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Abstract

In this paper, an introduction and survey over probabilistic information retrieval (IR) is
given. First, the basic concepts of this approach are described: the probability ranking principle
shows that optimum retrieval quality can be achieved under certain assumptions; a concep-
tual model for IR along with the corresponding event space clarify the interpretation of the
probabilistic parameters involved. For the estimation of these parameters, three different learn-
ing strategies are distinguished, namely query-related, document-related and description-related
learning. As a representative for each of these strategies, a specific model is described. A new
approach regards IR as uncertain inference; here, imaging is used as a new technique for esti-
mating the probabilistic parameters, and probabilistic inference networks support more complex
forms of inference. Finally, the more general problems of parameter estimation, query expansion
and the development of models for advanced document representations are discussed.

1 Introduction

A major difference between information retrieval (IR) systems and other kinds of information systems
is the intrinsic uncertainty of IR. Whereas for database systems, an information need can always
(at least for standard applications) be mapped precisely onto a query formulation, and there is a
precise definition of which elements of the database constitute the answer, the situation is much
more difficult in IR; here neither a query formulation can be assumed to represent uniquely an
information need, nor is there a clear procedure that decides whether a DB object is an answer or
not. (Boolean IR systems are not an exception from this statement; they only shift all problems
associated with uncertainty to the user.) As the most successful approach for coping with uncertainty
in IR, probabilistic models have been developed.

According to the definition of the desired set of answers to a query in an IR system, two major
approaches in probabilistic IR can be distinguished: The classical approach is based on the concept
of relevance, that is, a user assigns relevance judgements to documents w.r.t. his query, and the task
of the IR system is to yield an approximation of the set of relevant documents. The new approach
formulated by van Rijsbergen overcomes this subjective definition of an answer in an IR system by
generalizing the proof-theoretic model of database systems towards uncertain inference.

In this paper, an introduction into past and current research in probabilistic IR is given. The
major goal here is to present important concepts of this field of research, while no attempt is made to
give a complete survey over work in this area. In the following, the classical approach in probabilistic
IR is presented in sections 2 and 3, while section 4 describes the new direction. In section 5, some
general problems of both approaches are discussed. An outlook to future research areas finishes the

paper.



2 Basic concepts of relevance models

2.1 The binary independence retrieval model

In order to introduce some basic concepts of the classical approach to probabilistic IR, we first
present a fairly simple model, the so-called binary independence retrieval (BIR) model. This model
will be introduced more informally, whereas the precise assumptions underlying this model will be
developed throughout the following sections.

In the BIR model, as in most other probabilistic IR models, we seek to estimate the probability
that a specific document d,,, will be judged relevant w.r.t. a specific query ¢i. In order to estimate
this probability (denoted as P(R)|qx, d.,) in the following, we regard the distribution of terms within
the documents of the collection. (In general, a term is any non-trivial word reduced to its word
stem, but see also section 5.3 for other kinds of terms). The basic assumption is that terms are
distributed differently within relevant and non-relevant documents. This assumption known as
the “cluster hypothesis” has been verified experimentally already in [Rijsbergen & Jones 73]. Let

T = {t1,...,t,} denote the set of terms in the collection. Then we can represent the set of terms
d%, occurring in document d,,, as a binary vector & = (z1,...,2,) with z; = 1, if t;ed], and z; = 0
otherwise.

Now we distinguish only between documents containing different sets of terms, so instead of
estimating P(R|qx,d,,) for a specific document d,,, we actually estimate the probability P(R|q,T),
where different documents containing the same set of terms will yield the same estimate of probability
of relevance. In addition, the BIR model assumes a query ¢ to be just a set of terms q,{ cT. In
section 4.2, we will also discuss the case of other forms of queries.

In order to derive a formula for this probability, we will apply two kinds of transformations that
are frequently used for the derivation of probabilistic IR models:

1. application of Bayes’ theorem (in the form P(a|b) = P(bla) - P(a)/P(b)),

2. usage of odds instead of probabilities, where O(y) = P(y)/P(y) = P(y)/[1 — P(y)].

This way, we can compute the odds of a document represented by a binary vector & being relevant
to a query qx as
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Now additional independence assumptions are needed in order to arrive at a formula that is
applicable for retrieval of documents. As it has been pointed out in a recent paper by Cooper
[Cooper 91], the assumption underlying the BIR is in fact not a set of independence assumptions
(from which the name of the model is derived), but rather the assumption of linked dependence of
the form

P(fl@, Qk) — ﬁ ]P;(,TllR, Qk) (2)

This assumption says that the ratio between the probabilities of Z occurring in the relevant and
the nonrelevant documents is equal to the product of the corresponding ratios of the single terms. Of
course, the linked dependence assumption does not hold in reality. However, it should be regarded
as a first-order approximation. In section 2.6, we will discuss better approximations.

With assumption (2), we can transform (1) into
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The product of this equation can be split according to the occurrence of terms in the current

document:
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Now let p;x = P(x;=1|R, q;) and ¢;x = P(x;=1|R, q). In addition, we assume that p;; = g;x for
all terms not occuring in the set ¢} of query terms. This assumption is also subject to change, as
discussed in section 5.2. With these notations and simplifications, we arrive at the formula
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In the application of this formula, one is mostly interested only in a ranking of the documents
with respect to a query, and not in the actual value of the probability (or odds) of relevance. From
this point of view, since the second product of eqn (4) as well as the value of O(R|qy) are constant
for a specific query, we only have to consider the value of the first product for a ranking of the
documents. If we take the logarithm of this product, the retrieval status value (RSV) of document
d, for query g is computed by the sum

pir(1 — qir)
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Then documents are ranked according to descending RSVs.

In order to apply the BIR model, we have to estimate the parameters p;; and g;; for the terms
tieq,{. This can be done by means of relevance feedback. For that, let us assume that the IR system
has already retrieved some documents for query g (in section 5.1, we show how the parameters
of the BIR model can be estimated without relevance information). Now the user is asked to give
relevance judgements for these documents. From this relevance feedback data, we can estimate the
parameters of the BIR model as follows: Let f denote the number of documents presented to the
user, of which r have been judged relevant. For a term t;, f; is the number among the f documents
in which ¢; occurs, and r; is the number of relevant documents containing t;. Then we can use
the estimates p;r =~ r;/r and ¢;x = (f; — r;)/(f —r). (Better estimation methods are discussed in
section 5.1).

We illustrate this model by giving an example. Assume a query ¢ containing two terms, that
is ¢7 = {t1,t2}. Table 1 gives the relevance judgements from 20 documents together with the
distribution of the terms within these documents.
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Table 1: Example for the BIR model

For the parameters of the BIR model, we get p; = 8/12 =2/3, ¢ = 3/8, po = 7/12 and ¢5 = 4/8.
So we get the query term weights ¢; = log10/3 &~ 1.20 and c¢o = log7/5 ~ 0.33. Based on these
weights, documents are ranked according to their corresponding binary vector & in the order (1,1)
- (1,0) = (0,1) — (0,0). Obviously this ranking is correct for our example.



P(RIq.7)
T BIR actual
(1,1) | 0.76 0.8
(1,0) | 0.69 0.67
(0,1) | 0.48 0.5
(0,0) | 0.4 0.33

Table 2: Estimates for the probability of relevance for our example

In addition, we can also compute the estimates for the probability of relevance according to eqn
(3). With O(R|q) = 12/8, we get the estimates shown in table 2 for the different & vectors , where
they are compared with the actual values. Here, the estimates computed by the two methods are
different. This difference is due to the linked dependence assumption underlying the BIR model.

We have described this model in detail because it illustrates a number of concepts and problems
in probabilistic IR. In the following, we will first describe the major concepts.

2.2 A conceptual model for IR

In our example, it may be argued that the approach chosen in the BIR model for representing
documents may be rather crude, and that a more detailed representation of documents may be
desirable, especially since documents in an IR system may be rather complex. The relationship
between documents and their representations (and similarly for queries) can be illustrated best by
regarding the conceptual IR model depicted in figure 1.
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Figure 1: Conceptual model

Here d,, and g denote the original document and query, respectively. In our terminology, a
query is unique (1_6 a specific information need of a specific user), so two queries from different
users (or issued from the same user at different times) can never be identical. This concept of a
query has been introduced first in [Robertson et al. 82], where it was termed a “use”. Between a
document and a query, there exists a relevance relationship as specified by the user. Let R = {R, R}
denote the set of possible relevance judgements, then the relevance relationship can be regarded as
a mapping 7 : @ X D — R. Since an IR system can only have a limited understanding of documents
and queries, it is based on representations of these objects, here denoted as d,, and g,. These
representations are derived from the original documents and queries by application of the mappings
ap and ag, respectively. In the case of the BIR model the representation of a document d,, is a set
of terms, namely the set d% . For queries, the representation contains in addition to the set of query
terms ¢} also a set of relevance judgements qi = {(dm,7(dm,qx))}. So, in our conceptual model,
the representation of an object comprises the data relating to this object that is actually used in
the model. Different IR models may be based on quite different representations: For example, in
Boolean systems with free text search, the document representation is a list of strings (words), and



the query representation is a Boolean expression, where the operands may be either single words or
adjacency patterns (comprised of words and special adjacency operators).

For the models regarded here, there is an additional level of representation, which we call descrip-
tion. As can be seen from the BIR model, the retrieval function does not relate explicitely to the
query representation, it uses the query term weights derived from the relevance judgements instead.
We call the arguments of the retrieval function the description of documents and queries. In the
BIR model, the document representation and the description are identical. The query description,
however, is a set of query terms with the associated query term weights, that is, g2 = {(;, cir)}-

Representations are mapped onto descriptions by means of the functions 3p and (g, respectively.
Based on the descriptions, the retrieval function g(q,? ,dP) computes the retrieval status value, which
is a real number in general. This conceptual model can be applied to probabilistic IR models as
well as to other models. Especially when comparing the quality of different models, it is important
to consider the representations used within these models. With respect to representations, two
directions in the development of probabilistic IR models can be distinguished:

1. Optimization of retrieval quality for a fixed representation. For example, there have been a
number of attempts to overcome the limitations of the BIR model by revising the linked depen-
dence assumption and considering certain other forms of term dependencies (see section 2.6.
In these approaches, documents are still represented as sets of terms.

2. Development of models for more detailed representations of queries and documents. Since the
document representation used within the BIR model is rather poor, it is desirable to derive
models that can consider more detailed information about a term in a document, e.g. its
within-document frequency, or the output of advanced text analysis methods (e.g. for phrases
in addition to words). We will discuss this issue in section 5.3.

2.3 Parameter learning in IR
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Figure 2: Learning approaches in IR

We can make another observation with the BIR model: this model makes very poor use of the
relevance feedback information given by the user, since this information is only considered in the
ranking process for the current query. For a new query, none of this data can be used at all. If we
regard probabilistic IR models as (parameter) learning methods, then three different approaches as
shown in figure 2 can be distinguished. The three axes indicate to what kinds of objects probabilistic
parameters may relate to: documents, queries and terms (that is, elements of the representation). In
each of the three approaches, we can distinguish a learning phase and an application phase: In the



learning phase, we have relevance feedback data for a certain subset Q, x D x Ty, of Q@ x D xT (where
T denotes the set of terms in the collection) from which we can derive probabilistic parameters.
These parameters can be used in the application phase for the improvement of the descriptions of
documents and queries.

In query-related learning, relevance feedback data is used for weighting of search terms (e.g. in the
BIR model) with respect to a single query (representation) gi. Here we have relevance information
from a set of documents Dy, and we can estimate parameters for the set of terms 77, occurring in
these documents. In the application phase, we are restricted to the same query ¢ and the set of
terms T, but we can apply our model to all documents in D.

Document-related learning is orthogonal to the query-related strategy: probabilistic indexing
models (see section 3.1) collect relevance feedback data for a specific document d,, from a set of
queries @, with the set of terms T, occurring in these queries. The parameters derived from this
data can be used for the same document and the same set of terms T}, (occurring in queries) only,
but for all queries submitted to the system. The major problem with this approach, however, is the
fact that there are not enough relevance judgements for a single document in real databases, so it is
almost impossible to estimate the parameters of this approach.

The major drawback of this two approaches is their limited application range, since the applica-
tion phase is either restricted to a single query or to a single document (like in the case of the BII
model). In order to overcome these deficiencies, we must introduce abstractions from specific docu-
ments, queries and terms. This description-related strategy has been implemented first within the
Darmstadt Indexing Approach [Fuhr & Knorz 84] by introducing the concept of relevance descrip-
tions. Similar to pattern recognition methods, a relevance description contains values of features of
the objects under consideration (queries, documents and terms). In the learning phase, parameters
relating to these features are derived from the learning sample () x Dr x 17,.. For the application
phase, there are no restrictions concerning the subset Q4 X D__A x Tx of objects to which these
parameters can be applied: new queries as well as new documents and new terms can be considered.
This strategy is a kind of long-term learning method, since feedback data can be collected from all
queries submitted to the IR system, thus increasing the size of the learning sample over time; as a
consequence, the probability estimates can be improved. Since this approach is based on descrip-
tions of IR objects instead of the objects itself, we call it description-oriented, in contrast to the
model-oriented approaches described before (see also section 2.6).

2.4 Event space

In the presentation of the BIR model, we have not specified the event space to which the probabilities
relate to. Now we will define this event space, which is also underlying most probabilistic models.
The event space is Q X D. A single element of this event space is a query-document pair (dm, qx),
where we assume that all these elements are equiprobable. Associated with each element is a
relevance judgement 7(dp,, g )eR. We assume that the relevance judgements for different documents
w.r.t. the same query are independent of each other. This is a rather strong assumption. Variations
of this assumption are discussed in [Robertson 77] and [Stirling 75], but most of these variations lead
to models that can hardly be applied in practice. The event space can be illustrated as a matrix
as shown in figure 3, where a query corresponds to a single row and a document to a column. The
relevance judgements can be assumed as the values of the elements of this matrix. Since a retrieval
system deals with representations of documents and queries, it treats different queries or documents
having identical representations the same. This fact is illustrated here by mapping adjacent rows
to a single query representation ¢, and adjacent columns to a single document representation d,,.
With this model, the interpretation of the probability of relevance P(R|gg,d,,) is obvious: the pair
(qk, dm) corresponds to the set of elements having the same representations (shown as a submatrix
here). So P(R|q, d,) is the proportion of elements in this set that have been judged relevant. One
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Figure 3: Event space of relevance models

might argue that this explanation is oversimplified, since in real collections, there are hardly ever
two objects that share the same representation. But we regard collections as samples of possibly
infinite sets of documents and queries, where there might be several (up to infinity) objects with the
same representation. Especially with regard to the poor representation of retrieval objects that is
actually in use (in comparison to the human understanding of documents and queries), it is obvious
that a single representation may stand for a number of different objects.

2.5 The Probability Ranking Principle

The Probability Ranking Principle (PRP) represents the theoretical justification of probabilistic IR
models. It shows how optimum retrieval quality can be achieved. Optimum retrieval is defined w.r.t.
representations. In contrast, perfect retrieval relates to the objects itself, saying that all relevant
documents should be ranked ahead of any nonrelevant one. But as an IR system is based on repre-
sentations, perfect retrieval is not a suitable goal. Optimum retrieval has only been defined precisely
for probabilistic IR, where the optimality can be proved theoretically. The “Probability Ranking
Principle” described in [Robertson 77] says that optimum retrieval is achieved when documents are
ranked according to decreasing values of the probability of relevance (with respect to the current
query). The decision-theoretic justification of the PRP is as follows (in [Robertson 77], justifications
w.r.t. retrieval measures are also given): Let C denote the costs for the retrieval of a nonrelevant
document, and C the costs for the retrieval of a relevant document. Now the decision-theoretic rule
says that document d,, should be retrieved next from the collection if

C- P(R‘qk,dm) + C_’(l — P(R|qk,dm)) <C- P(R|qk,dj> + é(l — P(R|qk,dj))

for any other document d; in the collection (that has not been retrieved yet). In other terms:
Retrieve that document for which the expected costs of retrieval are a minimum. Because of C' < C,
the above condition is equivalent to



So we have the rule that documents should be ranked according to their decreasing probability of
being relevant. The PRP can be extended to cope with multivalued (ordinal) relevance scales instead
of binary ones, as shown in [Bookstein 83b]: Assume that for n relevance values with B; < Ry <
... < R, the corresponding costs for the retrieval of a document with that retrieval judgement are
C1,Cs,...,Cy,. Then documents should be ranked according to their expected costs

EC(qk,dm) =Y Ci - P(Rilgk, dm)-
=1

In contrast to the binary case where only the probability P(R|qx,d) has to be estimated for a
query document pair, here n — 1 estimates P(R;|q, d,,) are needed in order to rank the documents
w.r.t. a query. Furthermore, the actual values of the cost factors C; are required in order to produce
a ranking, since they cannot be eliminated as in the binary case. Using multivalued relevance
scales instead of binary ones seems to be more appropriate; however, the only experimental results
comparing binary vs. multivalued relevance scales published so far did not show any differences in
terms of retrieval quality ([Fuhr 89b]). So it might be feasible to offer a multivalued relevance scale
for the users of a probabilistic IR system, but this scale can be mapped onto a binary one for the
calculations performed by the system.

With multivalued relevance scales, we can also draw a connection to fuzzy retrieval approaches
(see [Bookstein 85] for a survey on this subject), where the relevance scale is assumed to be con-
tinuous, that is, a relevance judgement now is a real number 7¢[0,1]. In this case, the probability
distribution P(R;|qk,dn) from above is replaced by a density function p(r|qk,dn) as well as the
cost factors C; by a cost function ¢(r). This way, fuzzy and probabilistic retrieval can be combined.
In contrast, pure fuzzy retrieval approaches seem to be inappropriate from the point of view of
probabilistic IR, since the intrinsic aspect of uncertainty in IR is ignored in these approaches.

2.6 Model-oriented vs. description-oriented approaches

The formulation of the PRP acts as a goal for any probabilistic IR model. In general, the optimum
retrieval quality as specified by the PRP cannot be achieved by a real system. For example, in
the BIR model, we would have to know the exact probabilities P(R|q,Z) for all binary vectors &
occurring in the document collection. Except for rather trivial cases, these probabilities can hardly
be estimated directly, because the number of different representations is too large in comparison
to the amount of feedback data available (so there would not even be any observation for most
representations). In order to overcome this difficulty, additional simplifying assumptions are needed.
With regard to the nature of these assumptions, two kinds of approaches have been developed:

- Model-oriented approaches (like e.g. the BIR model) are based on certain probabilistic in-
dependence assumptions concerning the elements of the representations (e.g. single terms or
pairs, triplets of terms). In these approaches, first probability estimates relating to the rep-
resentation elements are computed. Then, by applying the independence assumptions, the
estimates for the different representations can be derived.

- Description-oriented approaches are similar to feature-based pattern recognition methods.
Given the representations of queries and documents, first a set features for query-document
pairs is defined, and each pair is mapped onto a feature vector Z(qg,dn). (A specific feature
vector could be for example the binary vector & = Z(d,,) as defined in the BIR model; how-
ever, since this definition does not consider the query, the resulting retrieval function would
be query-specific.) With the help of a learning sample containing query-document pairs with
their corresponding relevance judgements, a probabilistic classification function e(Z) that yields
estimates of the probability P(R|Z(qk,dn)) is developed (see section 3.4).



Because of the problem of specifying the feature vector, description-oriented approaches are more
heuristical in comparison to model-oriented ones. On the other hand, the assumptions underlying
the description-oriented approach do not have to be made as explicit as in the model-oriented case.
The most important advantage of description-oriented approaches is their adaptability to rather
complex representations, where it is hard to find appropriate independence assumptions. Especially
with regard to advanced text analysis methods, this feature seems to be rather important.

As a general property of both kinds of approaches, we can see that the additional assumptions
are only approximations to reality. For example, we can hardly expect that terms are distributed
independently in documents (as suggested by the BIR model). A similar statement holds for the
description-oriented approaches. This fact makes the main difference between optimum retrieval
quality and the actual performance of a model. The other reason is the problem of parameter es-
timation. Without going into the details of parameter estimation here (but see section 5.1), we
can describe the general problem by using the example of the BIR model. The direct estimation of
the probabilities P(R|qk,Z) vs. the computation of this parameter by means of the BIR model are
two extreme possibilities where either the probabilities cannot be estimated in a real application or
the independence assumptions seem to be too strong. It is possible to develop variants of the BIR
model where only pairs or triplets of terms are assumed to be independent of each other (see e.g.
[Rijsbergen 79, Yu et al. 83] for such models and [Pearl 88, chapter 8] for a general survey on prob-
abilistic dependence models). With these models, however, more parameters have to be estimated
from less observations for each parameter. For example, in the tree dependence model developed
by van Rijsbergen which considers pairwise dependencies [Rijsbergen 77]), the parameters to be es-
timated for a dependent pair (¢;,t;) are P(x;=1,2;=1|R), P(z;=1,2;=0|R), P(z;=0,2,;=1|R) and
P(x;=0,2;=0|R) (plus the corresponding estimates for nonrelevant documents). In contrast, the
BIR model only requires the parameters P(z;=1|R) and P(z;=0|R) for the relevant documents,
so the tree dependence model splits the learning data required for estimating these parameters ac-
cording to the value of ;. As a consequence, experimental evaluations showed that the gain from
improved independence assumptions does not outweigh the loss from increased estimation errors.

3 Survey over relevance models

In this section, we will first present two probabilistic models that are representatives of second
and third different learning strategy as described above. Then we will discuss models that aim to
overcome the simple representation of the BIR model.

3.1 The binary independence indexing model

The binary independence indexing (BII) model [Fuhr & Buckley 91] is a variant of the very first
probabilistic IR model,, namely the indexing model of Maron and Kuhns [Maron & Kuhns 60].
Whereas the BIR model regards a single query w.r.t. a number of documents, the BII model
observes one document in relation to a number of queries submitted to the system. In this model,
the representation g of a query ¢ is a set of terms q,f C T. As a consequence, the BII model
will yield the same ranking for two different queries formulated with the same set of terms. In the
following, we will also use a binary vector zy, = (2, ..., 2k, ) instead of qg, where 2z, = 1,if¢t; € q,{,
and z, = 0 otherwise. The document representation is not further specified in the BII model, and
below we will show that this is a major advantage of this model. In the following, we will assume
that there exists a set d., C T of terms which are to be given weights w.r.t. the document. For
brevity, we will call dZ, “the set of terms occurring in the document” in the following, although the
model also can be applied in situations where the elements of dZ, are derived from the document
text with the help of a thesaurus (see e.g. [Fuhr 89a]). The BII model now seeks for an estimate



of the probability P(R|qx,dm) = P(R|Zk, dy) that a document with the representation d,, will be
judged relevant w.r.t. a query with the representation qx = ¢ . Applying Bayes’ theorem, we first
get

PGrldm)

Here P(R|d,,) is the probability that document d, will be judged relevant to an arbitrary
request. P(Zx|R,d,,) is the probability that d,, will be relevant to a query with representation Zj,
and P(Zy|d,,) is the probability that such a query will be submitted to the system.

Assuming that the distribution of terms in all queries to which a document with representation
dp, is relevant is independent

n
P(%|R, dm) = [ [ P2k, IR, dm)
i=1
and the additional simplifying assumption that the relevance of a document with representation d,,
with respect to a query gi depends only on the terms from qg, and not on other terms, we get the
ranking formula

. [T, P(zx,) P(R|zi,=1,d)
P(R|Z,d,,) = ==L" "%/ P(Rld,,)- Sk T Bm)
. H P(R|z,=0,d,,) (6)
TP

The value of the first fraction in this formula is a constant ¢ for a given query g, so there is no
need to estimate this parameter for a ranking of documents w.r.t. g.

P(R|zk,=1,dy,) = P(R|t;,dy,) is the probabilistic index term weight of ¢; w.r.t. dy,, the prob-
ability that document d,, will be judged relevant to an arbitrary query, given that it contains
t;. From our model, it follows that d’ should contain at least those terms from 7' for which
P(R|t;,dy) # P(R|d,,). Assuming that P(R|t;,d,,) = P(R|d,,) for all t; ¢ dL the final BII
formula yields

PRl d) = o PRI - T[T, ™

tieqiNdL,

However, in this form the BII model can hardly be applied, because in general there will not
be enough relevance information available for estimating the probabilities P(R|¢;,d,,) for specific
term-document pairs. In order to overcome this difficulty, one can assume a document to consist
of independent components (e.g. sentences or words) to which the indexing weights relate to, but
experimental evaluations showed only moderate retrieval results for this approach ([Kwok 90]).

3.2 A description-oriented indexing approach

As a more successful method, the application of the third learning strategy as outlined above has
been devised. This learning strategy leads to a description-oriented approach where features of terms
in documents are regarded instead of the document-term pairs itself. The basic ideas of this approach
have been developed within the framework of the Darmstadt Indexing Approach (DIA) [Fuhr 89a]
[Biebricher et al. 88]. Within the DIA, the indexing task is subdivided in a description step and

10



a decision step. In the description step, relevance descriptions for term-document pairs (¢;,d,,)
are formed, where a relevance description z(t;,d,,) contains values of attributes of the term ¢;, the
document d,,, and their relationship. Since this approach makes no additional assumptions about
the choice of the attributes and the structure of x, the actual definition of relevance descriptions
can be adapted to the specific application context, namely the representation of documents and the
amount of learning data available. For example, in the work described in [Fuhr & Buckley 91], the
following elements were defined:

21 = tfmi, the within-document frequency (wdf) of ¢; in d,,
r9 = the inverse of the maximum wdf of a term in d,,

xr3 = inverse document frequency of ¢; in the collection

ry = log|dL| (number of terms in d,,)

x5 = 1, if t; occurs in the title of d,,,, and 0 otherwise.

In the decision step, a probabilistic index term weight based on this data is assigned. This
means that we estimate instead of P(R|t;,d,,) the probability P(R|x(¢;,d,,)). In the former case,
we would have to regard a single document d,, with respect to all queries containing ¢; in order
to estimate P(R|t;,d,,). Now we regard the set of all query-document pairs in which the same
relevance description  occurs. The probabilistic index term weights P(R|z(t;, dy,)) are derived from
a learning example L C @ x D x R of query-document pairs for which we have relevance judgements,
so L = {(gk,dm,rkm)}._ By forming relevance descriptions for the terms common to query and
document for every query-document pair in L, we get a multi-set (bag) of relevance descriptions
with relevance judgements L® = [(x(t;,dum), Tkm)|ti € gL N dL, A (gk,c_lm,rkm) € L]. From this set
with multiple occurrences of elements, the parameters P(R|z(t;,d,,)) could be estimated directly
by computing the corresponding relative frequencies. However, better estimates can be achieved
by applying probabilistic classification procedures as developed in pattern recognition or machine
learning. Within the DIA, this classification procedure yielding approximations of P(R|z(t;,dy,)) is
termed an indexing function e(z(t;,d,,)). Several probabilistic classification algorithms have been
used for this purpose (see e.g. [Fuhr & Buckley 91]). Here we want to describe briefly the application
of least square polynomials (LSP) [Knorz 83] [Fuhr 89a] as indexing functions, where we furthermore
restrict to the case of linear functions. So our indexing function yields e(Z) = @’ - #, where @ is the
coefficient vector to be estimated.

Let y(gk,c_lm) = Yrm denote a class variable for each element of L with yg,, =1 if 7, = R and
Ykm = 0 otherwise. Then the coefficient vector @ is estimated such that it minimizes the squared
error E((y—a® -%)?), where E(.) denotes the expectation. The coefficient vector @ can be computed
by solving the linear equation system (see [Fuhr 89b])

E@Z-i')-a=FEZ-vy). (8)

As an approximation for the expectations, the corresponding arithmetic means from the learning
sample are taken. The major advantage of this indexing approach is its flexibility w.r.t. the repre-
sentation of documents, which becomes important when advanced text analysis methods are used
(e.g. noun phrases in addition to words, see for example [Fuhr 89b]).

3.3 The 2-Poisson model

On the other hand, one might prefer to have a more explicit model relating to the elements of the
representation. One such approach is the 2-Poisson model. This model has been proposed first by
Bookstein and Swanson [Bookstein & Swanson 74]. Similar to the indexing model described above,
the Bookstein/Swanson model seeks for the decision whether an index term should be assigned to
a document or not. So there are two classes of documents with respect to a specific term. Now the
number of occurrences tf;,, of the term ¢; within the document d,, is regarded, and it is assumed
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that the distribution of this feature is different in the two document classes. As a simple probabilistic
model, Bookstein and Swanson assumed a Poisson distribution in each of this classes. For a specific
document class Kj, let \;; denote the expectation of the wdf of ¢;. Then the probability that a
document contains [ occurrences of t;, given that it belongs to class Kj; is

l

)‘ij I
P(tfim=lldmeK;;) = l_'e i,
For a document chosen randomly from the collection, we assume that ;; is the probability that it
belongs to class K;;. Then the probability of observing ! occurrences within such a document is

MNi
P(t fim=l) = Zﬂijl_,JB_A”-
- !

In the 2-Poisson model, there are two document classes K;; and Ko for each term, so m;; + ;0 = 1.
From these equations, the probabilistic index term weights P(d,eK;j|t fim=L[) can be derived. The
parameters 7;; and \;; can be estimated without feedback information from the document collection.

Experimental evaluations of this model were only partially successful. In [Harter 75a, Harter 75b],
the y2-test rejected the hypothesis of a 2-Poisson distribution for 62 % of the terms tested. Ex-
periments with a higher number of classes (termed n-Poisson model) as described in [Srinivasan 90]
also did not give clear improvements. In the study [Margulis 91], an improved parameter estimation
method is applied in combination with longer documents than in previous evaluations, thus leading
to the result that the assumption of an n-Poisson distribution holds for about 70% of all terms.

3.4 Retrieval models for improved document representations

As a consequence of the poor performance of the 2-Poisson model, a so-called non-binary Retrieval
model has been proposed as a variant of the BIR model in [Yu et al. 89]. Instead of indicating only
the presence or absence of a term t;, the elements z; of the vector representing a document now
give the wdf of #;. As a consequence, parameters P(z;=[|R) and P(z;=I|R) for [ = 0,1,2,... have
to be estimated in this model. The results given in [Yu & Mizuno 88] for predictive retrieval did
not show any improvements over the BIR model, obviously due to parameter estimation problems.
This problem seems to be intrinsic to all approaches that aim to improve the BIR model by using a
more detailed document representation. Although the document representation of the BIR model is
rather poor, the amount of feedback data available in predictive retrieval prohibits any refinement
of the document representation.

A different approach has been taken in the formulation of the retrieval-with-probabilistic-indexing
(RPI) model presented in [Fuhr 89a]. This model assumes that a more detailed document repre-
sentation than in the case of the BIR model has been used for estimating probabilistic index term
weights of the form P(C|t;,d,,), where C denotes the event of correctness. The decision whether
the assignment of ¢; to d,, is correct or not can be specified in various ways, e.g. by comparison with
manual indexing or by regarding retrieval results as in the case of the BII model. Like the non-binary
model mentioned before, the RPI model also is a generalization of the BIR model. However, since
weighted document indexing is regarded as document description in the RPI model, the number of
parameters remains the same as in the BIR model, only the definition of these parameters is changed
appropriately. For this reason, there are no additional parameter estimation problems in comparison
to the BIR model, but a more detailed document representation can be considered. This goal is
achieved by shifting the task of mapping document representations onto indexing weights over to an
appropriate indexing model.

A similar model that integrates probabilistic indexing with the BIR model has been proposed
as the “unified model” in [Robertson et al. 82]; however, this model suffered from incompatible
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independence assumptions. In [Wong & Yao 90], a generalization of this model with modified inde-
pendence assumptions is presented.

As mentioned before, description-oriented approaches also can be applied for developing retrieval
functions that are able to consider more detailed document representations. Here query-document-
pairs are mapped onto a feature vector Z(qy, d,,). In principle, there is no restriction on the structure
of the representations of queries and documents, only the feature vector has to be defined appro-
priately. In order to develop the retrieval function o(Z) that yields estimates of the probability
P(R|Z(qk,dm)), a learning sample of query-document-pairs (according to the third learning strat-
egy) is used (see [Fuhr 89b] for a detailed description of this approach). For most applications, it
may be more appropriate to consider improved document representations already in the indexing
process, so the RPI model can be used for retrieval instead of an description-oriented function.
However, when more complex query structures are to be used, then retrieval functions derived with
the description-oriented approach may be feasible. In addition, a major advantage of this kind of
retrieval functions is that they yield estimates of the probability of relevance, whereas the estimation
of this probability is rather difficult with most other models.

4 IR as uncertain inference

Although the relevance models described in the previous sections have been rather successful in the
past, there are three major shortcomings of this approach:

e The concept of relevance can be interpreted in different ways. One can either regard relevance of
a document w.r.t. a query or information need, in which cases the user who submitted the query
gives the relevance judgement; this approach has been taken so far this paper. Alternatively,
relevance can be defined w.r.t. the query formulation, assuming that an objective judgement
(e.g. given by specialists of the subject field) can be made. Of course, the latter approach
would be more desirable in order to collect “objective” knowledge within an IR system.

e The relevance models are strongly collection-dependent, that is, all the parameters of a model
are only valid for the current collection. When a new collection is set up, the “knowledge”
from other collections cannot be transferred.

e Relevance models are restricted to rather simple forms of inference. In the models presented
here, only the relationships between terms and queries are considered. It would be desirable to
include information from other knowledge sources (e.g. from a thesaurus) in an IR model. With
description-oriented approaches, this problem can partially be solved (see e.g. [Fuhr 89b]), but
there is a need for a general model dealing with this issue.

4.1 Rijsbergen’s model

In [Rijsbergen 86], a new paradigm for probabilistic IR is introduced: IR is interpreted as uncertain
inference. This approach can be regarded as a generalization of deductive databases, where queries
and database contents are treated as logical formulas. Then, for answering a query, the query has
to be proved from the formulas stored in the database ([Reiter 84]). For document retrieval, this
means that a document d,,, is an answer to a query g if the query can be proven from the document,
that is, if the logical formula q; < d,, can be shown to be true. In order to prove this formula,
additional knowledge not explicitly contained in the document can be used. For example, if d; is
about ‘squares’, and ¢; asks for documents about ‘rectangles’, then the inference process can use
the formula ‘rectangle’ < ‘squares’ in order to prove q; < di. For IR, however, the approach from
deductive databases is not sufficient, for two reasons:

1. Whereas in databases all statements are assumed to be true at the same time, a document

collection may contain documents that contradict each other.
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2. In order to cope with the intrinsic uncertainty of IR, first order predicate logic must be replaced
by a logic that incorporates uncertainty.
For the first problem, Rijsbergen identifies each document with a possible world W, that is, a set of
propositions with associated truth values. Let 7 denote a truth function, then 7(W, z) denotes the
truth of the proposition z in the world W, where 7(W,z) = 1 if x is true at W and 7(W,z) =0 if =
is false at W.

In order to cope with uncertainty, a logic for probabilistic inference is introduced. In this logic,
conditionals of the form y — x can be uncertain. For quantifying the uncertainty, the probability
P(y — ) has to be estimated in some way. As described in [Rijsbergen 89], this probability can
be computed via imaging. Let o(W,y) denote the world most similar to W where y is true. Then
y — x is true at W if and only if  is true at o(W,y).

For estimating P(y — z) (independent of a specific world), all possible worlds must be regarded.
Each world W has a probability P(W) so that they sum to unity over all possible worlds. Then
P(y — x) can be computed in the following way:

Ply—z) = Y PW)r(W,y— )
w

> PW)r(a(W,y),y — z)
w

Y PW)r(o(W,y),2) 9)
w

So we have to sum over all possible worlds, look for the closest world where y is true, and add the
truth of = for this world. This formula can be illustrated by an example shown in table 3. If we
assume that P(W;) = 0.1 for i = 1,..., 10, then we get P(y — x) = 0.6

(Wi 1(y) 7@ o(Wiy) 7(0(Wiy)z) |
1 0 1 2 0
2 1 0 2 0
3.0 0 6 1
4 0 1 6 1
5.0 0 6 1
6 1 1 6 1
70 0 8 1
8§ 1 1 8 1
9 0 0 10 0
10 1 0 10 0

Table 3: Imaging example

In this framework, the concept of relevance does not feature. The most obvious way for mapping
the outcome of the uncertain inference process onto the probability of relevance is via another
conditional probability:

P(R) = P(Rlqx < dn)P(qr + dm) + P(R|=(qx + dn))P(=(qx — dm)) (10)

This leaves us with the problem of estimating the probabilities P(R|qx + d,,) and P(R|=(qx <
dy)). So far, there is no obvious method for deriving the values of these parameters. On the other
hand, according to formula (10), P(R) is a monotonuous function of P(qr < d,), thus only the
value of the latter probability is required for a ranking of documents w.r.t. to a query.
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Figure 4: Example inference network

4.2 Inference networks

When IR is regarded as uncertain inference as described above, then the structure of inference from
documents to queries becomes more complex as in the case of the relevance models. In general,
one gets an inference network. As a probabilistic formalism for inference networks with uncertainty,
Bayesian inference networks have been described in [Pearl 88]. Turtle and Croft [Turtle & Croft 90]
applied this formalism to document retrieval. An example inference network is shown in figure 4.
Here each node representing either a document, a query or a concept can take on the value true or
false. In contrast to the models discussed so far in this paper, we assume that there are two kinds
of concepts, namely document concepts ¢; and query concepts r;. The directed arcs of this network
indicate probabilistic dependence of nodes. The probability of a node being true depends only on
the values of its parents. This relationship must be specified as a function within the node. In order
to estimate the probability of P(d — ¢), the document node is set to true and then the probabilities
of the depending nodes are computed until the value of P(g = true) is derived.

Depending on the combining function of a node, an inference network may contain different types
of nodes, e.g. for Boolean connectors as well as for probabilistic correlation as in the relevance models
described before. As a simple example, assume that the representation concept rq is ‘IR’ which is
defined as an OR-combination of the two document concepts (terms) ¢; = ‘information retrieval” and
to = ‘document retrieval’. Then the probability of 1 being true can be computed by the function

P(ri=true) =1 — (1 — P(t1=true))(1 — P(ta=true)).

This approach has several advantages in comparison to the relevance models:
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e As most probabilistic IR models can be mapped onto an inference network, this formalism gives
a unifying representation for the different models (see e.g. [Turtle & Croft 90]). In contrast to
these models, the network approach does not require the derivation of a closed probabilistic
formula, so more complex interdependencies can be incorporated.

e The network approach allows for the combination of multiple sources of evidence. For example,
information about the similarity of documents can be considered as well as knowledge from
external sources like a thesaurus.

e Different query formulations and types of query formulations can be combined in order to
answer a single query. For example, a Boolean and a probabilistic formulation can be used in
parallel, where the network combines the results of both formulations.

5 General problems

In this section, we discuss some problems that are general to any probabilistic IR, model, namely
parameter estimation, query expansion, and the representation of documents and queries.

5.1 Parameter estimation

Any probabilistic IR model requires the estimation of certain parameters before it can be applied.
A survey over estimation schemes in IR is given in [Fuhr & Hiither 89]. Here we want to describe
briefly the two major solutions to this problem.

The general situation is as follows: in a collection of documents, each document may have several
features e;. For a fixed set of n feature pairs, we are seeking for estimates of P(e;|e;), the probability
that a random document has feature e;, given that it has feature e;. In a random sample of g objects,
we observe f objects with feature e;, of which h objects also have the feature e;. In the case of the
BIR model, the features e; are either relevance or non-relevance w.r.t. the current query, and the
features e; denote the presence of the terms ¢;.

Now the problem is to derive an estimate p(e;le;, (R, f, g)) for P(e;|e;), given the parameter tripel
(h, f,g). The most simple estimation method uses the maximum likelihood estimate, which yields
pleilej, (h, f,g)) = h/f. Besides the problem with the quotient 0/0, this estimate also bears a bias
(see the experimental results in [Fuhr & Huther 89]).

Bayesian estimates in combination with a beta prior have been used by most researchers in
probabilistic IR. For the parameters a and b of the beta distribution and a quadratic loss function,
one gets the estimate

h+a

f+a+bd

For the choice of the parameters a and b, a = b = 0.5 has been used in most experiments (see also
[Losee 88] for experiments with different values for these parameters). This kind of estimate also can
be applied when no relevance feedback data is available, that is f = h = 0. In the case of the BIR
model, experiments without feedback data as described in [Croft & Harper 79] gave good results.

However, experimental results described in [Fuhr & Hiither 89] have shown that the assumption
of a beta prior may be theoretically inadequate. Instead, an optimum estimate based on empirical
distributions is derived: Assume that E(h, f,g) denotes the expectation of the number of those of
the n feature pairs for which the parameters (h, f,g) were observed. These expectations can be
taken from the frequency statistics of a large number of feature pairs (e;,e;). Then the optimum
estimate is computed according to the formula

Dbeta =

N (h+D)E(h+1,f+1,9)
Port = Gy DB+ L f+ Lg) + (f+1—h)E(h, f+1,9)
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Experimental comparisons of this optimum estimate with Bayesian estimates showed almost no
difference in terms of retrieval quality, whereas maximum likelihood estimates gave significantly
worse results.

5.2 Query expansion

Closely related to the problem of parameter estimation is the question: Which terms should be
included in the query formulation? In derivation of the BIR model, we have assumed that p;; = ¢
for all terms not occurring in the query. Of course, there will be a number of additional terms for
which this assumption does not hold, so they should be included in the query, too. If the query
formulation is to be expanded by additional terms, there are two problems that are to be solved,
namely

1. how are these terms selected and

2. how are the parameters c¢;; estimated for these terms?

For the selection task, three different strategies have been proposed:

e dependent terms: Here terms that are dependent on the query terms are selected. For this
purpose, the similarity between all terms of the document collection has to be computed first
([Rijsbergen et al. 81]).

e feedback terms: From the documents that have been judged by the user, the most significant
terms (according to a measure that considers the distribution of a term within relevant and
nonrelevant documents) are added to the query formulation ([Salton & Buckley 90]).

e interactive selection: By means of one of the methods mentioned before, a list of candidate
terms is computed and presented to the user who makes the final decision which terms are to
be included in the query ([Harman 88]).

With respect to the parameter estimation task, experimental results have indicated that the
probabilistic parameters for the additional query terms should be estimated in a slightly different
way than for the initial query terms, e.g. by choosing different paramters a and b in the beta
estimate (that is, a different prior distribution is assumed for the new terms) (see [Robertson 86,
Salton & Buckley 90]).

The experimental results available so far indicate that the dependent terms method does not
lead to better retrieval results [Rijsbergen et al. 81], whereas clear improvements are reported in
[Salton & Buckley 90] and [Kwok 91] for the feedback terms method.

5.3 Representation of documents and queries

So far in this paper, we have assumed that a query is a set of terms, which in turn are words (with the
exception of the Bayesian network approach, where a query also may contain Boolean connectors).
But as more advanced text analysis methods are available, there is a growing need for models that
can be combined with refined representation formalisms. Several authors have investigated the
additional use of phrases as query terms (see e.g. [Croft 86], [Fagan 89] [Sembok & Rijsbergen 90]).
The results from this experimental work do not give a clear indication whether retrieval quality
can be improved with phrases as query terms. However, three problems should be considered when
interpreting these results:
1. Phrases are a different kind of terms in comparison to words. For this reason, the application
of the standard weighting schemes developed for words may not be appropriate.
2. When phrases as well as their components are used as query terms, these terms are highly
dependent, so a dependence model should be used, as for example in [Croft et al. 91].
3. The document collections used for experiments may be too small in order to show any benefit
from phrases. Other experiments with larger collections have successfully used phrases in
addition to words ([Biebricher et al. 88], [Fuhr et al. 91]).
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A dependence model for phrases is not sufficient, since this approach only regards the occurrence of
the phrase components in a document, without considering the syntactical structure of the phrase
as it occurs in the document. So the certainty of identification also should be considered (e.g.
whether the components occur adjacent or only within the same paragraph). This can be achieved
via application of probabilistic indexing methods (e.g. with the BII model in combination with a
description-oriented approach); furthermore, with regard to the first point from above, indexing
methods compute correct weights for different kinds of terms.

In contrast to the approaches discussed so far that are based on free text search, there is also
work on automatic indexing with a controlled vocabulary (descriptors). In this case an indexing
dictionary is required that contains pairs (with associated weights) of text terms and descriptors.
For the problem of computing an indexing weight for a descriptor with indications from different
terms within a document, either model-oriented ([Robertson & Harding 84]) or description-oriented
approaches ([Biebricher et al. 88], [Fuhr et al. 91]) can be applied. Although many researchers are
convinced that a controlled vocabulary offers no advantages over a free vocabulary, there is in fact
little substantial experimental evidence supporting this position ([Salton 86]).

As an example for an advanced text representation method, in [Chiaramella & Nie 90] a semantic
network representation is used for medical documents and queries (in conjunction with a fuzzy
retrieval function). For probabilistic IR, this kind of representation is a challenge. Theoretically, the
uncertain inference approach as developed by van Rijsbergen could be applied here — although the
problem of parameter estimation has not been finally solved. Another possibility is the description-
oriented approach described in [Fuhr 89b], which, however, requires fairly large learning samples for
application.

6 Conclusion and outlook

In this paper, the major concepts of probabilistic IR have been described. Following this goal, we
have only occasionally referred to experimental results; of course, experiments are necessary in order
to the evaluate and compare different models. For the future research, it seems to be important to
use test collections that are more representative for the intended applications, e.g. collections with
10°...105 documents with regard to large online databases.

As new possible applications for IR methods arise, the scope of the field also has to be revised. In
the past, collections with short documents (i.e. abstracts) have been investigated almost exclusively.
Nowadays, fulltext document databases are set up for many applications; so far, no experimental
results are available for the applicability of probabilistic methods (for example, the BIR model seems
to be inappropriate in this case since it does not distinguish between terms that occur only once in
a text and others that represent important concepts of a document). With multimedia documents,
there is the problem of representation for the non-textual parts: should they be represented by a set
of keywords, or are structured descriptions required (as in [Rabitti & Savino 91])?

In the field of database research, there is also growing interest in methods for coping with
imprecision in databases [IEE89, Motro 90]. As new databases for technical, scientific and office
applications are set up, this issue becomes of increasing importance. A first probabilistic model that
can handle both vague queries and imprecise data has been presented in [Fuhr 90]. Furthermore,
the integration of text and fact retrieval will be a major issue (see e.g. [Rabitti & Savino 90]).

Finally, it should be mentioned that the models discussed here do scarcely take into account the
special requirements of interactive retrieval. Even the feedback methods are more or less related to
batch retrieval, where feedback from the first retrieval run is used in order to improve the quality of
the second run (an exception must be made for the paper [Bookstein 83a], where iterative feedback
methods are discussed). Since an interactive system allows a larger variety of interactions than
just query formulation and relevance feedback (see e.g. [Croft & Thompson 87]), these interactions
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should be incorporated in a model for interactive probabilistic retrieval. Especially, the role of
probabilistic parameters in the interaction process should be investigated: How should probabilistic
weights (if at all) be presented to the user, and should there be a possibility for a user to specify
probabilistic weights? In order to answer these questions, more experimental research is necessary.
A major impediment for this kind of research is the fact that experiments with interactive systems
and real users require a much bigger effort than testing ranking procedures in a batch environment.
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