
CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 1

1. Overview
The goal of this project was to build a Hidden Markov Model (HMM) text extraction system and to explore
the effects of context width, presence of structure in the form of HTML tags, and shrinkage mixture
settings on the text extraction results. Overall the HMM approach to text extraction seems justified in that
it offers the flexibility of a probabilistic model while providing many of the same benefits of rule-based
systems through the use of model structure. The implementation given here is based on (Freitag &
McCallum, 1999) but differs in a few aspects which will be discussed below.

2. Software Architecture
While most of the algorithm details will be postponed to the section on algorithm description, a brief
description of the overall system may help the reader understand how all of the components of the project
fit together with respect to the goal of text extraction.

The basic goal of this system is to take a set of documents in HTML format and learn a generative
probabilistic model of the underlying state transition structure of the document from a set of tagged training
data. This model is not just one HMM however, it is a mixture of HMM's organized in a hierarchical
structure to help the system cope with data sparseness. Given a trained probabilistic mixture model of the
data, the system should then be able to apply this model to new unseen HTML documents to predict which
portions of these documents are likely targets according to the training data template.

A system such as this requires an architecture similar to that displayed in figure 1 consisting of the
following five basic blocks:

1. Input Subsystem – This sub-system is responsible for reading all of the data and converting it to a

tokenized sequence that can be used to form the internal representation of the document structure.
2. Document Interface – This component interfaces with all of the other sub-systems to input the data,

 Performance Calculations

 Template Output

 File I/O

 Http I/O

 HTML

 Parser

 Text/
 Tag

 Token-
 izer

 Template Reader

 Mixture
 Model

 Training &
 Extraction
 Algorithms

 HMM

 Template Extractor Control Interface

 Input / Output Internal Representation Extraction Engine

 Document

 Interface

 Sufficient

 Statistics

Figure 1. Diagram of the software architecture for the HMM-based template extraction system.

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 2

cache the sufficient statistics required by the HMM, train the HMM mixture model and obtain a
predicted state sequence for the test data, and output the extracted templates and performance statistics.

3. Mixture Model – This system contains a mixture of HMM's according to the structure defined in the
training template which is provided in an external file. It uses this structure to model the underlying
state and observation sequence of a set of training documents and to predict state sequences for new
documents using the Viterbi algorithm (to find the most likely path through the HMM). The mixture
model is responsible for making access to the underlying HMM structure as transparent as possible so
that all algorithms "see" a single HMM.

4. Control Interface – This system simply interacts with each of the other components to oversee the
sequence of operations from reading the data and training the mixture model to extracting text and
formatting it for output purposes.

5. Output Subsystem – This is by far the simplest component. It need only translate the predicted
document structure to a coherent output format and calculate performance statistics if the test data is
marked up and can therefore be used to test the system's predictions.

While at this point the overall algorithms used by the system may not be clear, the basic structure and
interaction of the system components should be somewhat well understood.

3. Algorithm Description
With the basic software architecture in place, it is now time to cover the basic algorithms used by the
HMM-based text extraction system.

3. 1 State and Observation Model Structure
Shown below in figure 2 is the basic format by which a document is modeled with a state and observation
sequence. (The example uses an excerpt from a Computer Science course description web page that
composes the main set of test data that will be used in the section on testing and analysis.)

There are two fundamental issues to note in this model:

1. The observation sequence is always observed but the state sequence is only known for the training

data. In this data, the start and end states are trivially known, the target state is marked up as
described in the next section and is therefore known, the prefix and suffix states can be easily
determined by knowledge of the target state and the context width defined in the training template, and
all other states are considered to be background states. Knowledge of both the observation and hidden
states makes training the model a simple case of maximum likelihood probability estimation.

2. The goal of the template extractor will be to generate the state sequence for an untagged document

[START] [PREFIX] [TARGET] [TARGET] [SUFFIX] [BKGD] [END]

<H?> / <H2> Cs / CS # / 221 </H?> / </H2>
 /

Figure 2. Sample Hidden Markov Model showing parallel state and observation sequence (LHS
 shows the token, RHS shows the actual text). Note that tokens such as numbers and
 some HTML tags (i.e. anchor, heading, and table tags) are generalized to avoid capturing
 irrelevant information in the observation sequence.

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 3

using the previously trained model. From this sequence it should be fairly obvious that the text to be
extracted is the text that is labeled as a target state by the extraction algorithm.

3.2 Marking Up the Training Data
Given that training the model is fairly straightforward, there is only one slight issue which involves
developing a markup method for the training data that will not interfere with the actual data itself. Since all
comments in a document are discarded for training (i.e. one cannot really expect any regularities among the
comments in a document), it makes sense to embed the training labels as HTML comments themselves.
Consequently the template which is used to define the mixture model and target text contains a reference to
the comment tag which identifies the target in the training file. For example, a template whose purpose
was to extract the course title from a web page would indicate the tag TITLE so that anything preceded by
<!--T-TARGET--> in the document would be considered a target. An example excerpt from actual training
data is shown below which includes markers for the course title and instructor.

Sample marked-up web page, note the <!--T-TITLE--> and <!--T-INST--> tags:

<HEAD>
<TITLE>
<!--T-TITLE-->CS 367 - Lecture 2
</TITLE>
</HEAD>
<BODY>

<H1>
<!--T-TITLE-->CS 367-2 Introduction to Data Structures
Fall 1996
</H1>
<P>
Course email address:
 cs367-2@cs.wisc.edu

Course home page:

http://www.cs.wisc.edu/~cs367-2/cs367.html

<P>
INSTRUCTOR:
<!--T-INST-->Yannis Ioannidis

Note in the above example that any text following a tag is considered part of a target until a new-line or
something non-text (i.e. a tag or comment) is encountered.

3.3 Parsing and Tokenizing the Document
With the markup method defined for identifying targets in an HTML document, the next step is to actually
parse the HTML document and tokenize sub-parts of the HTML document such as tags and text.

For parsing, an HTML parser under the GNU general public license was used to separate the document into
a set of tag, text, and comment tokens. While this is a first step in the parsing process, it is not enough to
pass this structure directly on to the training algorithm.

For example, anchor tags (i.e.) often precede important information (e.g. a map to a room
location or an instructor's home page) and are therefore useful in predicting the likelihood that a document
token is a target. However, an anchor tag in its complete form differs from document to document because

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 4

the href or some other attribute value is almost always going to change based on the context.
Consequently, it is important for a tokenizer to discard irrelevant information in tags and include only the
information that is likely to occur in other documents, e.g. the fact that it is an anchor, header, or table
element tag.

Another reason for tokenization beyond the HTML level includes the terminology that is commonly found
in context specific language, namely the use of acronyms and abbreviations. For example, in CS course
web pages, a course is almost always titled in the format 'cs###'. Since we want to be able to generalize
from this to other course titles it is not a good idea to store 'cs221' directly as the observation sequence
'cs221'. Rather it is a good idea to separate letters from collocated numbers, capitalize all letters (not
always a good idea, but often useful), and tokenize the number as a generic number rather than it's actual
value. Consequently, 'cs221' would thus be tokenized as two tokens, 'CS' and '#' (or some other indicator
for a number). A tokenization such as this increases the chances that future course can be generalized to,
e.g. a system that tokenizes in this manner should be able recognize 'Cs 223b' as a course as well.

Consequently tokenizing text beyond the HTML level is quite useful for training and generalization and is
the reason for the additional text and tag tokenizer intervening between the HTML parser and the document
representation in the software architecture.

3.4 Modeling the Document Structure
In a generic Hidden Markov Model, one would simply define a number of states and a number of
transitions between those states. The more complex the HMM, the better it can represent a document, but
also the more data that is needed to dependably train the model and avoid errors due to noise in the data.
Consequently there is an apparent tradeoff between representational efficacy and training efficiency and
this tradeoff varies from domain to domain.

Therefore, rather than decide on just one model, it is often easier to use a mixture of models and decide
later (perhaps empirically) on how much to weight each model. This approach is quite effective because it
allows one to model a document at varying degrees of granularity (effectively using a hierarchical model),
yet retain the advantages of each model. That is, if the data is sparse, the simpler model will likely perform
better and thus be weighted more during the extraction phase. And if there is an abundance of data, the
more complex model can be robustly trained and be weighted more heavily during the extraction phase on
account of its superior prediction accuracy.

For this text extraction system, a basic set of three mixture models were used and are shown in figure 3 on
the following page. These models are somewhat simpler than those used by Freitag and McCallum (which
make use of fairly complex prefix and suffix structures) but empirically perform well on some classes of
text extraction. Where these simpler models break down however is where the text to be extracted is
heavily context dependent such that a reversal of two context words could reverse the classification of an
excerpt of text as a target. The models used here are obviously incapable of modeling these cases since all
prefixes and suffixes are treated in an order-independent manner.

Despite the simplicity of these models however, they yield the one main benefit that they can be trained on
very sparse data. (This was an issue with this project where a limited amount of time that could be allotted
to marking up data sets by hand.)

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 5

3.5 Training the Model
As discussed previously, training the model is a straightforward process of maximum likelihood parameter
estimation. From the document training set we can easily obtain the sufficient statistics concerning the
frequency that a given state or observation occurred and the frequency with which a state transition or
observation emission was made.

Thus, state transition probability can be trained as follows:

 (Eq. 1)

And likewise, the observation emission probability can be trained as follows:

 (Eq. 2)

There might be some slight confusion as to how all three models are trained off of the same set of sufficient
statistics but it is fairly straightforward to show that the sufficient statistics for the full transition model can
be converted to the sufficient statistics for any of the simpler models. For instance, since the prefix and
suffix states are collapsed to the same context state in the context model, one can simply combine these
sufficient statistics and estimate the transition probabilities for the context model accordingly.

This suffices for training the individual models but it does not explain how to combine the models. To do
this, we use a concept known as shrinkage which states quite simply that each model contributes a
weighted estimate to the overall calculation subject to the constraint that the sum of the weights is 1.0. A
bit more formally, we can estimate a mixture state transition parameter using the following equation:

Subject to the constraint that:

 (Eq. 4)

One can perform an analogous computation to compute the mixture estimation of the observation emission
probabilities.

P S S
Freq S S
Freq St t

t t

t
(|)

(&)
()+
+=1
1

P O S
Freq O S
Freq St t

t t

t
(|)

(&)
()

=

P S S P S S P S S P S St t Uniform Uniform t t Context Context t t Full Full t t(|) (|) (|) (|)+ + + += ! + ! + !1 1 1 1" " "

! ! !Uniform Context Full+ + = 10.

Σ

Σ

P S

B

T

Σ

B

CS

T

Figure 3. Diagram of the three Hidden Markov Models composing the mixture model. Σ is the start
 state, the double circle signifies the end state, and the letters B, C, P, S, and T stand for the
 background, context, prefix, start, and target states, respectively.

Uniform Model Context Model Full Transition Model

(Eq. 3)

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 6

One can empirically learn the λ weights using the EM algorithm however for purposes of testing and time,
these weights are simply specified in the template file which contains the model structure and parameters.

3.6 Extracting a State Sequence
Once an HMM has been trained on a set of tagged training data, it can then be applied to data to label the
most probable state sequence for a document simply given a set of observations (which is in fact the
document itself).

The trained mixture appears to be a single HMM for all intents and purposes. (At least the purpose of the
mixture model class is to make transparent the fact that the estimates for the transition and emission
probabilities are actually based on multiple sub-models.) Consequently, we can apply the standard HMM
algorithm to the mixture model to extract the most probable state sequence given a set of observations.
This algorithm is known as the Viterbi algorithm and is covered in many texts, Rabiner (1989) being an
excellent reference.

It suffices to say that the Viterbi algorithm is a dynamic programming algorithm requiring time O(TS2)
(where T is the number of time steps and S is the number of states) where at each time step it computes the
most probable path for each state given that the most probable path for all previous time steps has been
computed.

3.7 Output
While perhaps a trivial feature of the software, it is worth mentioning that once a state sequence has been
determined for a document, the final step is to determine which words conform to the target states in the
document and output these word sets with the appropriate label defined by the training template (i.e. course
title or instructor, etc…). Additionally if the test data is tagged, it is also possible to compare the
performance predictions of the system with the actual answers. Precision, recall, and the F1 measure are
supported by this software.

4. Testing and Analysis
Before analyzing the results of a number of test cases, it is interesting to look at the learned models in the
context of the testing domain in order to gain an intuition for what the system is learning. From this point,
we can apply the system to a number of test cases and evaluate its performance in light of this initial
experimental investigation.

4.1 Testing Domain
The testing domain chosen for this analysis was a set of Computer Science course web pages provided by
Tom Mitchell's WebKb project. One hundred of these pages were marked up with four different targets:
course title, course instructor, course time(s), and course location.

These 100 web pages were divided into two independent sets, one set of 80 marked-up web pages to be
used for training and one set of 20 web pages to be used for performance testing.

4.2 Learning Evaluation
It is interesting to examine the basic transition structure of the marked up training documents. A printout of
the transition frequency of the 80 training documents for the 'course title' template with context width 3 is
provided below:

Full Transition Count: row(to-state), column(from-state)

 STA BKG PRE SUF TAR END
 ----- ----- ----- ----- ----- -----

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 7

START 0 0 0 0 0 0
BKGD 7 52622 0 104 0 0
PREFIX 73 33 296 119 5 0
SUFFIX 0 0 27 314 159 0
TARGET 0 0 159 5 919 0
END 0 80 0 0 0 0

From this data it is readily apparent that most of the document states are background states, that the
document is likely to start out with a prefix sequence, and that quite often a suffix sequence leads right into
a prefix sequence.

The latter two phenomena can be easily explained by two common facts about course web pages. First, the
title of the web page is often listed in the initial <title> portion of the document. This explains the
frequency of initial prefix states. Second, the first portion of a course web page beyond the <title> section
is an actual header itself which states the title of the course. Consequently, it seems that within the context-
width of the suffix of the first <title> declaration of the course name, there occur quite frequently the
second set of prefix tokens for the subsequent page header.

Translating these frequencies into state transition probabilities, we get the following table for P(St+1|St) for
the full transition model:

Full Transition Probabilities: row(to-state), column(from-state)

 STA BKG PRE SUF TAR END
 ------- ------- ------- ------- ------- -------
START : 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
BKGD : 0.08974 0.99790 0.00000 0.21987 0.00000 0.00000
PREFIX : 0.91026 0.00063 0.65055 0.25159 0.00000 0.00000
SUFFIX : 0.00000 0.00000 0.00000 0.66385 0.14750 0.00000
TARGET : 0.00000 0.00000 0.34945 0.00000 0.85250 0.00000
END : 0.00000 0.00148 0.00000 0.00000 0.00000 0.00000

This is in some sense just a base frequency normalized version of the transition frequencies. Note however
that there are many valid transitions which have zero probability. For instance, the probability of
transitioning from suffix to end is zero whereas this could be a perfectly valid transition and is in fact
allowed by the model. However, the presence of a zero here would prevent the Viterbi algorithm from ever
exploring this path, i.e. there will always be some path greater than one with zero probability (except for
the parasitic case where all paths are of zero probability).

However, the fact that the mixture model contains as a component the uniform model causes all transitions
to have some small probability and this effectively resolves the issue of valid but unobserved state (and
observation) transitions in the training data.

To verify that indeed, the mixture model does have non-zero probabilities on account of the uniform model,
the following mixture model conforming to this test case is given below (where the uniform model has
weight λ = 0.001):

Mixture Transition Probabilities: row(to-state), column(from-state)

 STA BKG PRE SUF TAR END
 ------- ------- ------- ------- ------- -------
START : 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100
BKGD : 0.09065 0.99790 0.05692 0.16686 0.00100 0.00100

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 8

PREFIX : 0.91035 0.00163 0.73279 0.53331 0.07691 0.00100
SUFFIX : 0.45522 0.00131 0.40751 0.73944 0.15066 0.00100
TARGET : 0.00100 0.00100 0.26391 0.08919 0.85265 0.00100
END : 0.00100 0.00248 0.00100 0.00100 0.00100 0.00100

Also, for purposes of curiosity, a small subset of the observation emission mixture probabilities are listed
below:

Mixture Observation Probabilities: row(observation), column(from-state)

 STA BKG PRE SUF TAR END
 ------- ------- ------- ------- ------- -------
<TITLE>: 0.00000 0.00006 0.12111 0.03979 0.00000 0.00000
CS : 0.00000 0.00536 0.00054 0.00160 0.08340 0.00000
- : 0.00000 0.03594 0.00000 0.00000 0.03892 0.00000
[NUMBER: 0.00000 0.06356 0.01246 0.01969 0.18905 0.00000
HOME : 0.00000 0.00121 0.00217 0.00213 0.03522 0.00000
PAGE : 0.00000 0.00182 0.00271 0.00373 0.03985 0.00000
</TITLE: 0.00000 0.00002 0.05125 0.12178 0.00000 0.00000
<BODY> : 0.00000 0.00000 0.00217 0.00213 0.00000 0.00000
<H?> : 0.00000 0.01207 0.34603 0.18459 0.00649 0.00000
</H?> : 0.00000 0.00972 0.11028 0.21917 0.00649 0.00000
DATABAS: 0.00000 0.00076 0.00000 0.00000 0.00463 0.00000
SYSTEMS: 0.00000 0.00224 0.00054 0.00160 0.02039 0.00000
AND : 0.00000 0.01516 0.00054 0.00160 0.02039 0.00000
INFORMA: 0.00000 0.00244 0.00054 0.00160 0.00093 0.00000
RETRIEV: 0.00000 0.00017 0.00000 0.00000 0.00093 0.00000
<A> : 0.00000 0.03101 0.00325 0.00532 0.00000 0.00000
DEPARTM: 0.00000 0.00045 0.00000 0.00000 0.00000 0.00000
OF : 0.00000 0.01224 0.00000 0.00000 0.00741 0.00000
COMPUTE: 0.00000 0.00222 0.00054 0.00160 0.02039 0.00000
SCIENCE: 0.00000 0.00083 0.00000 0.00000 0.00741 0.00000
 : 0.00000 0.03092 0.01036 0.00482 0.00000 0.00000

Some features of this data are quite interesting. For instance, <TITLE> and <H?> tags are likely
indicators of a prefix symbol. 'CS' has a high probability of being emitted from a target state as do the
words 'SYSTEMS' and interestingly, 'AND'. Additionally, likely suffixes are simply the closing tags of the
prefixes, </TITLE> and </H?>. This also indicates that HTML structure can be extremely useful for
predicting targets in text extraction.

In any event, most of these transition and observation probabilities conform to our intuitive notions of what
the documents actually look like, and reflect the fact that to some extent, what these models are predicting
is not drastically different from the abstract procedures we follow when looking at a web page. Based on
the structure and our probabilistic intuitions, it seems that we are more or less performing a very similar
task. Whether or not this observation is relevant to the task is perhaps unimportant, it just means there is a
very intuitive interpretation for what the system is doing.

4.3 Performance Analysis
Now that we have an intuitive feel for what the system is estimating and predicting, it is useful to get a
more concrete result on the system's performance.

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 9

Consequently, attached at the end of this document are a set of graphs conforming to the six experiments
discussed below:

1. Performance of Text Extractor vs. HMM Mixture Weights – This graph analyzes the F1 Measure

performance of the text extractor over various mixture weights for each of the four data sets (course
title, instructor, time, and location). The mixture weights vary uniformly from being completely biased
toward the context model on the left-hand side to being completely biased toward the full transition
model on the right hand side (the uniform model maintains a weight of 0.001 throughout these
experiments). Note that extraction of the title yields excellent results while the other four data sets
show rather consistent poor performance. This is mainly due to two reasons. First, while Computer
Science courses tend to draw from a similar set of universal names, instructor names are institution
dependent as are locations. Thus, it is hard to generalize to new names or institutions unless the
surrounding context gives enough support for such a prediction. Second, many course web pages list
many times: course and recitation hours, office hours, due dates and times, etc… The presence of so
many times is extremely confusing to the system and is largely responsible for the poor F1 measure
performance. Here the system would benefit from a more elaborate context.

2. Performance of Text Extractor vs.Training Context Width – This graph is extremely similar to the

previous one except that the X axis displays five different values for the context width. Overall results
show a common peak performance around a context width of two or three which seems a quite
reasonable result. (i.e. Too little of a context width yields too few predictions and too high of a context
width yields ambiguous predictions.)

3. Performance of Text Extractor vs. HTML Tag Inclusion – As this graph title implies, it compares the

F1 measure performance of the system not using HTML tags as observations to a version using HTML
tags as observations. Without much need for explanation, it is apparent that with the exception of
some statistical noise in one case, the use of HTML tags generally helps text extraction. This is quite
simply due to the fact that HTML structure often provides special indicators of the importance of a
piece of text and this important text is quite often a target of the text extractor.

4. Performance of Text Extractor on Title Data Set vs. HMM Mixture Weights – This graph is extremely

similar to the first graph except that it limits data to just the Title data set and provides the three
performance measures: performance, recall, and F1 measure. In this graph, precision and recall are
approximately equivalent for biases toward the full transition model. For biases toward the context
model, the precision is slightly higher than the recall likely due to the fact that this model is picking up
fewer target words due to the less elaborate transition structure while the targets it is picking up are
highly likely to be correct.

5. Performance of Text Extractor on Title Data Set vs.Training Context Width – This graph is analogous

to the second graph except that it provides precision, recall, and F1 measure performance for the Title
data set as the context width varies. This graph indicates that precision and recall are fairly similar no
matter what the context width but that a context width of three yields peak performance for the Title
template.

6. Performance of Text Extractor on Title Data Set vs. HTML Tag Inclusion – This graph is analogous to

third graph except that it provides precision, recall, and F1 measure performance for the Title data set
for the case of ignoring HTML tags vs. the case of using them. These graphs show that while there is
little difference between precision and recall for each choice, there is an overall drastic absolute
difference which indicates that using HTML tags is better under all performance measures compared to
a system which discards them.

4.4 Qualitative Analysis
While we have seen an evaluation of what the system has learned and some statistical results for its
performance, we have not yet obtained a good qualitative feel for how useful the system is. Consequently,

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 10

following is some selected sample output from the system trained on the previous set of 80 training
examples and then applied to 20 web pages that are currently on-line. (Note that the WebKb data was
posted in 1996, so the training data is effectively five years older than the testing pages.)

Output of the text extraction system for three on-line web pages. Note that the results are
mostly correct with a few minor errors and one omission of location for the third class.

Extraction results for document:
'http://www.stanford.edu/class/cs223b/'
--
TITLE: CS 223 B
INST: Chris Bregler
TIME: Wed 5 - 9 PM ,
TIME: Wednesdays 11 : 00 - 12 : 15
LOC: B 26 B Gates

Extraction results for document:
'http://www.cs.utexas.edu/users/risto/cs394n/'
--
TITLE: CS 394 N Neural Networks , Fall 2001
TITLE: CS 394 N Neural Networks , Fall 2001
INST: Risto Miikkulainen
TIME: Wed 3 : 30 - 6 : 30 pm , PAI 5
TIME: 4 17 : 25 : 28
LOC: PAI 5 . 60

Extraction results for document:
'http://www.cs.utexas.edu/users/lavender/courses/cs386/index.html'
--
TITLE: CS 386 L
TITLE: CS 386 L : Graduate Programming Languages
INST: Dr . Greg Lavender
TIME: 10 - 11 am
 Tel : 232 - 7891
TIME: 2 - 3 , Th 11 - 12

For these web pages, the system performed extremely well, managing to extract names and room locations
that were not even mentioned in the training set (i.e. Stanford courses were not in the set of training data).
Overall, the text extraction system yielded about 85% accuracy in prediction of the course titles and similar
performance to the previous test set for each of the instructor, location, and time features.

As mentioned in the performance analysis section, the one place where the implementation defined here
breaks down is where context is the only useful indicator of target-hood since targets such as names and
locations are likely to have not been seen before. The context mechanism in these models is weak to some
extent and could benefit from more elaboration. As far as the poor prediction of times is concerned, again
additional context structure would help since the context should offer a good indicator of why a time is
being mentioned.

5. Conclusions
Overall we see that the Hidden Markov Model text extraction method works better when combined with
the concept of shrinkage (i.e. a system mixing multiple models iss superior to a system using just one). We
also see that a limited amount of context is extremely important to text extraction since quite often the
words themselves aren't known to be the targets (e.g. instructor names or class locations). Additionally we
see there are some very promising results when using document structure such as HTML markup to help

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 11

the system predict targets correctly. In fact, we saw a performance spike of 35% on precision and recall
just by allowing the use of HTML tags in HMM prediction.

Where this model requires improvement however is in the HMM structures it uses to model the document
since for three of the four datasets, context structure was very important yet somewhat deemphasized in this
system implementation. More elaborate context structure would be extremely useful for extracting
templates such as course times since the times in general are prevalent on a web page and it is only through
contextual disambiguation that the purpose of the time listing can be determined (what if it is for office
hours instead of class time?).

Given these results there are two questions which come to mind. First, is maximum-likelihood parameter
estimation ideal for learning HMM transition and emission probabilities? Perhaps a system which makes
fewer assumptions such as a max-entropy training rule would make more sense. Some initial research has
been done in this direction (McCallum, Freitag, & Pereira, 2000) but there is certainly more to explore and
experiment with on this topic.

Additionally, it would also be interesting to ask if not only the probabilities but the actual HMM structure
could be learned. Again, there has been some promising initial research in this area (Freitag & McCallum,
2000) which attempts in some sense to mutate an initial model in a hill-climbing sense but there is
obviously still more work to be explored here.

One research direction which could also yield increased performance would be more aggressive linguistic
morphology during the tokenization phase of the system. Although very few linguistic assumptions are
made in an HMM text extractor, one approach that did seem to work well over previous versions of the
software was the assumption that text should be broken down into its most atomic components.
Consequently an even better tokenizer than the one used in the current system would attempt to remove
plural endings or reduce verbs to a common derivational form when generating observation token
sequences. This would greatly improve the ability of the system to generalize and seems to be an
interesting direction for future research.

Consequently, we see that HMM/Shrinkage-based text extraction is a very promising approach with
encouraging results so far (even in a simple system such as this one) and there are multiple directions in
which future research can lead to further enhance the performance of these systems.

6. Bibliography
Freitag, D., & McCallum, A. 1999. Information Extraction with HMM's and Shrinkage. AAAI '99
 Workshop on Machine Learning for Information Extraction.

McCallum, A., Freitag, D., & Pereira, F. 2000. Maximum Entropy Markov Models for Information
 Extraction and Segmentation.. Proceedings of the Seventeenth Interational Conference on Machine
 Learning, ICML-2K. Stanford, CA.

Freitag, D., & McCallum, A. 2000. Information Extraction with HMM Structures Learned by Stochastic
 Optimization. Proceedings of AAAI-2000. Austin, TX.

Rabiner, L. R. 1989. A Tutorial on Hidden Markov Models and Selected Applications in Speech
 Recognition. Proceedings of the IEEE, 77 , no. 2, 257-285, February.

7. Code and File Description
The code for this project was written in Java and is provided as a TAR file due to the nested directory
structure of the software and data. Use the command 'tar xvf extractor.tar' to setup the directory structure
and then follow the directions in the README file in the 'Extractor' directory for compilation and
execution instructions.

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 12

Following is a brief description of each of the source files (~2,200 lines total excluding the HTML parser):

• Extractor/TemplateExtractor.java – The main interface for the template extractor. Loads the template

and document sets and invokes the training, extraction, and comparison procedures.

• Extractor/HtmlCollector.java – A basic interface definition implemented by HtmlWriter and

HtmlExporter for collecting the contents of an HTML stream.

• Extractor/HtmlWriter.java – A utility class for printing out HTML document contents.

• Extractor/HtmlExporter.java – Interfaces with the HTML parser to collect the tokens from an HTML

stream.

• Extractor/HtmlExtractor.java – Resolves whether a file is located on the web or the local filesystem,

loads the appropriate source, and exports the HTML contents to a DocSet.

• Extractor/TextTokenizer.java – Performs rule-based tokenization of the text portions of HTML

documents.

• Extractor/DocSet.java – Processes a list of documents or web addresses and loads them into an

internal document data structure.

• Extractor/DocToken.java – Represents tokens for the hidden state, observation, hash string, actual

string, and relevant information for each document element.

• Extractor/Template.java – Reads the template files format and represents the target information,

structure of multiple HMM's and their associated weights, and other template features such as context
width and whether to ignore HTML document markup.

• Extractor/SuffStatistics.java – Caches the sufficient statistics in a document set to be used for HMM

training.

• Extractor/MixtureHMM.java – Builds a set of HMM's according to the parameters defined in the

Template. Contains the mixture-model version of the Viterbi algorithm for text extraction and contains
interfaces for training and accessing each of the sub-HMM's.

• Extractor/HMM.java – Contains the HMM structure for the given model and provides algorithms to

train the HMM from a provided set of sufficient statistics.

• com/quiotix/html/parser/*.class – Class files for a GNU GPL HTML parser used in conjunction with

the above files.

Following is a brief description of the training and testing files to be provided on the command line:

• trainfiles1.txt – A set of 80 cached CS course web pages from the WebKb project which I have hand-

labeled with title, instructor, time, and location markers. Used for training in the above experiments.
(Note: ./train/* is the actual location of the marked up data.)

• testfiles1.txt – A separate set of 20 cached CS course web pages from the WebKb project which I have

hand-labeled with title, instructor, time, and location markers. Used for testing in the above
experiments. (Note: ./train/* is the actual location of the marked up data.)

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 13

• webaddr1.txt – A list of 20 web pages of CS courses currently being offered by Stanford, CMU, U.
Texas, and Wisconsin. Although these pages obviously are not marked with the appropriate tags, one
can verify from the template output that the correct course title is identified in 17 of the 20 web pages.

Following is a brief description of the template files to be provided on the command line:

• title1.template – The optimal HMM template for extracting course titles.
• inst1.template – The optimal HMM template for extracting course instructors.
• time1.template – The optimal HMM template for extracting course times.
• loc1.template – The optimal HMM template for extracting course locations.

Following is a sample template file with an explanation of each line:

Context-Width 3  Number of words on each side of target to count as context.
Target TITLE  Target tag to search for when parsing HTML files.
Ignore-Tags FALSE  Indicates whether or not to discard all HTML tags.
Add-Model Uniform 0.001  Add a Uniform HMM to the mixture model with λ = 0.001.
Add-Model Context 0.250  Add a Context HMM to the mixture model with λ = 0.250.
Add-Model All 0.749  Add an All (i.e. full transition) HMM to the mixture model

 with λ = 0.749.

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 14

8. Graphed Data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Percentage of Weight on Context HMM, (1 - %) on All HMM

F
1

M
e
a
s
u
r
e

Performance of Text Extractor vs. HMM Mixture Weights

Title
Instructor
Time
Location

1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Context Width used to train HMM

F
1

M
e
a
s
u
r
e

Performance of Text Extractor vs. Training Context Width

Title
Instructor
Time
Location

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Including HTML Tags? 0-No 1-Yes

F
1

M
e
a
s
u
r
e

Performance of Text Extractor vs. HTML Tag Inclusion

Title
Instructor
Time
Location

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

Percentage of Weight on Context HMM, (1 - %) on All HMM

P
e
r
f
o
r
m
a
n
c
e

M
e
a
s
u
r
e
s

Performance of Text Extractor on Title Dataset vs. HMM Mixture Weights

Precision
F1 Measure
Recall

CS224N, Spring Final Project: Scott Sanner
Natural Language Processing HMM-Based Text Extractor ssanner@cs.stanford.edu

10/5/10 16

1 1.5 2 2.5 3 3.5 4 4.5 5
0.78

0.8

0.82

0.84

0.86

0.88

0.9

Context Width used to train HMM

P
e
r
f
o
r
m
a
n
c
e

M
e
a
s
u
r
e
s

Performance of Text Extractor on Title Dataset vs. Training Context Width

Precision
F1 Measure
Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Including HTML Tags? 0-No 1-Yes

P
e
r
f
o
r
m
a
n
c
e

M
e
a
s
u
r
e
s

Performance of Text Extractor on Title Dataset vs. HTML Tag Inclusion

Precision
F1 Measure
Recall

