization step assigns to each
unary production at a leaf node its probability. For the inductive step, we
again know that the first rule applying must be a binary rule, but this time
we find the most probable one instead of summing over all such rules,
and record that most probable one in the ψ variables, whose values are
a list of three integers recording the form of the rule application which
had the highest probability.

1. Initialization

δi(p, p) = P(Ni → wp)

2. Induction

δi(p, q) = max
1≤j,k≤n
p≤r<q

P(Ni → Nj Nk)δj(p, r)δk(r + 1, q)

Store backtrace

ψi(p, q) = arg max
(j,k,r)

P(Ni → Nj Nk)δj(p, r)δk(r + 1, q)

3. Termination and path readout (by backtracking). Since our grammar
has a start symbol N1, then by construction, the probability of the
most likely parse rooted in the start symbol is:2

P(t̂) = δ1(1,m)(11.23)

We want to reconstruct this maximum probability tree t̂ . We do this by
regarding t̂ as a set of nodes {X̂x} and showing how to construct this

2. We could alternatively find the highest probability node of any category that dominates
the entire sentence as:

P(t̂) = max
1≤i≤n

δi(1,m)

p

i i

398 11 Probabilistic Context Free Grammars

set. Since the grammar has a start symbol, the root node of the tree
must be N1

1m. We then show in general how to construct the left and
right daughter nodes of a nonterminal node, and applying this process
recursively will allow us to reconstruct the entire tree. If Xx = Nipq is
in the Viterbi parse, and ψi(p, q) = (j, k, r), then:

left(X̂x) = Njpr
right(X̂x) = Nk(r+1)q

Note that where we have written ‘arg max’ above, it is possible for there
not to be a unique maximum. We assume that in such cases the parser
just chooses one maximal parse at random. It actually makes things con-
siderably more complex to preserve all ties.

11.3.4 Training a PCFG

The idea of training a PCFG is grammar learning or grammar induction,
but only in a certain limited sense. We assume that the structure of the
grammar in terms of the number of terminals and nonterminals, and the
name of the start symbol is given in advance. We also assume the set of
rules is given in advance. Often one assumes that all possible rewriting
rules exist, but one can alternatively assume some pre-given structure
in the grammar, such as making some of the nonterminals dedicated
preterminals that may only be rewritten as a terminal node. Training
the grammar comprises simply a process that tries to find the optimal
probabilities to assign to different grammar rules within this architecture.

As in the case of HMMs, we construct an EM training algorithm, the
Inside-Outside algorithm, which allows us to train the parameters of aInside-Outside

algorithm PCFG on unannotated sentences of the language. The basic assumption
is that a good grammar is one that makes the sentences in the training
corpus likely to occur, and hence we seek the grammar that maximizes
the likelihood of the training data. We will present training first on the
basis of a single sentence, and then show how it is extended to the more
realistic situation of a large training corpus of many sentences, by assum-
ing independence between sentences.

To determine the probability of rules, what we would like to calculate
is:

P̂ (Nj → ζ) = C(Nj → ζ)∑
γ C(Nj → γ)

p

i i

11.3 The Probability of a String 399

where C(·) is the count of the number of times that a particular rule is
used. If parsed corpora are available, we can calculate these probabilities
directly (as discussed in chapter 12). If, as is more common, a parsed
training corpus is not available, then we have a hidden data problem: we
wish to determine probability functions on rules, but can only directly see
the probabilities of sentences. As we don’t know the rule probabilities,
we cannot compute relative frequencies, so we instead use an iterative
algorithm to determine improving estimates. We begin with a certain
grammar topology, which specifies how many terminals and nontermi-
nals there are, and some initial probability estimates for rules (perhaps
just randomly chosen). We use the probability of each parse of a training
sentence according to this grammar as our confidence in it, and then sum
the probabilities of each rule being used in each place to give an expecta-
tion of how often each rule was used. These expectations are then used
to refine our probability estimates on rules, so that the likelihood of the
training corpus given the grammar is increased.

Consider:

αj(p, q)βj(p, q) = P(N1 ∗
=⇒ w1m,Nj

∗
=⇒ wpq|G)

= P(N1 ∗
=⇒ w1m|G)P(Nj ∗

=⇒ wpq|N1 ∗
=⇒ w1m,G)

We have already solved how to calculate P(N1 ∗
=⇒ w1m); let us call this

probability π . Then:

P(Nj
∗
=⇒ wpq|N1 ∗

=⇒ w1m,G) = αj(p, q)βj(p, q)π
and the estimate for how many times the nonterminal Nj is used in the
derivation is:

E(Nj is used in the derivation) =
m∑
p=1

m∑
q=p

αj(p, q)βj(p, q)
π

(11.24)

In the case where we are not dealing with a preterminal, we substitute
the inductive definition of β into the above probability and then∀r , s, p <
q:

P(Nj → Nr Ns ∗
=⇒ wpq|N1 ∗

=⇒ w1m,G)

=
∑q−1
d=p αj(p, q)P(Nj → Nr Ns)βr (p, d)βs(d + 1, q)

π
Therefore, the estimate for how many times this particular rule is used
in the derivation can be found by summing over all ranges of words that

p

i i

400 11 Probabilistic Context Free Grammars

the node could dominate:

E(Nj → Nr Ns,Nj used)(11.25)

=
∑m−1
p=1

∑m
q=p+1

∑q−1
d=p αj(p, q)P(Nj → Nr Ns)βr (p, d)βs(d + 1, q)

π
Now for the maximization step, we want:

P(Nj → Nr Ns) = E(N
j → Nr Ns,Nj used)
E(Nj used)

So, the reestimation formula is:

P̂ (Nj → Nr Ns) = (11.25)/(11.24)(11.26)

=
∑m−1
p=1

∑m
q=p+1

∑q−1
d=p αj(p, q)P(Nj → Nr Ns)βr (p, d)βs(d + 1, q)∑m

p=1

∑m
q=p αj(p, q)βj(p, q)

Similarly for preterminals,

P(Nj → wk|N1 ∗
=⇒ w1m,G) =

∑m
h=1αj(h, h)P(Nj → wh,wh = wk)

π

=
∑m
h=1αj(h, h)P(wh = wk)βj(h, h)

π
The P(wh = wk) above is, of course, either 0 or 1, but we express things
in the second form to show maximal similarity with the preceding case.
Therefore,

P̂ (Nj → wk) =
∑m
h=1αj(h, h)P(wh = wk)βj(h, h)∑m

p=1

∑m
q=p αj(p, q)βj(p, q)

(11.27)

Unlike the case of HMMs, this time we cannot possibly avoid the prob-
lem of dealing with multiple training instances – one cannot use con-
catenation as in the HMM case. Let us assume that we have a set of
training sentences W = (W1, . . . ,Wω), with Wi = wi,1 · · ·wi,mi . Let fi , gi ,
and hi be the common subterms from before for use of a nonterminal at
a branching node, at a preterminal node, and anywhere respectively, now
calculated from sentence Wi :

fi(p, q, j, r , s) =
∑q−1
d=p αj(p, q)P(Nj → NrNs)βr (p, d)βs(d + 1, q)

P(N1
∗
=⇒ Wi|G)

(11.28)

gi(h, j, k) = αj(h, h)P(wh = wk)βj(h, h)
P(N1

∗
=⇒ Wi|G)

hi(p, q, j) = αj(p, q)βj(p, q)

P(N1
∗
=⇒ Wi|G)

p

i i

11.4 Problems with the Inside-Outside Algorithm 401

If we assume that the sentences in the training corpus are independent,
then the likelihood of the training corpus is just the product of the prob-
abilities of the sentences in it according to the grammar. Therefore, in
the reestimation process, we can sum the contributions from multiple
sentences to give the following reestimation formulas. Note that the de-
nominators consider all expansions of the nonterminal, as terminals or
nonterminals, to satisfy the stochastic constraint in equation (11.3) that
a nonterminal’s expansions sum to 1.

P̂ (Nj → Nr Ns) =
∑ω
i=1

∑mi−1
p=1

∑mi
q=p+1 fi(p, q, j, r , s)∑ω

i=1

∑mi
p=1

∑mi
q=p hi(p, q, j)

(11.29)

and

P̂ (Nj → wk) =
∑ω
i=1

∑mi
h=1 gi(h, j, k)∑ω

i=1

∑mi
p=1

∑mi
q=p hi(p, q, j)

(11.30)

The Inside-Outside algorithm is to repeat this process of parameter
reestimation until the change in the estimated probability of the training
corpus is small. If Gi is the grammar (including rule probabilities) in the
ith iteration of training, then we are guaranteed that the probability of
the corpus according to the model will improve or at least get no worse:

P(W |Gi+1) ≥ P(W |Gi).

11.4 Problems with the Inside-Outside Algorithm

However, the PCFG learning algorithm is not without problems:

1. Compared with linear models like HMMs, it is slow. For each sentence,
each iteration of training is O(m3n3), where m is the length of the
sentence, and n is the number of nonterminals in the grammar.

2. Local maxima are much more of a problem. Charniak (1993) reportslocal maxima

that on each of 300 trials of PCFG induction (from randomly initialized
parameters, using artificial data generated from a simple English-like
PCFG) a different local maximum was found. Or in other words, the
algorithm is very sensitive to the initialization of the parameters. This
might perhaps be a good place to try another learning method. (For
instance, the process of simulated annealing has been used with some
success with neural nets to avoid problems of getting stuck in local

p

i i

402 11 Probabilistic Context Free Grammars

maxima (Kirkpatrick et al. 1983; Ackley et al. 1985), but it is still per-
haps too compute expensive for large-scale PCFGs.) Other partial so-
lutions are restricting rules by initializing some parameters to zero or
performing grammar minimization, or reallocating nonterminals away
from “greedy” terminals. Such approaches are discussed in Lari and
Young (1990).

3. Based on experiments on artificial languages, Lari and Young (1990)
suggest that satisfactory grammar learning requires many more non-
terminals than are theoretically needed to describe the language at
hand. In their experiments one typically needed about 3n nontermi-
nals to satisfactorily learn a grammar from a training text generated
by a grammar with n nonterminals. This compounds the first problem.

4. While the algorithm is guaranteed to increase the probability of the
training corpus, there is no guarantee that the nonterminals that the
algorithm learns will have any satisfactory resemblance to the kinds of
nonterminals normally motivated in linguistic analysis (NP, VP, etc.).
Even if one initializes training with a grammar of the sort familiar to
linguists, the training regime may completely change the meaning of
nonterminal categories as it thinks best. As we have set things up, the
only hard constraint is that N1 must remain the start symbol. One
option is to impose further constraints on the nature of the grammar.
For instance, one could specialize the nonterminals so that they each
only generate terminals or nonterminals. Using this form of grammar
would actually also simplify the reestimation equations we presented
above.

Thus, while grammar induction from unannotated corpora is possible in
principle with PCFGs, in practice, it is extremely difficult. In different
ways, many of the approaches of the next chapter address various of the
limitations of using vanilla PCFGs.

11.5 Further Reading

A comprehensive discussion of topics like weak and strong equivalence,
Chomsky Normal Form, and algorithms for changing arbitrary CFGs into
various normal forms can be found in (Hopcroft and Ullman 1979). Stan-
dard techniques for parsing with CFGs in NLP can be found in most AI
and NLP textbooks, such as (Allen 1995).

p

i i

11.5 Further Reading 403

Probabilistic CFGs were first studied in the late 1960s and early 1970s,
and initially there was an outpouring of work. Booth and Thomson
(1973), following on from Booth (1969), define a PCFG as in this chap-
ter (modulo notation). Among other results, they show that there are
probability distributions on the strings of context free languages which
cannot be generated by a PCFG, and derive necessary and sufficient con-
ditions for a PCFG to define a proper probability distribution. Other work
from this period includes: (Grenander 1967), (Suppes 1970), (Huang and
Fu 1971), and several PhD theses (Horning 1969; Ellis 1969; Hutchins
1970). Tree structures in probability theory are normally referred to as
branching processes, and are discussed in such work as (Harris 1963) andbranching

processes (Sankoff 1971).
During the 1970s, work on stochastic formal languages largely died

out, and PCFGs were really only kept alive by the speech community, as an
occasionally tried variant model. The Inside-Outside algorithm was intro-
duced, and its convergence properties formally proved by Baker (1979).
Our presentation essentially follows (Lari and Young 1990). This paper
includes a proof of the algorithmic complexity of the Inside-Outside al-
gorithm. Their work is further developed in (Lari and Young 1991).

For the extension of the algorithms presented here to arbitrary PCFGs,
see (Charniak 1993) or (Kupiec 1991, 1992a).3 Jelinek et al. (1990) and
Jelinek et al. (1992a) provide a thorough introduction to PCFGs. In par-
ticular, these reports, and also Jelinek and Lafferty (1991) and Stolcke
(1995), present incremental left-to-right versions of the Inside and Viterbi
algorithms, which are very useful in contexts such as language models for
speech recognition.

In the section on training a PCFG, we assumed a fixed grammar archi-
tecture. This naturally raises the question of how one should determine
this architecture, and how one would learn it automatically. There has
been a little work on automatically determining a suitable architecture
using Bayesian model merging, a Minimum Description Length approachBayesian model

merging

Minimum

Description Length

(Stolcke and Omohundro 1994b; Chen 1995), but at present this task is
still normally carried out by using the intuitions of a linguist.

3. For anyone familiar with chart parsing, the extension is fairly straightforward: in a
chart we always build maximally binary ‘traversals’ as we move the dot through rules. We
can use this virtual grammar, with appropriate probabilities to parse arbitrary PCFGs (the
rule that completes a constituent can have the same probability as the original rule, while
all others have probability 1).

pa

i i

404 11 Probabilistic Context Free Grammars

PCFGs have also been used in bioinformatics (e.g., Sakakibara et al.
1994), but not nearly as much as HMMs.

11.6 Exercises

Exercise 11.1 [««]

Consider the probability of a (partial) syntactic parse tree giving part of the struc-
ture of a sentence:

P



NP

Det N′

Adj N


In general, as the (sub)tree gets large, we cannot accurately estimate the probabil-
ity of such trees from any existing training corpus (a data sparseness problem).

As we saw, PCFGs approach this problem by estimating the probability of a tree
like the one above from the joint probabilities of local subtrees:

P


NP

Det N′
,

N′

Adj N


However, how reasonable is it to assume independence between the probability
distributions of these local subtrees (which is the assumption that licenses us to
estimate the probability of a subtree as the product of the probability of each
local tree it contains)?

Use a parsed corpus (e.g., the Penn Treebank) and find for some common sub-
trees whether the independence assumption seems justified or not. If it is not,
see if you can find a method of combining the probabilities of local subtrees in
such a way that it results in an empirically better estimate of the probability of
a larger subtree.

Exercise 11.2 [«]

Using a parse triangle as in figure 11.3, calculate the outside probabilities for the
sentence astronomers saw stars with ears according to the grammar in table 11.2.
Start at the top righthand corner and work towards the diagonal.

Exercise 11.3 [«]

Using the inside and outside probabilities for the sentence astronomers saw stars
with ears worked out in figure 11.3 and exercise 11.2, reestimate the proba-
bilities of the grammar in table 11.2 by working through one iteration of the
Inside-Outside algorithm. It is helpful to first link up the inside probabilities
shown in figure 11.3 with the particular rules and subtrees used to obtain them.

p

i i

11.6 Exercises 405

What would the rule probabilities converge to with continued iterations of the
Inside-Outside algorithm? Why?

Exercise 11.4 [«««]

Recording possible spans of nodes in a parse triangle such as the one in fig-
ure 11.3 is the essence of the Cocke-Kasami-Younger (CKY) algorithm for pars-
ing CFGs (Younger 1967; Hopcroft and Ullman 1979). Writing a CKY PCFG parser
is quite straightforward, and a good exercise. One might then want to extend
the parser from Chomsky Normal Form grammars to the more general case of
context-free grammars. One way is to work out the general case oneself, or to
consult the appropriate papers in the Further Reading. Another way is to write
a grammar transformation that will take a CFG and convert it into a Chomsky
Normal Form CFG by introducing specially-marked additional nodes where nec-
essary, which can then be removed on output to display parse trees as given by
the original grammar. This task is quite easy if one restricts the input CFG to
one that does not contain any empty nodes (nonterminals that expand to give
nothing).

Exercise 11.5 [«««]

Rather than simply parsing a sequence of words, if interfacing a parser to a
speech recognizer, one often wants to be able to parse a word lattice, of the
sort shown in figure 12.1. Extend a PCFG parser so it works with word lattices.
(Because the runtime of a PCFG parser is dependent on the number of words in
the word lattice, a PCFG parser can be impractical when dealing with large speech
lattices, but our CPUs keep getting faster every year!)

This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	Foundations of Statistical Natural Language Processing: Chap11 - Probabilistic Context Free Grammars
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25

	Copyright notice

