Introduction
to FSA and Regular Expressions

Carlo Strapparava
FBK-irst
Strappa@fbk.eu

Introduction

= Regular Languages and Finite Automata are among
the oldest topics in formal language theory (early ‘40)

= Formal language theory uses algebra and set theory
to define formal languages as a sequence of symbols

= RL and FA have a wide range of applications:
= Lexical analysis in programming language compilation
= Circuit design, text editing, pattern matching, ...

= More recently: parallel processing, image generation and
compression, type theory for OO languages, DNA
computing, ...

Carlo Strapparava - Master in

Naive definitions

= Basically, a regular expression is a pattern describing
a certain amount of text

= A regular expression is a string that is used to
describe or match a set of strings, according to
certain syntax rules

= A regular expression, often called a pattern, is an
expression that describes a set of strings. They are
usually used to give a concise description of a set,
without having to list all elements

= For example, the three strings Handel - Handel -

Haendel could be described by the pattern
H(ala|ae)ndel

Carlo Strapparava - Master in

Representations for languages

= A formal language is a language that is
defined by precise mathematical or machine
processable formulas.

= Formal languages generally have two aspects:

= the syntax of a language is what the language
looks like (i.e. the set of possible expressions that
are valid utterances in the language)

= the semantics of a language are what the
utterances of the language mean (which is
formalized in various ways, depending on the type
of language in question)

Carlo Strapparava - Master in

Representations for languages

= The branch of mathematics and computer
science which studies exclusively the theory
of language syntax is known as formal
language theory

= In formal language theory, a language is
nothing more than its syntax

= Questions of semantics are not addressed

Carlo Strapparava - Master in HLT

Formal languages and computability

= Strong connection with the computability theory, i.e.
the branch of the theory of computation that studies
which problems are computationally solvable using
different models of computation

= The study of abstract machines and problems they are
able to solve

= Typical questions asked about such formalisms include:

» What is their expressive power? (Can formalism X describe
every language that formalism Y can describe? Can it describe
other languages?)

» What is their recognizability? (How difficult is it to decide
whether a given word belongs to a language described by
formalism X?)

» What is their comparability? (How difficult is it to decide whether
two languages, one described in formalism X and one in
formalism Y, or in X again, are actually the same language?)

-Master in HLT

Representations for languages

= We will discuss the two principal methods for defining
languages: the generator and the recognizer

= In particular we will focus on a particular class of
generators (grammars) and of recognizers (automata)

= There are many types of formal languages, some of them

are very “simple”, others are more “complex”

= It is possible to put them in a hierarchy

= Regular languages are the simplest formal languages:

= Their generators are the regular expressions
= Their recognizers are the finite state automata

Carlo Strapparava - Master in

HLT

Automata theory: formal
languages and formal grammars

Chomsky | Grammars Languages Minimal automaton

hierarchy

Type-0 Unrestricted Recursively enumerable | Turing machine

n/a (no common name) | Recursive Decider

Type-1 Context-sensitive Context-sensitive Linear-bounded

n/a Indexed Indexed Nested stack

n/a Tree-adjoining Mildly context-sensitive Thread

Type-2 Context-free Context-free Nondeterministic

pushdown

n/a Deterministic Deterministic Deterministic pushdown
context-free context-free

Type-3 Regular Regular Finite state

Each category of languages or grammars is a proper subset of the category directly above it.

Carlo Strapparava - Master in HLT

Strings and Languages

= An alphabet is defined as any set of symbols
= Two examples:

+ the set of 26 upper and 26 lower case Roman
letters (the Roman alphabet)

+ the set {0,1} -> the binary alphabet
= Strings over an alphabet X are defined as
= ¢ (i.e. the empty string) is a string of £
» if xXisastringof X and aisin X, then xaisin X
(concatenation)
= A language over X is a set of string over £

Carlo Strapparava - Master in

Operations on strings and languages

= Concatenations (or product):
if x and y are strings over an alphabet X, then xy is
called the concatenation of x
Ex: if x =aband y = cd then xy = abcd

= Reversal:
XR is the string x written in the reverse order
Ex: x = abcd then xR = dcba
= Closure:
al=¢
a"=aa"tforn>1
a* T unZO an
= Positive Closure:
at =aa* =y, a"

Motivations

= How to represent a language L ?
(e.g. when L is infinite, that is contains an
arbitrary number of strings)

= Two principal methods:

= Use a generative system, called grammar -> a set
of rules that tell us which are the well-formed
sentences in the language

= Use a device (an automaton) that for a given input
string will halt and answer “yes” if the string
belongs to the language

Carlo Strapparava - Master in

Regular Sets

= Regular sets are a class of languages central to
much of the language theory

= We will see several methods for specifying
these languages
= Regular expressions
= Right-linear grammars
= Deterministic finite-state automata
= Non deterministic finite-state automata

— All this formalisms are in fact equivalent

Carlo Strapparava - Master

in HLT

Regular sets - definition

= Let X be a finite alphabet. A regular set over X is
defined recursively as follows:

= the empty language @ is a regular language.

= the empty string language { € } is a regular
language.

= For each a € Z, the singleton language { a } is a
regular language.

= If Aand B are regular languages, then A U B (union),
AB (concatenation), and A* (Kleene star) are regular
languages.

= No other languages over X are regular.

A simple example of a language that is not regular is {a"b" [n=0}

Carlo Strapparava - Master in HLT

Regular expressions

= Regular expressions over X and the regular
sets they denote are defined recursively as
follows:

= @ is a regular expression denoting the empty set
€ is a regexpr denoting the regular set { € }
ain X is a regexp denoting { a }
If p and q are regexp denoting P and Q, then

* (plq) is a regexp denoting P u Q

+ (pq) is a regexp denoting PQ

+ (p)* is regexp denoting P*
Nothing else is a regular expression

- Sometimes the symbols U, +, or v are used for alternation instead of the vertical bar |.
- To avoid brackets it is assumed that the Kleene star has the highest priQeity, v saser in rr

Examples

= The finite languages, i.e. those containing only a finite
number of words

= These are obviously regular as one can create a
regular expression that is the union of every word in
the language, and thus are regular

= 01 denoting {01}

= 0* denoting {0}*

= (0|1)* denoting {0, 1}*

= (0]1)*011 denoting all strings of 0’s and 1’s ending in 011

Carlo Strapparava - Master in HLT

Examples (cont.)
= Given the alphabet X = {a, b}:

—ba* - all the strings that begin with a b followed only by a’s
— a*ba*ba* - strings that contain exactly two b’s
— (@ | b)* - all the strings on =

—>(a | b)* (aa | bb) (a | b)* - all the string on X that contain
either two consecutive a’s or two consecutive b’s

—[aa | bb | (ab | ba)(aa | bb)*(ab | ba)]* - strings that

contain an even number of a’s and an even number of b’s

- (b | abb)* - strings on X in which an a is followed immediately by
at least two b’s

Carlo Strapparava - Master in HLT

Basic algebraic properties

= Let o, B, and y regular expressions

a'=olo* (o) =a
alo=0 o|@=o

mo|B=B|a

w a|Bly=@|Bly oPy)=(aB)y

s OF=¢

s oBlY)=0B oy (o|Byy=0vylBy
B E=EA=0L

= All these properties are demonstrable by reasoning
on the respective denoted sets

Carlo Strapparava - Master in

Finite State Automata

We have seen some ways to define the class
of the regular sets:

The regular sets are those sets defined by
regular expressions

The regular sets are the languages generated
by right-linear grammar

We will see another way: regular sets defined
by Finite Automata

Carlo Strapparava - Master in

Finite State Automata

= A finite-state automaton consists only of an input
tape and a finite control

= A finite control means that the device that can be in
one among a finite number of states

= In certain conditions, it can switch to another state
=> this is called a transition

= Allowable input symbols
= [Initial and final states

= If the automaton is in a final state when it stops
working, it is said to accept its input

Carlo Strapparava - Master in

FSA - transitions

= A state transition function that, given the
“current” state and the “current” input
symbol, returns all possible next states

= In principle, this device is non-deterministic:
the device goes in all its next states, such as
it replicates itself

= The device accepts the inputs if any of its
parallel existences reaches an accepting state

final state

rh ttp: /’ initial state
B

Carlo Strapparava - Master in

HLT

10

FSA - definitions

= A non-deterministic finite state automaton is a
5-tuple M = (Q, %, 6, q, F), such that
1.
2
3

Qs a finite state of states

X is a finite set of allowable input symbols

0 is a state transition function, i.e. a mapping from
Q x X to P(Q) that defines the finite state control
g, in Q is the initial state

F c Qs the set of final states

Carlo Strapparava - Master in

FSA - definitions

* To determine the future behavior of a FSA, all we
need to know is its configuration
= The current state of the finite control
= The string symbol on the input tape (= the symbol under

the input head, followed by all symbols on the right)

= A move is represented as

(g, aw) — (q, w)

means:

= The automaton is in the current state q
= The input head is scanning the symbol a
= The automaton may change its state to q’ and shift the input

head on the right

Carlo Strapparava - Master in

11

FSA - example

= Llet M=({p, q, r}, {0, 1}, 6, p, {r}) a FSA where &
is defined as:
Input
o 0 1
State p {a} {pr}
q {r} {p}
r {r} {r}

p: Two consecutive 0’ have not appeared yet

q: Two consecutive 0’ have not appeared ,
but the previous symbol was a 0

r: Two consecutive 0" have appeared

= M accepts string of 0’s and 1’s that contains two

consecutive 0’s

On input 01001, we have:

(p, 01001) — (q, 1001) — (p, 001) — (q, 01) — (r, 1) — (1, &

arlo Strapparava - Master in

strings

= in the alphabet {1, 2, 3},
= and such that the last symbol in the input string

FSA - non-deterministic case

= Design a non-deterministic FSA to accept the

also appear previously in the string
= €.9. 121 is accepted, 31312 not

= We will need some state, an initial state g,

(nothing has been recognized), g; g, g; some
guessing has been made, and a final g

Carlo Strapparava - Master in

12

FSA - non-deterministic case (2)

= More formally:
M= {4y 91 G 93 Gt {1, 2, 3}, 6, Qo {Gr})
Input
5 1 2 3
State Qo {90 a1} {90 G2} {90 G5}
a; 19, a¢} {q.} {q.}

a {9:} 19, g {q:}
as {q:} {q:} 1G5 g¢}
qr 7} a2 7}

FSA - non-deterministic case (3)
= On input 12321, the configurations will be

(4o, 12321) —» (q 2321) —

(q:, 2321) =

Since (q, 12321) —*>(qf, e), the string 12321 is in L(M) 0 U O O

13

FSA - transition graph

= It is often convenient to have a graph
representation of finite automata

Input
" E.Q.0 M=(p a3 {0 1,5 p {r}) with s | o 1
State p | {q} {p}
b J q {r} {p}
can pe represente as b {r} {r}
0
1 . qo,]
1
FSA - transition graph
" M = ({qOI q1/ q2/ q3/ qf} 7 {1/ 2/ 3}/ 5/ q0/ {qﬁ}) Wlth
Input
) 1 2 3

State (7] {9 0} {95 @} {4s G5}
q, | 19, 99 {9} {9}
q; {q,} {qy G {q:}
as {qs} {q;} {95 9
qr I o I

Carlo Strapparava - Master in HLT

FSA and non deterministic FSA

= There is an equivalence to deterministic and
non-deterministic FSA:

= Theorem:
If L= L(M) for some non-deterministic FSA M,
then there is a M’ such that L = L(M’)

=1In the case of finite state automata,
determinism and non-determinism have the
same expressive power

Non-deterministic — deterministic
transformation

= Theorem:
If L= L(M) for some non-deterministic FSA
M, then there is a M’ such that L = L(M’)
= M=(Q/Z/ 5/ dor F)
We construct M” = (Q, %, 6, q7, F’), such that
1) Q'=7P(Q), i.e. the powersets (sets of states) of M
2) q'o = {do}
3) F' consists of all subsets Sof Qs.t. SN F+ @
4) Forall S c Q, d8'(S,a) = S', where
S’ = {p | &(g,a) contains p for some q in S}

15

N-FSA to D-FSA in practice

= Given an N-FSA, we can construct an equivalent
D-FSA

= States in the D-FSA correspond to the powersets
of states in the N-FSA

= Straightforward way of computing D-FSA:
= Create a list of all powersets of states in N-FSA

= Add transitions according to those in the
original N-FSA

= Remove any states which cannot be reached

Carlo Strapparava - Master in

N-FSA to D-FSA in practice

Example:

We recall that | P(X) | = 21X
Powersets are
Q’ qO’ ql’ qZI {qOIql}l {qOqu}/ {qlqu}l {Clo,ql,qz}

Carlo Strapparava - Master in

16

N-FSA to D-FSA

Example (continued)

a
%) %)
do {90,q1}
d, %
d, {q1,9,}

{90/91} {90,91}
{90,957} {90,91,92}
{a,,9,} {q1,9;}
{90/91,9, {90,91,9,}

{91,9,}
¢P)
d,
{q1,9,}

N-FSA to D-FSA

17

N-FSA to D-FSA

Highlighted states can’t be reached (there are no transitions to them)

or they are sink (lead to no acceptance states). So we can eliminate them.

Carlo Strapparav

a - Master in

HLT

N-FSA to D-FSA

We now have a D-FSA

18

N-FSA to D-FSA

= Considering all powersets can lead to states in the
D-FSA which cannot be reached and they have to
be removed

= The number of powersets immediately becomes
very large (an N-FSA with 20 states would have
220 = 1.048.576 states!)

= We don't really need to consider all powersets:
only those to which there are transitions in the
original N-FSA have to be considered

Carlo Strapparava - Master in HLT

Transformation Regexp <-> FSA

= Theorem (Kleene):
To each regular expression there corresponds
a FSA and to each FSA there corresponds a
regular expression

= We will give an algorithm to switch from
these two objects

Carlo Strapparava - Master in HLT

19

Transformation Regexp <-> FSA

= We can observe that (o, B, o; are regular expressions):
@ @@ o b
(x

e olol..|o,

Carlo Strapparava - Master in HLT

Node elimination

= Suppose we want to eliminate the node g,
from the graph:

oy By | B)* 1y

(Bl B)* 1

o By | B)* v,

o, (By | B)* 12

20

FSA -> Regexp

= An example to transform a FSA into a regexp

ab, ba
aa, bb C @’ aa, bb

ab, ba

aa | bb

¢| (ab] ba) (aa | bb)* (ab | ba)

£ Q [(aa | bb) | (ab | ba) (aa | bb)* (ab | ba)]*

21

Regexp -> FSA
= Let us consider the regexp
(a | b)* (aa | bb) (a | b)*

@ (a | b)* (aa | bb) (a | b)* ;@
()(alb)* () (aa | bb) () (alb)*

/\a aa /\a
¥ Ty

@

b b

Equivalence of FSA’s

= Theorem (Moore):
There exists an algorithm, to determine if
two FSA’s on an alphabet X are equivalent

= An algorithm:
= Aand A’ two FSA'son X = {0,1}.

= We rename the nodes, to have different labels in
Aand A’

= We build a table of comparisons, with three
columns, in this way:

Carlo Strapparava - Master in

22

Equivalence of FSA’s (cont.)

(V/ V,) (Va/ V:a) (Vb/ VQJ)
(1,4) (1,4) (2,5)

> @25 (3,6) (1,4)

> 27 (3,6) 14

Equivalence of FSA’s (cont.)

= If in the table, we get to a pair (v, V),
where v is an acceptance state and v’not,
=> A and A’ are not equivalent

= If we get to an end, i.e. there is no pair in the
columns 2 and 3 that is not present in column 1,
=> the A and A’ are equivalent

23

Automata theory: formal
languages and formal grammars

Chomsky | Grammars Languages Minimal automaton

hierarchy

Type-0 Unrestricted Recursively enumerable | Turing machine

n/a (no common name) | Recursive Decider

Type-1 Context-sensitive Context-sensitive Linear-bounded

n/a Indexed Indexed Nested stack

n/a Tree-adjoining Mildly context-sensitive Thread

Type-2 Context-free Context-free Nondeterministic

pushdown

n/a Deterministic Deterministic Deterministic pushdown
context-free context-free

Type-3 Regular Regular Finite state

Each category of languages or grammars is a proper subset of the category directly above it.

Carlo Strapparava - Ma:

ister in

HLT

Tokenization

= Lemma

lemma “cat”

Wordforms, inflected words as it appears in the corpus
= e.g. cat and cats are treated as two separated words

= We might want to treat cat and cats as instances of a single

= Types: distinct words in a corpus, i.e. the size of the

vocabulary

= Tokens: the total number of running words

= The Brown corpus contains 1 million wordform tokens,
that is 61,803 wordform types, that is 37,851 lemma

types

Carlo Strapparava - Ma:

ister in

HLT

24

Tokenization

= Types and tokens

= The following sentence taken from the Brown
COrpus:

“They picnicked by the pool, then lay back on
the grass and looked at the stars”

= has 16 word tokens and 14 word types (not
counting punctuation)

Tokenization

= A simple automaton for the recognition of the
tokens

ﬁetter or digit
letter delimiter
(2 (0 (o)

A delimiter can be any character that is not a letter or a digit

25

Regexp in the “real world”

= It is worth noting that many real-world "regular
expression" engines implement features that cannot
be expressed in the regular expression algebra

= Some examples:

* grep, Unix command line

AWK, Unix command line, progr. language
" Emacs, a powerful editor

Perl, a programming language

" Pregexp package, in Scheme

Carlo Strapparava - Master in HLT

Grep - a Unix command

* grep, egrep, £grep - print lines matching a pattern
[egrep = grep -e]

= SYNOPSIS
» grep [options] PATTERN [FILE...]
= grep [options] [-e PATTERN | -f FILE] [FILE...]

* grep Searches the named input FILEs (or standard input
if no files are named, or the file name - is given) for lines
containing a match to the given PATTERN. By default,
grep prints the matching lines

" egrep is used when the pattern is a regular expression

Carlo Strapparava - Master in HLT

Grep - a Unix command

" grep fish fortunes

- Time is about the stream I go aing in.
= fgrep inst /etc/passwd

- A woman without a man is like awithout a bicycle.
- No one can feel as helpless as the owner of a sick goI

- glenn:*:301:300:Glenn Staffordructor:/u/glenn:/bin/ksh

- itution:*:301:300:Database Acct:/u/db:/bin/ksh

Carlo Strapparava - Master in

grep - other examples

" grep -i apple fruitlist.txt
=returns all lines with the words 'apple’,

and lower case
" grep -r 'hello' /home/gigi

'‘Apple', 'apPLE', or any other mixing of capital

=>searches for 'hello' in all files under the

directory '/home/gigi'

27

Grep - regular expressions

: A regular expression may be followed by one of several
repetition operators:
= . The period . matches any single character.
= ? The preceding item is optional and will be matched at most once.
= * The preceding item will be matched zero or more times.
[*] Match any one character except those enclosed in [], as in [*0-9]|
+ The preceding item will be matched one or more times.
{n} The preceding item is matched exactly n times.
{n,} The preceding item is matched n or more times.
{n,m} The preceding item is matched at least n times, but not more
than m times.
= Two regular expressions may be concatenated;

= Two regular expressions may be joined by the infix operator
| ; the resulting regular expression matches any sub-
expression

Carlo Strapparava - Master in HLT

grep - examples

= An example is

(hurrah){2,3}
which matches
hurrah hurrah
as well as
hurrah hurrah hurrah
= A more complex example combines alternation and grouping with a
quantifier:

(hurrah |yahoo){2,3}
That gives twelve possible combinations, including for example

hurrah yahoo
and
yahoo hurrah yahoo

Carlo Strapparava - Master in HLT

grep - examples

egrep '((the|a) (big(red)?|small(yellow)?) (car|bike))' car.txt

the big red car
a small bike
the small yellow car

a big red bike

Carlo Strapparava - Master in

Anchors

= Using ~ and $, you can force a regexp to
match only at the beginning ~ or at the end $
of a line
= E.g. “cat matches only those lines that start with
cat, and cat$ matches only those lines that end
with cat
= \< and \> are start-of-word, end-of-word
anchors
= E.g. \<cat\> looks for only the word cat

Carlo Strapparava - Master in

29

Anchors

grep 'cat' cats.txt grep '\<cat' cats.txt
cat cat

cattle cattle

catalog catalog

scrawny cat scrawny cat

vacation

wildcat

grep '\<cat\>' cats.txt
cat
scrawny cat

Carlo Strapparava - Master in HLT

Anchors

= These word boundaries are not supported in
all regexp engines implementations

= Some implementations (inluding per/) offer
is-a-word-boundary and not-a-word-boundary

= \b and \B respectively

grep '\bcat\b' cats.txt
cat
scrawny cat

Carlo Strapparava - Master in HLT

30

Character classes

= The [..] construct indicates the presence of
one of the enclosed characters

E.g. c[ao]ke matches cake and coke
[0123456789abcdefABCDEF] is also
written as [0-9a-fA-F]

= [~..] means a ‘negated’ character set

E.g. ["0-9] means any character except
digits

Carlo Strapparava - Master in HL!

Dot

= The dot . is a special character and matches
any character

= E.g. th.s matches this, thus, thgs,
th@s, ...

= When you have to match a dot, you need to
‘escaped’ it => \.
= E.g. to match the IP address 74.6.7.121 all

three dots need to be escaped
TAN6\ TN+ 121

31

Quantifiers

= Using quantifiers, it is possible to specify how often a
pattern may or must be repeated

The general form is {min,max}
Examples:
bo{1, 2}k matches both book and bok

" [aeiou]{3,5} matches any sequence of three to
five vowels

finds{0,1} matches £ind and finds
finds{0,1} = finds?

"-{80,80}%

» matches lines of exactly eighty dash

Carlo Strapparava - Master in HLT

Alternation and grouping

= The meta character | means or
" *(From|Subject|Date):
= filters e-mail headers
" (..) has the function of grouping for quantifiers

= (hurrah){2,3} matches hurrah hurrah
hurrah

s (hurrah | yahoo){2,3} matches
hurrah yahoo or yahoo hurrah yahoo etc.

Carlo Strapparava - Master in HLT

32

Backreferencing

= Grouping has a very useful side-effect

= Certain regexp implementations remember the
matched text in a grouping

= E.g. searching for double words in a text, like
.. when when ..

L] ([a—zA—Z]+)§§\£}
the \1 is called a*Backreference to the first group, in

this case ([a-zA-Z]+)
= maybe better ([a-zA-Z]1+) \1\>

= The max number of backreferences is limited to

nine in most regexp implementations

Carlo Strapparava - Master in

HLT

grep - regular expressions

= How to express palindromes in a regular
expression?

= It can be done by using the back references,
for example a palindrome of 5 characters can
be written in

= grep -e '\(.-\)\(.\).\2\1' file
= Tt matches the word "radar" or "civic".

KU S
NNV (V) \2\1
r a dar

33

Emacs and regexp

= Emacs is a powerful text editor
= Let us give a look at its regexp facilities
= An interactive command “replace-regexp”

= Transform every line in a file (e.g. /etc/passwd) that matches

BN 1*N) [T %N ([0=-91*\) s [0=9]*:\ ([:]*\):.*$
= into

m Login {\1} Full Name {\3} UID {\2}

= Ex. It matches the line
= mysql:*:7

/empty:/usr/bin/false

. A\([A:]*\)’:[A:]*"’:\([0—9]*\):[0—9]’*"’:\([A;“j';\):.*s

Carlo Strapparava - Master in HLT

Exercise

= ALPHABET: a b c

= Write a regular expression for the language
of all strings over the alphabet {a,b,c} that
start with character a

Solution: a(a|b|c)*

Carlo Strapparava - Master in HLT

34

Exercise

= ALPHABET: a b c

= Write a regular expression for the language
of all strings over the alphabet {a,b,c} that
start and end with the character a

SOLUTION: a(a|b|c)*ala

Carlo Strapparava - Master in HL!

Exercise

= ALPHABET: a b c

= Write a regular expression for the language
of all strings over the alphabet {a,b,c} that
start with character a, but do not end with
character a

SOLUTION: a(al|blc)*(b|c)

Exercise

= ALPHABET: a b c

= Give a regular expression over {a, b, c}
where a must appear in blocks of even length

SOLUTION: (aa|b|c)*

Carlo Strapparava - Master in HL!

Exercise

= ALPHABET: 0 1 x

= Write a regular expression for the language
of all strings over the alphabet {0,1,x} that
contain at least one x

SOLUTION: (0]1)*x(0|1]x)*

Different syntax in the real engines

= The practical regexp engines use different syntax for
writing the regular expressions

= Simple matching

POSIX basic

POSIX extended

Emacs

Grep

GNU regex

Java

Perl

Ruby

= Mainly small differences, but before using a tool
you have to read the manual

Carlo Strapparava - Master in

HLT

37

