NATURAL LANGUAGE ACCESS TO INTERNET
SEARCH ENGINES

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE
IN
COMPUTER SCIENCE
UNIVERSITY OF REGINA

By
Gayathri Mahalingam
Regina, Saskatchewan

September 1997

© Copyright 1997: Gayathri Mahalingam

Bibiiographic Services services bibliograpniques

395 Wellington Street 39s, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada Your file Voire rélérence
Our file Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 3 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-30514-7

Canadi

Abstract

Natural language access to selected Internet search engines is presented. Searching
for relevant documents using the existing search engines poses certain problems that
include finding the most appropriate search term and scanning through a large number
of potentially relevant documents. We have provided a natural language access which
enables the user to present the query in English without any need to transform it to
suit the individual search engines. The user’s query is semantically analyzed using a
HPSG parser to generate appropriate search terms. Through the semantic analysis,
we eliminate the contribution of non-keywords to the search and thus help to reduce
the number of sites returned.

We have evaluated the performance of our system with regard to the quality of
search results. The results demonstrate the ease of expression by which we frame the
query and consistency of responses. The total number of sites returned is also less
compared to the results returned from the existing search engines.

We have thus presented an application of natural language processing techniques

to improve the performance of the existing search engines.

Acknowledgements

I would like to sincerely thank my supervisor, Dr. Nick Cercone, for his valuable
guidance and continued financial support.

I would also like to thank my external committee member, Dr. Brent Galloway,
Department of Linguistics, SIFC, for his valuable comments and corrections.

I wish to thank my internal committee members, Dr Brien Maguire and Dr.Christine
Chan for their attention to my research work and many valuable comments.

[also wish to thank Faculty of Graduate Studies and Research and the Department
of Computer Science, University of Regina, for their academic and financial support.

My special thanks to Shinta I. Mayasari and Carlos Rivera for sharing their ideas
and helping me in doing this research.

I am grateful to all my friends and family members for their help and support in

making this research work possible.

ii

Contents

Abstract

Acknowledgements

Table of Contents

List of Tables

List of Figures

Chapter 1 INTRODUCTION

1.1 Keyword Searching
1.2 Concept Searching
1.3 Phrasal and Natural Language Searching
1.4 Objectives of this Research
1.5 Organization of the Thesis
Chapter 2 Literature Review
2.1 Robots versus Directories.
22 Yahoo,
23 AltaVista
24 Excite,
25 Infoseek
26 OpenText.................
2.7 Informal Comparison

il

................

................

................

................

................

................

................

................

................

................

il

i

vi

vii

Ut R W W e

w0 L N oD

2.8 Natural Language Semantics

Chapter 3 System Design Details

3.1 Overall System Architecture
3.2 Natural Language Front-end
3.3 Natural Language Domain
34 HPSG Parser - v v v v i ittt it e et e e e e
341 Sign e e e e e e e e e e
3.42 Configurationo
3.4.3 Grammar Rules and Principles
3.4.4 Organization of the Lexicon
3.5 LinguisticProblems.
3.6 SemanticExtractor 0L,
3.7 Semantic Interpreter 0.

Chapter 4 System Implementation

4.1 Natural Language Front-end Implementation
4.2 HPSG Lexicon Implementation
4.2.1 Typed Feature Structures
4.2.2 Macros and Lexical Rules
423 GrammarRules,
424 Principles e e e e e
4.3 Implementation of Semantic Extractor
4.4 Implementation of Semantic Intrepretor.

Chapter 5 Experimental Results

5.1 Factors for Comparison

52 SampleOutput

53 ErrorHandling
Chapter 6 Conclusions

6.1 Contributions

iv

16
16
17
18
18
20
22
23
24
24
27
27

31
31
31
33
37
38
41
43
44

46
46
48
56

60

6.2 Future Extensions

............................. 61
Appendix A 63
Appendix B 75

Bibliography 123

Vv

2.1
2.2
5.1
5.2
5.3
5.4
5.5
Al
A2
A3

List of Tables

Comparison Chart on Search Engine Features 12
Comparison Chart on Search Engine Results 13
Ease of Expression in NLAISE 53
Search Results in AltaVista with NLAISE 54
Search Results in Infoseek with NLAISE 55
Search Results in AltaVista without NLAISE 56
Search Results in Infoseek without NLAISE 57
More Samples with NLAISE 72
Search Results in Yahoo, WebCrawler and HotBot with NLAISE . . . 73
Search Results in Yahoo and HotBot and Web Crawler without NLAISE 74

vi

List of Figures

2.1 Pictorial Representation of Search Engines 15
3.1 Overall System Architecture 17
3.2 ‘TRAVEL’Domain it 19
3.3 AVM representation of sign in HPSG 21
3.4 Semantic Content of gtves 22
3.5 Parser Configuration 23
3.6 Sorted Feature Structure Adopted 28
3.7 Two Phases of Semantic Analysis 30
4.1 LayoutoftheFront-end 32
4.2 Hierarchyof botandsystem 34
4.3 Hierarchyofhead, 35
4.4 Hierarchyofheadin ALE 36
4.5 Sample Lexical Entries 37
46 SampleLexical Rule 38
4.7 Schemal e e e e e e 39
48 Schema2 e e e 40
4.9 Sample Grammar Rulein ALE 40
4.10 Definition of Principles 41
4.11 Semantic Principle inour Lexicon 42
4.12 Unification of CONTENT Feature 42
4.13 Sample Output of Unification 43
4.14 Sample Script for Passing Keywords to Search Engine 45

5.1 Search for “What is the current weather in South Africa?” in AltaVista 48

vil

5.2
5.3
5.4
5.5
5.6
5.7
A.l
A2
A3
A4
A5
A.6
AT
A8

NLAISE System Response oo, 49

Output fortheSearch 50
Listing of the Front Page of the Results 51
Javascript Error for “text” Field., ... 58
Javascript Error for “search engine” Field 58
Sample Display for Syntax Error 59
Sample Result in Infoseek with NLAISE 64
Sample Result in Infoseek with NLAISE 65
Sample Result in Infoseek without NLAISE 66
Sample Result in Infoseek without NLAISE 67
Sample Result in AltaVista with NLAISE 68
Sample Result in AltaVista with NLAISE 69
Sample Result in Alta Vista without NLAISE 70
Sample Result in Alta Vista without NLAISE 71

viii

Chapter 1

INTRODUCTION

The amount of information available on the World Wide Web (WWW) has grown
enormously, thus making retrieval of relevant information very difficult. Several tools
have been developed for browsing and searching through these collections of highly
unstructured and heterogeneous data. These tools organize web pages into listings
and allow users to search these listings to find the information needed. Each of these
tools has its own listing or catalogue for searching. Based on how the new Uniform
Resource Locators ! (URLs) are added to the catalogue, they can either be classified
as a directory [35] or as a spider or robot [2,17,22]. However, we refer to both types
as search engines unless otherwise specifically mentioned.

The methods used by these search engines for searching include keyword searching
[2,22,35], concept searching [11], and phrasal and natural language (NL) searching
[17,25,32].

1.1 Keyword Searching

A “keyword” is simply a descriptor or a word that describes the content of the
site to be searched. Sites matching the keywords are categorized by different search
engines according to criteria specific to the search engine. Normally all search en-

gines strive to order the sites selected according to some relevance measure based on

1Uniform Resource Locators specify the location of the file. URLs include the type of the resource,
the address of the server and the location of the file.

keyword matches. Generally the top ranked sites in the search results are the ones
1. which match all the keywords, or
2. which have the keywords in the title > and on the page, or
3. in which keywords are repeated several times.

In many cases, keyword searching leads to unsatisfactory results. Usually, the
search results contain large numbers of documents, many of which are irrelevant to
the subject of the search. The use of boolean operations does not promote fetching
of the desired results because either they return very few documents or sometimes no

documents. In general, keyword searches face the following problems:

1. Since a keyword can have many synonyms, all synonyms need to be used in the

search in order to obtain all relevant sites.

2. Variations in spelling might result in missing some of the relevant sites. A search
for “color” might miss a site with the word “colour” and a search for “gray”

will not find “grey”, and so on.

3. Ambiguity in selection and ordering of keywords might result in different search
results when a mere word match is performed. For example, if a search has to
be made for sites performing online reservation of flight tickets, the keywords
can be any of the following:

(a) reservation, flight, ticket;

(b) online reservation, flight, ticket;

(c) online reservation, air, ticket;

(d) online reservation, flight OR air, ticket;

(e) reservation OR booking, flight OR air, ticket.

2The “title” refers to the HyperText Markup Language (HTML) tags <title> and </title>
primarily used for document identification.

Each of the sets of keywords in combination with options exclusively supported
by each search engine like “+” and “-” might be tried by the user, as each of
them yields different results both in terms of number of sites returned and in

their ordering in the results returned.

1.2 Concept Searching

Search engines which employ a concept searching method look not only for pages
containing the exact words entered in the query but also for concepts closely linked
to the words in the query. This feature of concept searching broadens the search.
For example, a search for “elderly people” might bring up a site that only has “re-
tired people” or “senior citizens” [11]. However, the selection of keywords plays an
important role in the search results obtained, as in the case of keyword searching,.
For example selecting appropriate keyword or keywords may be a difficult task for
searches like “airlines flying between Canada and Japan” and “top ranking Computer

Science department in Canada”.

1.3 Phrasal and Natural Language Searching

Selecting appropriate keywords for a distributed information resource like the
World Wide Web may be a difficult task, even for an expert user. Hence many
search engines are now providing phrasal and natural language search options. Some
queries are better expressed as phrases or in natural language sentences rather than
mere keywords. The possibility of finding the most relevant site as a top ranking
one is much higher in these search engines when compared to keyword matching
and concept searching, as expressing the query in natural language is much easier
and more natural than using keywords. However, most of existing natural language
search engines allow the users to present the query as phrases only or as questions
only. But not all queries can be expressed as phrases or questions. For example,
searches for ‘air travel in U.S.A.’, ‘boating in Canada’, ‘auto rentals in Vancouver’,

‘visiting Japan’, etc. are better expressed as phrases than as questions. Similarly the

following searches are more easy to express as sentences than as questions:

I would like to travel Europe by rail.

I want to stay in Vancouver for two days.

More over, the popularity of these search engines depends on other features like

response time, catalogue updates, and relevancy ranking.

1.4 Objectives of this Research

Though there are many search engines, no one of them has been objectively judged
to be better than the others. Some search engines are more suitable for searches made
on general topics or categories, some may have more features for searching than the
others, some may list matches differently, some may return search results more quickly
and so on. Hence, the correct choice of the search engine will depend on the specific
search requirements of the user.

We provide natural language access to some of the major search engines and
directories thus enabling the user to access several catalogues for searching. The
user can choose the search engine that may be best suited for a particular search
and can also present the query in natural language in the form of word, words,
phrases, sentences or questions. The natural language query will be parsed and
analyzed resulting in the selection of relevant keywords. Since the Head Driven Phrase
Structure Grammar (HPSG) parser contains both syntactic and semantic knowledge
[as discussed in Chapter 3], it provides better selection of keywords in the sense that
it reduces the listing of irrelevant sites to a great extent. Synonyms of words will be
searched automatically wherever applicable. The searching of keywords with their
synonyms reduces the possibility of relevant sites being missed. For example the user
query, “I want to stay in Vancouver for two days”, will be interpreted by the system
as a search for hotels or motels or lodges in Vancouver.

This thesis essentially combines some special features of individual search engines
and also provides a user-friendly natural language access to their information domain.
We focus the domain of discourse on the “travel domain” with approximately 150

words currently built in the lexicon. This concept domain can be certainly extended

to other domains also. In order to facilitate further extensions, the lexicon is designed

in such a way that it is modular with respect to domain-dependent and domain-

independent portions.

1.5 Organization of the Thesis

This thesis is organized into six chapters. Some features of selected search engines
along with a comparison chart of various search engine features are discussed in
Chapter 2. A sample comparison is made on the search results of selected search
engines and how the rich semantics of natural language could be used to improve the
performance of search engines is also discussed in Chapter 2. The overall architecture
of the system along with key features of various modules of the system are outlined
in Chapter 3. The reasons for choice of HPSG parser for our system is also discussed
in Chapter 3. The implementation of various modules of the system is discussed in
Chapter 4.

Some experimental results with sample sessions are presented in Chapter 5. A
brief conclusion is made in Chapter 6, outlining the summary of contributions. Some
possible directions for further research in this area are also outlined in Chapter 6.
Additional sample sessions and experimental results are presented in Appendix A.

The program code of various modules of the system are listed in Appendix B.

Chapter 2

Literature Review

Despite the many search engines available on the Internet, searching for a relevant
site remains a difficult task. One of the main reasons for this difficulty is not analysing
the query semantically. In contrast, most of the search engines perform mere keyword
matching. In this thesis, we analyse the queries using a natural language parser. In
this Chapter we outline features of some of the existing search engines and consider
how the semantics of natural language can be used to improve searching.

The basic differences of robots and directories are outlined in Section 2.1. In
Sections 2.2 to 2.6, the features of various search engines are discussed. A comparison
chart of various search engine features and search results are provided in Section 2.7.
The contribution of natural language semantics towards improvement of search results

are discussed in Section 2.8.

2.1 Robots versus Directories

A “robot” uses a program to search a catalogue and organize information on the
Internet [10]. Robots go by various names and descriptions such as spiders, crawlers,
worms and wanderers. They normally visit web sites and other Internet resources
automatically and accumulate key information from them which is acted upon when
employed for a search. Because of automatic site updating, their search catalogue is
very large compared to the directories (ranging up to millions of web sites). There

are many “robots” available due to the diverse ways of seeking the sites and the

information that is gathered.

Unlike robots, directories are created by humans. Sites must be submitted to these
directories by the owners, which are assessed and assigned to an appropriate category
or categories. Due to the human role, directories often provide better results and
smaller catalogue size. Each directory has its own method of categorising information.

For searches in a subject of broad and general interest, directories are best suited.
For rare or specific searches robots provide better results. Apart from robots and
directories, there are hybrid search engines and meta search engines. Hybrid search
engines are robots but they have an associated directory with them [17]. Meta search
engines [Meta crawler, SavvySearch], get catalogue information from several search

engines at the time of the search, and then return the combined results.

2.2 Yahoo

Yahoo is among the premier subject directories utilized on the Web. It is easy
to navigate and comprehensive in its listings and additional features. It employs
keyword searching. It automatically searches for both categories and web sites and
passes searches to AltaVista [2]. Yahoo does not search the full text of each page
unless there are no matching categories or sites are found. Yahoo accepts all sites
submitted to it and does not rate sites, although it indicates ones which it recommends
the most. Often, duplicate sites are listed.

Yahoo's search options include the use of logical connectives such as AND, OR,
NOT, and quotes for exact phrase match. Listings added after a particular date can
be chosen and a search can be made within titles or URLs. Yahoo finds all keyword
matches and then sorts the results according to relevancy within each specific area.

The results are ranked in the following manner [34].

e Multiple keyword matches: Documents matching more keywords will have a

higher rank than those matching fewer.

e Document section weighting: Documents matching words found in the title are
ranked higher than those found in its body or URL.

e Generality of category: Categories matching higher up in the hierarchy (i.e.,
more general categories) are ranked higher than those deeper in the hierarchy

(i.e., more narrowly focussed categories).

2.3 AltaVista

AltaVista uses a “crawler” with scalable indexing software with approximately 31
million pages in the catalogue. As per AltaVista’s home page, their spider crawls
the web at 3 million pages a day. AltaVista is mostly a full text index. Rather than
indexing words, it indexes word patterns. That is, AltaVista treats pages on the
web as a sequence of words. A ‘word’ can be any string of letters and digits. Thus,
HALS5000, 602e21 are treated as words. AltaVista does not index punctuation or
white space.

AltaVista offers simple and complex query searches with boolean operators. Searches
can be made for particular phrases, and in particular fields. In AltaVista’s advanced
form, the most important keyword or keywords can be specified in the relevance
ranking field, so that results are listed in the order that is most relevant.

In AltaVista’s simple search, documents are assigned a higher score if:
1. keywords are in the first few words of the document, such as the title.
2. keywords are found close to one another in the document.

3. keywords are used more than once in the document.

Being a “crawler”, AltaVista normally returns a large number of results and hence

is suited for doing a specific search for obscure sites, documents or information.

2.4 Excite

Excite is a unique search engine using “concept searching” with approximately
55 million pages indexed. Excite is a full text index. It uses Intelligent Concept
Extraction (ICE) to find relationships that exist between words and ideas so that

the results of the search will contain words related to the concept being searched.
Because of this strategy, the search is broadened, and Excite normally returns a
larger number of matching sites. Excite’s advanced search allows boolean searching,.
Excite also provides a “more like this” link and a “sort by site” function. The “more
like this” link is provided for each document in the search results returned, and
the specified document is taken as an example in a new search for finding similar
documents. Excite’s list of search results may present several pages from the same
site. The “sort by site” function will compress the list to show the names of the sites
and relevant documents within them.

The relevance rating for listing the search results is generated by comparing the
information in the site against that in the query. The closer the rating is to 100%,
the more relevant Excite thinks the document is to the query. Excite seems to favour
sites with keywords in the title, and with keywords repeated frequently in relation to

the rest of the document.

2.5 Infoseek

Infoseek is a full text indexed search engine with approximately 50 million pages
and with two distinct search services “Ultrasmart” and “Ultraseek”. Ultrasmart is
the default search option. Ultrasmart lists both search engine results and matches in
the Infoseek’s catalogue of reviewed sites. Infoseek [18] suggests Ultrasmart is good
for browsing for a general concept and then searching within the previous results, as
any new query will search within the results of the previous search unless specified
otherwise. Ultrasmart also gives related areas in the directory relevant to the query.
Ultraseek is designed for accurate searching which also includes a number of special
searches for searching images, FAQs, news, etc., with boolean operators.

Infoseek supports phrasal and natural language queries like “What are the lyrics
to Penny Lane?” [19]. Infoseek claims that its phrasal query handling is different from
that of other search engines as Infoseek does not drop common words (like “web™)
and one letter words. For example the search for “vitamin A” in search engines other

than Infoseek will search for “vitamin” only.

Infoseek sorts the results based on how well each document satisfies the query and
it also eliminates duplicate pages in the listing. The following factors influence the

relevancy scoring:

e query terms (words or phrases) are found in the title or near the start of the

document.
e the document contains more of the query terms.

e the document contains query terms that are relatively uncommon in the database.

2.6 Open Text

The “Open Text” search engine also does indexing on full-text. Though it claims
to have indexed as many pages as “Lycos” (around 20 - 25 million pages), the Web
Master’s survey [33] rates it as a small database with 5 million pages. Open Text

supports the following searches:

1. search for a single word or group of words;

2. search for a phrase of any length;

3. search for combination of words and phrases;
4. search with boolean operators;

5. search for URLs only and

6. search for titles and headings! only.

The results are listed based on the number of times the term searched for occurs

on the page as well as where it appears (URL, title, body, etc.,)

1Open-Text searches only through the first level of heading or the heading encoded by <H1>
tags of HTML in the Web page.

10

2.7 Informal Comparison

As seen in the Sections 2.2 - 2.6, each search engine differs from others in the way
they index the pages, rank the search results, provide search options, etc. Table 2.1
provides a comparison chart of these features of some of the major search engines
[33]. The terms used in the table are explained below:

Content: “Full-Text” engines index every word on a web page, although some stop
words (common words like “web”) may not be included. “Abstract” search engines
create a condensed copy of a page. This copy will not include all the words appearing
on the original page.

Size: The size shows the number of pages indexed. Actual numbers need not be

taken into account because of the following reasons:
e Some search engines count duplicate pages.

e Some search engines count the http addresses linked to the page indexed, even

though those links are not indexed.
e Crawlers add pages daily and hence the number keeps changing.

However, this is just to give a comparative idea regarding how big the catalogue is.
Frames Support: The <frame> and <frameset> HTML tags enable segmenting
the browser window into frames to display a series of HTML files within a splitscreen.

Search engines which do not support frames normally ignore all the information inside
the <frame> and <frameset> tags.
Link Popularity: Search engines can determine the popularity of a page by ana-

lyzing how many links are there to it from other pages. Some engines use this as a
mechanism for determining which pages they will include in the index.
Spam Penalty: All major search engines penalise sites that attempt to “spam” the

engines in order to improve their ranking. One common technique used to improve
ranking is repeating a word many times in a row. Search engines which penalise
“spamming” either exclude these pages from their listings altogether or they down-

grade the page’s ranking.

11

Search | Alta | Excite | HotBot | Infoseek | Lycos | Open Web
Engine | Vista Text | Crawler
Content Full- Full- Full- Full- Abstract | Full- Full-

text text text text text text
Size Big Big Big Big Medium | Small Small

(pages (30) (55) (54) (20-50) (20-25) (5) (2)
in mills)

Frames No Yes No Yes Yes No No
Support

Link No No Yes No Yes No Yes
Popularity
Stop Yes Yes Yes No Yes No No

Words

Spam Yes Yes Yes Yes Yes Yes Yes
Penalty

Meta Tag | Yes No Yes Yes Yes No Index
Support tag only

Table 2.1: Comparison Chart on Search Engine Features

Meta Tag Support: Meta Tags are meant for providing descriptions of a page

within the <head> container of the web page and are not visible to the average
browser. For example, some search engines search for the keywords only within the
first 200 characters of the web page. Either ‘description’ of the web page or ‘keywords’
of the web page or both can be specified in the meta tags as shown below.

<meta name = “description” content = “description of the web page”>

<meta name = “keywords” content = “keywords of the web page’>

The index tag is also a <head> section tag of HTML, which declares the current
HTML document is a searchable index.

To understand the functioning of search engines, some sample searches were made
on three selected engines and the results are presented in Table 2.2.

From the results it is seen that, if the user paraphrases the same query in different
ways, the search results not only differ in the number of sites returned but also in

their ordering. For searches made on more specific domains with limited number of

12

Search Terms Sites returned | Sites returned | Sites returned
in Yahoo in AltaVista in Infoseek
reservation, flight, 3 409010 384870
ticket
online reservation, 2 412130 3281979
flight, ticket
online reservation, 4 4205060 3281982
air, ticket
reservation OR 3 6980 1222003
booking, flight
OR air, ticket
+reservation, +flight, 3 4250 339
+ticket

Table 2.2: Comparison Chart on Search Engine Results

relevant sites, the user has to search different options to get the desired sites. On the
other hand, if the search is made on a more general topic having many relevant sites,

the most appropriate search terms are essential to filter out irrelevant sites.

2.8 Natural Language Semantics

Semantic analysis of the user query could be helpful not only to relieve the user
from finding the most appropriate search term, but also for the better performance
of search engines by filtering out irrelevant sites to a great extent and providing
meaningful listings. ‘The rich semantics of natural language processing makes it a
good choice for analysing the user’s query content, before feeding it to the search
engines.

There have been many applications for computer-based natural language under-
standing such as speech understanding, information retrieval, question answering sys-
tems, machine translation and document or text understanding. One such application
is providing a natural language “front-end” to databases, which enables users to access

information stored in databases without any need to know the structure of databases

13

or any query language and without any need for transformation of their query to some
other representation [7]. In this thesis, we provide a natural language “front-end” to
Internet search engines, which allows users to utilize the search engines, without the
need to find appropriate search terms. For a search as illustrated in Table 2.2, the
user can present the query in natural language like: “I want to book a flight ticket”
or “Show me some sites on online reservation of flight tickets” or even phrases like
“online reservation of flight tickets”. All these queries would yield the same search
results.

Figure 2.1 shows the pictorial representation of existing search engines and the
natural language “front-end” provided by us. In the existing search engines, the
user has to study the various options provided by each search engine and transform
the query into a form suitable for the specific search engine. The natural language
“front-end” analyses the natural language query of the user and transforms it into
appropriate search terms.

The overview of the natural language front-end is discussed in Chapter 3.

14

0
ZN

-0

KEYWORDS OR

OTHER SEARCH
TERMS

——————

—— e

SEARCH RESULTS

INTERNET SEARCH
ENGINE

EXISTING SEARCH ENGINES

SEARCH RESULTS

DATABASE

NATURAL
LANGUAGE
QUERY

KEYWORDS OR

OTHER
SEARCH
TERMS

NATURAL LANGUAGE

FRONT END

INTERNET SEARCH
ENGINE

DATABASE

SEARCH ENGINES WITH NATURAL LANGUAGE “FRONT-END"

Figure 2.1: Pictorial Representation of Search Engines

15

Chapter 3

System Design Details

We have provided an interface which allows users to choose the search engine best
suited for their search and enter the query in the English language. The natural
language query is analysed both syntactically and semantically in order to select the
most appropriate keywords describing the query. The keywords are interpreted to
provide more meaningful search terms by using all the synonyms of the keywords in
conjunction with boolean operators supported by individual search engines.

The architecture of the system is outlined in this Chapter. The system layout
is discussed in Section 3.1. Features of the front-end of the system are discussed in
Section 3.2. The natural language domain that can be supported by the system at
present is discussed in Section 3.3. We outline some of the key features of the HPSG
parser, along with its configuration in Section 3.4. Some linguistic problems are
discussed in Section 3.5. The functions of semantic extractor and semantic interpreter

are discussed in Sections 3.6 and 3.7 respectively.

3.1 Overall System Architecture

Figure 3.1 illustrates the architecture of the natural language access provided to
the search engines. The natural language query to be searched, along with the choice
of the search engine, is pre-processed in order to transform the query into a form
suitable for input to the parser as the parser treats capitalized letters as variables

and it does not accept special characters and punctuations. The parser, in turn, has

16

a description of grammar rules for capturing the constraints of the English language

with a lexicon or dictionary which contains the words allowed in the input. The
Head Driven Phrase Structure (HPSG) parser generates a complex feature structure

representing the query. The semantic content of such a complex feature structure is

extracted, interpreted and transformed into a form suitable for the search engine that

was selected.

COMPLEX

PARSED
STRUCTURE

NATURAL TRANSFORMED
LANGUAGE INPUT
NATURAL INPUT PRE-
NATURAL | LANGUAGE HPSG
LANGUAGE FRONT-END PROCESSOR PARSER
INPUT
SEARCH
RESULTS
USER
SEARCH SEMANTIC SEMANTIC
ENGINE
LIST OF INTERPRETER LIST OF EXTRACTOR
KEYWORDS WITH KEYWORDS

SYNONYMS AND
SEARCH OPTIONS

Figure 3.1: Overall System Architecture

3.2 Natural Language Front-end

The natural language front-end provided is a fill-in-form written in JavaScript
with a back-end PERL script. The front-end also provides links to an alphabetical
listing of words in the lexicon and tips for selecting a suitable search engine. Some of

the positive features leading to the choice of JavaScript [20] for the front-end include:

17

1. Validations of fields can be done before submission of the forms to the back-end
PERL script and appropriate error messages can be displayed. For example, if
the user leaves any of the fields blank then the JavaScript displays appropriate
error messages thus avoiding submission of blank fields to the back-end PERL

script.

2. Alert messages can be displayed to warn the user of any possible errors. For
example, as the user starts typing the query for search, a JavaScript box alerts

the user to check the words in the lexicon.

After initial validations in JavaScript, the user input is submitted to the back-end
PERL script. The PERL script verifies that there are no words present in the query

which are not in the lexicon and it passes the query to the pre-processor.

3.3 Natural Language Domain

Capturing all domains in the lexicon for a vast collection of data that resides on
the Internet is not an easy task. Therefore, we have limited our experiment and
selected the “TRAVEL” domain as our model domain, with 150 English words repre-
senting various sub-domains like FOOD, ACCOMODATION, TRANSPORTATION,
PLACES and WEATHER as shown in Figure 3.2. Under each domain or sub-domain
there is a finite set of lexical entries selected in such a way to cover most general queries
in that domain or sub-domain. The domain independent words include personal pro-
nouns (I, we, etc.), relative pronouns (who, whom), control verbs (like, want, to),
auxiliaries (can, may), and prepositions (at, between, in, on, etc.).

The lexicon can be extended over other domains as it has been designed to be
modular with respect to the lexical knowledge base [7,24]. The domain independent

knowledge base of the lexicon can be used across all domains.

3.4 HPSG parser

Before we describe the functioning of the HPSG parser, we outline some of the
distinctive features of the HPSG formalism which led to the choice of HPSG parser

18

ACCOMODATION

J{

TRANSPORTA-
TION SUB

J

WEATHER SUB

ECONOMICS :
SUB DOMAIN

SUB DOMAIN DOMAIN DOMAIN
ASIA AFRICA EUROPE
Bali .- hotel airlines current currency
{z]
Bangladesh : condition exchange
9 motel airport 9
China rate
resarvation fly forecast
India economical ame | | . T
Japan road

Figure 3.2: ‘TRAVEL’ Domain

for our system. HPSG is a unification based lexical grammar formalism which has
increased emphasis on the lexicon rather than on the grammar rules. As the name
indicates, the grammar is head driven which suggests that the central notion of a
request is the key to a comprehensive response. This aspect makes it a more efficient
parser as indicated in [7]. In HPSG, the knowledge representation is uniform in the
form of feature structure or otherwise known as “Attribute Value Matrices” (AVMs),
for lexical entries, grammar rules, and principles. Unlike other grammar formalisms,
HPSG can parse words, phrases, sentences and questions. Since the feature structures
contain information about syntactic and semantic properties of the object modelled,
HPSG performs parallel syntactic and semantic analysis.

A feature structure in HPSG must be sorted and well-typed {28]. The sort symbol
describes the type of object the structure is modelling. The attributes that can appear
in a feature structure are determined by its sort. For example, if a feature structure
is of sort word, it can have attribute labels PHON and SYNSEM; a feature structure
of sort synsem can have attribute labels LOC and NONLOC.

19

3.4.1 Sign

The sign is the basic information-bearing structure in HPSG. The sign can be
either lexical or phrasal. The phrasal signs have a daughters feature that gives infor-
mation about the signs which are the immediate constituents of the sign in question.
HPSG uses different classes of syntactic constituents such as head, adjunct, comple-
ment and filler and marker [28,7]. In a structure like western region, western is an
adjunct (nominal adjunct) and region is the head. The adjuncts can be verbal ad-
juncts also as in show me the travel guidebook for Canada. The head determines all
the syntactic properties of the phrase or sentence that contains it. Subcategorization
of a lexical or phrasal sign is the specification of the number and kind of other signs
that the sign in question has to combine before becoming grammatically saturated.
Complements discharge subcategorization requirement on the head. Fillers discharge
binding requirements on the head. Binding features provide information about long-
distance dependencies for relative pronouns, interrogative expressions, and missing
elements called gaps and traces. A marker (that, for, than, as) formally marks the
constituent in which it occurs and combines with another element that heads the
constituent.

As per the present formulation of HPSG [28], all signs possess at least two at-
tributes, the PHON which represents phonology, and the SYNSEM. The SYNSEM
attribute includes complex linguistic information on the syntactic and semantic prop-
erties of an object. The AVM representation of the sign is shown in Figure 3.3.

Local features correspond to the combinatorial properties of the sign. Non local
features are concerned with long distance dependencies. LOC information is, in turn,
divided into CAT, CONTENT and CONTEXT. The category attribute (CAT) rep-
resents the syntactic properties, such as the grammatical category (noun, verb, etc.)
and its subcategorization requirements which are captured in its features HEAD and
SUBCAT.

The CONT attribute specifies the sign’s contribution to semantic interpretation.
The semantic content of gives in HPSG will be as shown in Figure 3.4. The meaning
of the word gives is viewed as a relation with arguments giver, given (to whom it is

given), and gift (the object given). Their values are structure shared with that of

20

SYNSEM

Figure 3.3: AVM representation of sign in HPSG

LoC

......

21

.....

the SUBCAT feature. The CONTEXT attribute corresponds to presuppositions or

conventional implicatures.
gives —

CAT HEAD verbfin }
SUBCAT < NP pom] m[rd, sing] * NP { acc] [z}. NP{ acc] E >

[RELN e
GIVER [1]
GIVEN [z]
GIFT [3]]

CONTENT

Figure 3.4: Semantic Content of gives

Both syntactic and semantic features have been modified in our thesis so as to have

appropriate pointers to the keywords. The details of implementation are discussed in

Chapter 4.
HPSG uses unification as its primary operation. Feature structures A and B

unifies to form another feature structure C which has all the information contained
in A and that in B but nothing more [27]. If A and B have conflicting information,

then the unification fails.

3.4.2 Configuration

Figure 3.5 depicts the configuration of a parser. For parsing a natural language
input, a parser requires:
1. alexicon - which contains a finite set of lexical signs (words), that are permitted

in the natural language input;
2. a finite set of grammar rules; and

3. a finite set of principles.

22

NL INPUT

GRAMMAR
RULES
osyntax rules

Osemantic rules
PARSER J LEXICON

PRINCIPLES
ouniversal
o language specific

PARSED
OUTPUT

Figure 3.5: Parser Configuration

3.4.3 Grammar Rules and Principles

The grammar rules state how words are grouped into phrases and phrases into
large phrases and sentences (or how large phrases are decomposed into their con-
stituents). A grammar rule is a partially specified phrasal sign which constitutes one
of the options offered by the language in question for making larger signs from smaller
ones [27].

Rather than writing rules of the form “S — NP VP” | “NP — Det Nom ” and
so on, HPSG states rules in terms of “heads” and “complements”. A single rule stating
the structural relationship of a head daughter and complement daughters of a phrasal
sign can replace 3 string rewriting rules (S — NP VP, NP — Det Nom, NP —
NP[GEN] Nom). Hence there are few grammar rules in HPSG. These rules interact
with the principles such as the Head Feature Principle, Subcategorization Principle
and Semantics Principle, to characterise a wide range of syntactic phenomena.

The Head Feature Principle states that the HEAD value of any headed phrase is
structure shared or token identical with the Head value of the head daughter. As per
the Subcategorization Principle, in a headed phrase, the SUBCAT value of the head
daughter is the concatenation of the phrase’s SUBCAT list with the list of SYNSEM

23

values of the complement daughter.

3.4.4 Organization of the Lexicon

As a lexical formalism, HPSG requires very descriptive and complex entries for the
lexical signs. Two primary methods, namely multiple inheritance and lexical rules,
are employed to organize the lexicon and eliminate redundant information. Multiple
inheritance helps to eliminate vertical redundancy by classifying words that share
common syntactic and semantic properties into a lexical type. Each class can have
more than one superclass and each class inherits information contained in all of its
superclasses. Subsumption (closely related to unification) is employed to define classes
and superclasses. If A and B represent two feature structures, then A subsumes B, if
B is at least as informative as A.

Lexical rules eliminate horizontal redundancy. Lexical rules are applied to base
forms of a word to generate inflected or derived forms. Our lexicon is organized with
multiple inheritance and lexical rules along with macros. Sample lexical entries and

details of implementation of the lexicon are discussed in the next chapter.

3.5 Linguistic Problems

Ambiguities pervade natural language and are the root of a number of complex
problems [12]. Ambiguities can be of several types such as lexical ambiguity, syntactic
ambiguity and homographs.

Lexical ambiguity occurs when a word can be represented by more than one gram-

matical category. Some examples of lexical ambiguities are:

1. Some words can be either a2 noun or adjunct as in travelling in Asia and I want

to see the travel guidebook.

2. Some words can be either a noun or a verb. For example, I want to see the

report and I want to report this to him .

24

3. Some words can be either a determiner or a conjunction introducing a sub-

ordinate class [12] as in that hotel and that hotel is expensive is a well-known

fact.

Lexical ambiguity can be resolved by syntactic analysis, since a place in a sentence
where a noun can occur is different from the place where a verb can occur and so
forth. Another type of lexical ambiguity is with homographs, which are words that
have the same spelling but have different meanings. In the sentence He banked his
plane in the river bank near the bank where he banks, the word bank has at least 4
meanings. Sometimes even the same syntactic category of a word can have more than
one meaning. Cheap hotel can mean ‘economical, moderately priced hotel’ as well as
‘poor quality hotel’.

Syntactic ambiguity is also a common problem which can be due to any one of

the following causes:

1. In certain sentences, it is difficult to know if a complement should be attached
to the noun which it follows or to the verb. The sentence The man saw the girl
with the telescope is ambiguous because it is not clear whether it is the man or
the girl who has the telescope [12].

2. Minor changes in word order can change the meaning entirely. They have just
built a flying machine is very much different from They have built just a flying

machine [5].

3. The same sentence may be interpreted in many ways. In the sentence Visiting

scientists can be interesting, either scientists can be interesting or the act of
visiting.

Pronoun references, negation, conjunction and disjunction can all add to ambigu-

ities as in the cases mentioned below:

o In the sentence The soldiers fired at the women and I saw several of them fall,

“them” can refer to the soldiers or the women.

25

e The sentence John is not going to fly to Toronto can have at least four inter-

pretations [12]:

1. It is not John who is flying to Toronto; it is somebody else.
2. John is going to Toronto but not flying (may be driving).
3. John is flying but not to Toronto.

4. John is not going to fly to Toronto (he may just not be going anywhere).

e The word “and” sometimes denotes disjunction rather than conjunction. List
all hotels in Regina and Saskatoon normally means hotels either in Regina or

in Saskatoon rather than hotels in Regina and Saskatoon.

Also the words “and” and “or” can be interpreted in more than one way as indi-

cated below:
1. List all (hotels and motels) in South Africa.
2. List all hotels and (motels in South Africa).
3. List all (hotels and motels in South Africa).

The users can paraphrase their query in different ways. A search for sites on

current weather can be expressed as:
e What is the current weather in South Africa?
e I want to see all the sites on current weather in South Africa.
e List all sites on current weather in South Africa.

All the above expressions should yield the same semantic representation or the same
keywords for search in this case.

Most of the problems cited above can be resolved by the parallel analysis of syn-
tactic and semantic representations which is one of the very distinctive features of
HPSG. In our limited domain of 150 words in the lexicon, the above stated problems

can be handled with the extensive semantic knowledge base. However, for future

26

extensions to other domains, our general approach would be to prompt the user to
choose from alternatives to resolve the ambiguity, in the cases where it can not be

resolved by the parser.

3.6 Semantic Extractor

The output of the HPSG parser will be a complex feature structure encoding
the syntactic and semantic content of the sentence/phrase parsed. The information
encoded in the CONT feature of this complex feature structure is to be extracted
for further interpretation. In HPSG, since the feature structures are sorted and well-
typed, the feature CONT appears more than once in the sign. Figure 3.6 shows the
sorted feature structure adopted in the parser [28,24]. In our parser, the type synsem
has LOC feature. The LOC feature, in turn, can have CAT and CONT features. Since
the CAT feature is of type ‘cat’ it can have a HEAD feature and SUBCAT feature.
The SUBCAT feature is of type synsem-list which in turn could be a synsem or
synsemlist depending on the number of signs subcategorized for. Because of the well-
typed nature, synsem-loc-cat-synsemlist-synsem will also have LOC feature encoding
CAT and CONT.

Pointers to the keyword list will be present in the phrase-synsem-loc-cont path.
More over, not all words in the query will contribute towards the keywords. Hence

the function of the semantic extractor module is twofold:

1. To extract the value of the CONT feature appearing in the phrase-synsem-loc-

cont path, from the complex feature structure output of the parser.

2. To extract the list of keywords alone form the semantic content extracted.

3.7 Semantic Interpreter

Traditional parsers use a set of syntactic grammar rules along with a lexicon to
parse the natural language. On the parsed results, semantic rules are applied to

convert the parsed result into a logical query [3]. In our thesis, semantic analysis is

27

sign

V

synsem
Iic
cat/\cont
head synsemlist dconcept keylist

synsem synsemlist

loc

/\ synsem synsemilist
cat cont \1,

loc

27N\

cat cont

Figure 3.6: Sorted Feature Structure Adopted

28

carried out in two phases. Since the HPSG parser is used, critical semantic analysis
is done in the parser itself. Further detailed analysis is performed in the semantic
interpreter as illustrated in Figure 3.7.

The list of keywords from the extractor are converted into appropriate search terms
using the semantic rules, synonyms list and search engine information. Semantic rules
are primarily applied to group nominal compounds. For example, in south africa, the
word south would be treated as a adjective in the lexicon. However south africa has
to be present as the name of the country in the search term. In order to ensure
that no relevant sites are missed, all the synonyms of keywords where ever applicable
are included in the search terms using the boolean option ‘OR’. The search engine
information provides the details of search options supported by individual search
engines so as to map the search terms with the search engine selected. While doing
so, the interpreter identifies keywords that must be present in the sites listed and
encodes them with special signs like ‘+’.

The implementation details of each module of the system are discussed in the next

Chapter.

29

NL INPUT

- e em e A e o e e o e e o e e - e - - - e o - e e e e o = e Ge = ey

rules

;)
X]
X]
X 1
! ﬁ [PARSER ;
= =
' i
X]
PARSED OUTPUT
[SEMANTIC
EXTRACTOR
EXTRACTED SEMANTIC
CONTENT

semantic SEMANTIC
rules INTERPRETER
APPROPRIATE
SEARCH TERMS

search
engine info

Figure 3.7: Two Phases of Semantic Analysis

30

Chapter 4

System Implementation

We discuss the implementation details of system modules in this Chapter. The
implementation of the natural language front-end is discussed in Section 4.1. In
Section 4.2, we outline the implementation of the HPSG lexicon. The implementation
of the HPSG parser’s semantic extractor and interpreter are discussed in Sections 4.3
and 4.4.

4.1 Natural Language Front-end Implementation

As outlined in Chapter 3, the implementation of the front-end is realized as a
JavaScript form that allows users to choose a search engine and enter the text to
be searched. Figure 4.1 shows the layout of the front-end developed for this system.

Frames have been used for organization. The front-end also provides links to:
e some major search engines;
e alphabetical listing of words in the lexicon and

e tips for selecting an appropriate search engine.

4.2 HPSG Lexicon Implementation

The HPSG lexicon is developed using the Attribute Logic Engine (ALE) version

2.0.1, as the lexical representation language. ALE integrates phrase structure parsing

31

f N T |' - - s o~
Access To inlarnet Se

VamBit

CPEN TEXT

INMFCSEEK

Figure 4.1: Layout of the Front-end

and constraint logic programming with typed feature structures as terms of repre-
sentation [6]. The details of the typed feature structures adopted are discussed in
the next subsection. ALE employs a bottom-up chart parser and a compiler which
compiles grammars into Prolog parses [6,21]. In addition to type hierarchies, ALE
can also handle macros and lexical rules which are used for organizing the lexicon.
The EMACS user interface provided for ALE facilitates easy compilation and modi-
fications [6].

32

4.2.1 Typed Feature Structures

In ALE, every feature structure used must be typed. Types specify the features
that can appear and the values these features can take. In ALE, types are arranged
in an inheritance hierarchy, whereby constraints on more general types are inherited
by their more specific subtypes. If a feature is appropriate for a type, it will also
be appropriate for all its subtypes. Some general properties and points to be noted
regarding typed feature structures in ALE are listed below [6]:

1. The relation of sub-typing is taken to be transitive. That is, if a is a subtype
of b, and b is a subtype of ¢, then a is also a subtype of ¢. It is enough if the
user specifies the direct subtyping relationship. The transitive relation will be

automatically computed by the compiler.

2. The derived transitive subtyping must be anti-symmetric. That is, there should
not be two distinct types each of which is a subtype of the other.

3. There must be a unique type (referred as bot), which is the most general type.

All other types must be a subtype of this general type (bot).

4. Every pair of types which have a common subtype must have a unique, more

general subtype.

In our lexicon, bot is the most general type which has three subtypes: system,
syntax and semantics. Figure 4.2 illustrates the hierarchy of bot and system. Boolean
has two subtypes: minus and plus. The list can be either an empty list (elist) or a
non-empty list (nelist). A non-empty list will have two features namely the head (hd)
and the tail (t1). The head can be of type bot whereas the tail must be a list. Apart
from empty and non-empty lists we also have synsemlist, signlist and keylist. These
lists can also be either a non-empty list or an empty list. The non-empty synsemlist,
signlist and keylist (nesysnsemlist, nesignlist and nekeylist) have two features, head
(hd) and tail (tl). Unlike a non-empty list which can have its head of type bot,
non-empty synsemlist, signlist and keylist can have objects of type synsem, sign or
keyword only as their heads. The synsemlist, signlist and keylists are used in turn for
defining the SUBCAT feature, COMP-DTRS feature and CONT feature respectively.

33

system syntax semantics
ool st ~°7 7T e
plus minus
nelist syngemlist signlist keylist
hd:bot
tl:list

elist nesynsemlist nesignlist nekeylist
hd:sysnsem hd:sign hd:keyword
tl:synsemlist| |tl:signlist| |tl:keylist

Figure 4.2: Hierarchy of bot and system

34

The syntax and semantics have features representing the syntactic and semantic
information of the object. Sign is a subsort of syntax which in turn has two subsorts:
word and phrase. Both word and phrase have an attribute synsem. Synsem has
an attribute local (loc). Local information is in turn divided into category (cat) and
content (cont) attributes. The category value includes information about the syntactic
category of the word and the grammatical arguments required. This information
will be captured in four attributes: head, subcat, specifier (spr) and marking. The
hierarchy of head is shown in Figure 4.3. The representation of the head feature in
ALE is shown in Figure 4.4.

()
head
funet subst
det mark adj noun verb prep
—)

Figure 4.3: Hierarchy of head

The content (cont) feature constitutes the word’s contribution to the semantic
interpretation of the phrase that contains it. The value of the content feature, as
illustrated in Chapter 3, is not exactly suitable for our system, since the content fea-
ture must encode the word’s contribution to the keywords. Hence the content feature
is modified to include the feature keyword. The keyword feature is a keylist whose
head is a keyword and its tail is a keylist. The keywords have two subsorts namely
general concept (gencon) and the specific concepts (specon). Under the general con-
cepts, words which do not contribute to the keywords like 7, web, and online will be
listed. The keywords are listed under specific concepts.

When extending to other domains, only the content feature needs to be modified
to include keywords from that domain. The syntax and system can be retained across

domains.

35

head sub [funct, subst].

funct sub [det, mark]
intro [spec:synsem or_none].
det sub [].
mark sub [}.
subst sub [adj, noun, verb, prepl]
intro [mod:synsem_ or_none].
adj sub [].

noun sub []
intro [case:case,

agr:agr).
verb sub []
intro [aux:bool,
inv:bool,
vform:vform] .

prep sub []
intro [pform:pform].

Figure 4.4: Hierarchy of head in ALE

36

4.2.2 Macros and Lexical Rules

Specifying full paths everywhere in the lexicon will make it difficult to read and
to maintain consistency in representations. Macros allow users to identify a de-
scription with a name and later refer to the description by its name. For exam-
ple, head_s(noun) macro(loc:cat:head:X) refers to (loc:cat:head:X). Later, this
macro can be referred to as: @head_s(noun) to denote (loc:cat:head:noun). A
macros can use other macros in its definition. For example, vform_s(X) macro
@head_s(vform:X) refers to (loc:cat:head:vform:X). Macros reduce redundant in-
formation in the lexicon to a great extent. Figure 4.5 shows some sample entries from

the lexicon after defining the corresponding macros.

N
(south ---> @adjective_lex,
@keyword(south).

africa ---> @npNoCompNoMod_lex,
@keyword(africa).
i ---> @ppronSubj_lex.
give -—~=> @ditrans_lex,
@keyword(gencon).
on ---> @preposition_lex(on).
. J

Figure 4.5: Sample Lexical Entries

Lexical rules are used in our lexicon to reduce the number of entries. Instead of
having separate lexical entries for each inflected form of a verb, only the base form
is entered. Lexical rules are applied to the base form to derive its inflected forms.
One such lexical rule used in our lexicon for generating the gerundive form of a verb
from its base form is illustrated in Figure 4.6. This rule is used to parse phrases like
“visiting South Africa”. The input feature structure represents the base form. The
output feature structure is exactly the same as the input but in the gerundive form.

Morphs statements ensure that the gerundive form of stay will be staying whereas

37

that of give will be giving and travel will be travelling.

-

gerform lex_rule

(word, @head(verb),
@viorm(bse),
@aux (minus) ,
@mod (Mod) ,
@inv(Inv),
@subcat ([Subcat |Moresubcats]),
@cont (Cont))

L Y

(word, G@Ghead(verd),
@viorm(bse),
faux (minus),
@mod (Mod) ,
@inv (Inv),
@subcat ([Subcat |moresubcats]),
@cont (Cont))

morphs
(X,e) becomes (X, ing),
travel becomes travelling,
X becomes (X, ing).

Figure 4.6: Sample Lexical Rule

4.2.3 Grammar Rules

Grammar rules are used in HPSG to govern the combination of constituents like
head, complement, adjunct and filler, to form large phrases/sentences. As stated in
Chapter 3 very few rules are sufficient in HPSG to capture a wide variety of string
rewrite rules. In HPSG, four rules are sufficient to govern the head/complement

structures and head/adjunct structures. In this section, we discuss two such rules:

Schema 1 and Schema 2 and the implementation of Schema 2 in our lexicon.

38

Schema 1, shown in Figure 4.7, governs the combination of a non-lexical head
with its final complement. This rule states that one of the possibilities of a phrasal
sign in English is to be a saturated sign (SUBCAT <>) which has as its constituents
a complement daughter (COMP-DTR < [] >) and a non-lexical head daughter [27].
Thus this rule can replace the traditional rules: S — NP, VP and NP — Det, N'.

SYNSEM | LOC | CAT | SUBCAT < >

COMP-DTRS <[]>

DTRS I:HEAD—DTR | SYNSEM | LOC | CAT | HEAD | LEX -

Figure 4.7: Schema 1

Schema 2, shown in Figure 4.8, on the other hand, governs the combination of
a lexical head with zero or more complement daughters except its final complement
daughter. This rule states the possibility of an unsaturated phrasal sign (SUBCAT
< [] >) in English whose head daughter is an uninverted lexical sign (INV -). This
rule can also convert a lexical head requiring a single complement to a non-lexical
constituent requiring a single complement. Thus, this rule captures the generaliza-

tions of the following string rewrite rules:

VP — V,NP; VP — V, NP, NP;
VP — V, PP; PP — P, NP;
VP — V; N' —» N;

The implementation of Schema 2 in ALE is illustrated in Figure 4.9. Mothers
and daughters are separated by the symbol “===>". Daughters are prefixed with
“cat>". To specify a list of complement daughters, the prefix “cats>" is used. The
constraints on the rule can be specified on the right hand side of the rule by using

definite clauses in the “goal>’ statement. Principles are also used in “goal” statements

39

—

SYNSEM | LOC | CAT | SUBCAT < [] >

INV -
DTRS | HEAD-DTR | SYNSEM | LoC | CAT | HEAD LEX +

Figure 4.8: Schema 2

to enforce further restrictions on categories in rules. For example, in this schema, if
we want to say that the mother category inherits the same head features as the head

daughter, then we include the head feature_principle in the “goal” statement.

schema2 rule
(Mother, phrase, @subcat ([SubjSynsem]))
_=——=>
cat> (HeadDtr, word, (@subcat ([SubjSynsem|CompSynsem]))),
goal> (synsem_to_phrase (CompSynsem, Comp),
is_not_subject (Comp, SubjSynsem)
Y.

cats> Comp,
goal> (principles(Mother, HeadDtr, HeadDtr, Comp, CompSynsem))

Figure 4.9: Sample Grammar Rule in ALE

As illustrated in the figure, the mother category is a phrase which is missing
its subject. The head daughter is a word which subcategorizes for subject and other
complements. Since the complement daughters can be zero or more as per the schema,

we use “cats>". Definite clauses are used here to ensure that necessary matches are

40

effected. The first constraint is for converting the type synsem to phrase as the
head’s SUBCAT are of type synsem, whereas the complement daughters will be of
the type phrase. To ensure the complement daughter is not the subject, we use the
second constraint. Since more than one principle is to be used for constraining the
applicability of the rule, we use the definite clause “principles”. The definite clause

“principles” is defined as illustrated in Figure 4.10.

principles (Mother, Head, SemHead, Comps, CompDtrsSynsem) if
(head_feature_principle(Mother, Head),
subcat_principle (Mother, Head, CompDtrsSynsem),
marking_principle (Mother, Head),
semantic_principle{(Mother, SemHead, Comps)
).

Figure 4.10: Definition of Principles

4.2.4 Principles

In HPSG, principles are applied in conjunction with the grammar rules. In this
section we discuss the implementation of one of the principles in our lexicon, namely
the Semantic principle. As per HPSG formalism [28], the semantic principle states
that the semantic content of a phrase is “token identical” with that of the adjunct
daughter in a head-adjunct structure, and with that of the head daughter otherwise.
However, in our lexicon, this principle needs to be modified since, daughters other
than the head daughter can also contribute to the keywords. Hence, the semantic
principle in our lexicon, as illustrated in Figure 4.11, ensures that the semantic content
of the mother is the unification of the semantic contents of semantic head with all
other complement daughters.

While unifying the content of all the daughters with the head daugther, we require
two separate functions, as shown in Figure 4.12, because the content feature is of type
keylist which has a keyword as its head and a keylist as its tail, and the tail can be

either an empty-list or a non-empty list.

41

semantic_principle(Mother, SemHd, [Comp|Comps]) if
unify_ cont_features({ SemHd, Comp, NewSemHd),
semantic_principle(Mother, NewSemHd, Comps)

Figure 4.11: Semantic Principle in our Lexicon

unify_cont_features((@cont (keyword: (ne_key_list, (hd:KeyHd,
tl:e_list))})),
(@cont (keyword: (ne_key_list, (hd:KeyComp,
tl:e_list))}),
(@cont (keyword: (ne_key_list, (hd:KeyHd,
tl: (ne_key_list, (hd:KeyComp,

tl:e_list))))))
) if
!, true.
unify_cont_features ((@cont (keyword: (ne_key_list, (hd:KeyHd,
tl:KeyHAT1)))),
(@cont (keyword: (ne_key_list, (hd:KeyComp,
tl:CompTl))})).,

(@cont (keyword: (ne_key_list, (hd:KeyMother,
tl:KeyMotherTl))))

) if
1, join_finding((ne_key_list, (hd:KeyHd,
t1l:KeyHdTl)),
(ne_key_list, (hd:XKeyComp,
tl:CompTl)),

(ne_key_list, (hd:KeyMother,
tl:KeyMotherTl))).

Figure 4.12: Unification of CONTENT Feature

42

As a sample output of this unification, the CONT feature from the parse result of
a sentence “I want to visit South Africa” is shown in Figure 4.13. The heads “gencon”
(general concept) are the contribution of words like ¢, want, and to. The word visit

contributes the keyword “travel”.

—

CONT cont
KEYWORD ne_key_list
HD gencon
TL ne_key_list
HD gencon
TL ne_key_list
HD travel
TL ne_key list
HD south
TL ne_key_list
HD africa
TL ne_key list
HD gencon
TL e_list

Figure 4.13: Sample Qutput of Unification

4.3 Implementation of Semantic Extractor

The primary predicate for parsing in ALE is: rec(String), where rec stands
for recogoniser and String is the input string entered as a Prolog list of atoms. The
output will be a category (in the form of typed feature structure) derived for the input
[6]. However, this predicate does not provide parameters for retrieving the output
[24]. Instead, the predicate rec(String, Tag, Struct, Ineq) is used. Here also, the
parameter String stands for the input string. Since we do not use inequalities, the
parameter Ineq is not specified. The output of this predicate will be in the form of
Tag and Struct, the form in which ALE encodes feature structures internally. A

43

sample output of this predicate for the input string [i, want, to, visit, south, africa],

will be as shown below:

Ineq = {1,

Struct = phrase(_Al-synsem(_Z-loc(_Y-cat(_X-verb(_W-bool,_V-bool,_U-none,
_T-bse),_S-unmarked,_R-synsem_list,_Q-e_list),_P-cont(_0-db_action,
_N-ne_key_list(_M-gencon,_L-ne_key_list(_K-gencon,_J-ne_key_list(_I-travel,
_H-ne_key_list(_G-south,_F-ne_key_list(_E-africa,_D-ne_key_list(_C-gencon,
_B-e_list)))))),_A-dconcept)))) ?

The semantic extractor program, written in Prolog, extracts the list of keywords
from such a complex structure. The CONT feature for the input string [i, want, to,
visit, south, africaj, is a non-empty keylist whose heads are [gencon, gencon, travel,
south, africa]. The “gencon” denotes the general concept corresponding to the words
“1”, “want” and “to”. The ordering of the keywords in the list depicts the unification
of semantic head with the complement daughters. The semantic extractor removes
the “gencon” (general concept) heads from the list. Hence, output of the semantic
extractor for the above parse will be a list with only three keywords: [travel, south,
africa].

4.4 Implementation of Semantic Intrepretor

The semantic intrepretor written in PERL script handles the following tasks:

1. The output of the semantic extractor will be a parsed list of keywords like
[travel, south africa], for successful parses. Otherwise, it would be a string ‘No
parse’ denoting the syntactic error. If the input text gets sucessfully parsed
but without having any keywords, the extractor will be returning a empty list.
For both the syntactic error and no keywords error, the intrepretor displays

appropriate error messages.

2. In nominal compunds like “South Africa” and “New York”, the words “south ”

and “new” are treated as adjectives by the parser and hence will be contributing

44

for two separate keywords. These keywords are to be unified to represent a
nominal compund, in order to ensure that synonyms are not added to them.
For example, the word “new” will be replaced with “new OR recent” if treated

as a separate keyword.

3. After grouping the nominal compounds, the synonyms for keywords if any are
logically “OR”ed.

4. The list of keywords is formatted to suit the individual search engines. For
example, the search engine HOTBOT, can not handle “+” sign, denoting the

words that must be present in the sites returned, with boolean options.

5. Finally, the sematic intrepretor passes the formatted list of keywords to the
selected search engine using the form method “GET”. Options provided ex-
clusively by certain search engines are chosen as default values using hidden
variables. Figure 4.14 shows the script for passing the formatted list of key-
words to the search engine HOTBOT. The value of the variabe $hot represents

the default and boolean option selected for searching.

if ($sename eq 'HOTBOT') {

print STDOUT "";

print STDOUT "FORM ACTION=\"http://www.hotbot.com/\" METHOD=\"GET\">";
print STDOUT "<INPUT TYPE=\"submit\" VALUE=\"CONTINUE\">";

print STDOUT "<INPUT TYPE=\"hidden\" NAME=\"sw\" VALUE=\"web\">";
print STDOUT "<INPUT TYPE=\"hidden\" NAME=\"SM\" VALUE=\"$hot\">";
print STDOUT "<INPUT TYPE=\ *hidden\" NAME=\"MT\" VALUE=\"$str3\'>";
print STDOUT "<INPUT TYPE=\"hidden\" NAME=\"DE\" VALUE=\"1\">";
print STDOUT "</FORM>";

print STDOUT "</FORM>";

}

Figure 4.14: Sample Script for Passing Keywords to Search Engine

The experimental results are detailed in Chapter 5.

45

Chapter 5

Experimental Results

In this Chapter, we present some experimental results of our natural language
interface to access some major contemporary search engines. Some factors considered
for assessing the quality of search results obtained are outlined in Section 5.1. The
error handling features of our system are discussed in Section 5.2. Some sample inputs
and their corresponding outputs are presented in Section 5.3.

An additional set of sample inputs and outputs is presented in Appendix A.

5.1 Factors for Comparison

Various factors are to be considered for assessing the quality of the search result,
which is one of the prime reasons that, thus far, none of the search engines have
been adjudged as the best. We restrict ourselves to consider the three key factors for

assessing the quality of the search results:
1. the ease of expressing the query by the user to get the desired output;
2. number of sites returned and
3. the relevancy of the sites returned to the query.

The ease of expressing the query is a significant factor, because each search engine
provides its own set of search options (“boolean”, “+”, “-”, etc.). A query can become

quickly complicated, if there are more than one or two keywords with some of the

46

keywords having few synonyms. In some of the existing natural language search
engines, the user has to pick appropriate words for getting the desired results, as
words other than keywords also contribute to the search.

Quite often, a very large number of sites are returned while searching. The search
engines normally return all sites that matches any or all of the keywords in the query.
Hence for a query, “visiting Japan”, sites on visiting Professor from Japan may also
be listed, even though this site may not be of interest to the user. The number of sites
returned can be considered as an important factor for comparison if the relevancy is
maintained and appropriate sites are not missed.

There are two significant reasons for getting large number of sites for a query:
1. the keywords selected may not be precise enough and

2. in some natural language search engines, words other than keywords contribute

to the search.

For example, if we consider the following two queries:

“Which airlines fly between Canada and Japan?” and

“What are all the airlines flying between Canada and Japan?”.
Both of these queries should yield the same search results in a natural language search
engine, not only in the number of sites listed but also in their ranking.

Relevancy of the sites returned also depend on the keywords matched. Hence
in keyword search engines, a search for “cheap hotels in Toronto” might also list a
site related to “cheap air tickets to Toronto” as the most matching site since the
two keywords “cheap” and “Toronto” are present. In NLAISE we refer to the term
“relevancy” as interpretation of natural language text to the appropriate search term.
For example, if the user presents the query as “I want to stay in Vancouver for
two days”, then NLAISE will semantically interpret this query for a search of sites
on hotels or motels or lodges in Vancouver. Instead if keywords such as “staying,
Vancouver” are searched without NLAISE, the sites on hotels or motels in Vancouver
may not be listed as top ranking ones.

The sample input and output are chosen in such a way to facilitate analysis of the

above factors.

47

5.2 Sample Output

Before we analyse the quality of the search results, one complete set of search
using our system Natural Language Access to Internet Search Engines(NLAISE) is
presented. This search was done using AltaVista for the text, “What is the current
weather in South Africa?”. Figure 5.2 illustrates the system response to the query,
and Figure 5.3 provides the output in AltaVista (a keyword search engine). For better
view, Figure 5.4 displays the front page of the search result.

CPENT TEXT

NTECSEER

Figure 5.1: Search for “What is the current weather in South Africa?” in AltaVista

48

WEE CPWLEPR

CPENT TEXT

Figure 5.2: NLAISE System Response

49

royweer

AhAVFS?/;‘) R Searching

/
Soorch Notwork L PR W””;‘\[l‘\\ ISt

Try it FREE

. : e-mail was Never

this .- - before...

About 22540 documents match yourquary.

1 =
‘Weather for South Africa. Holidays to South Africa. Flights to South
Africa. Typical Annusl Weather Pattern: Temp. Rain. Sun. deg C. deg

Figure 5.3: Output for the Search

50

Organised Weather Links - African Edition, Home of the best
GLOBAL weather
4 s — :izc 8K -

WEE CP~WLER

A collection of links to news, weather, maps, and information on
southem Africa —~ Southern Africa, South Africs, Lesotho,
angola, Namibia, Swaziland,

—sgczox 3-Mg-97 Elgush

CPEN TEXT . .
Organised Weather Links - African Edition, Home of the best
GLOBAL wea:he.r

NEOSFFR

Figure 5.4: Listing of the Front Page of the Results

Around 50 sample searches were made with and without NLAISE in each of the 5
selected search engines. In this section we have tabulated some of the search results
to facilitate comparisons based on the factors mentioned in section 5.1. We have pre-
sented results for comparison from two search engines, namely AltaVista and Infoseek
in Tables 5.2 - 5.5. Comparison of results from other search engines are presented in
Appendix A.

Table 5.1 illustrates the ease of expression in our system. NLAISE can handle a
word, words, phrase, sentence and question, which is one of the special feature of a
HPSG parser. On the other hand, the existing natural language search engines can
handle either word, words, phrase or questions only. The results tabulated denote

the number of sites returned for the query. Since Yahoo is a directory, its database is

o1

hierarchically organized into subject categories and Web sites are indexed under each
category. Yahoo’s search results return both the categories and the sites matched.

Sample searches in Tables 5.2 - 5.5, illustrate the following:

1. The total number of sites returned in Tables 5.2 and 5.3 (with NLAISE) is less
than the number of sites returned in Tables 5.4 and 5.5.

2. In Tables 5.2 and 5.3, the search terms generated for different queries like “What
is the currency of Canada”, “What is the Canadian currency?”, and “Canadian
currency”, remain consistent and hence the results are also consistent; whereas

in tables 5.4 and 5.5 these queries return different results.

Summarizing the Tables 5.1-5.5 and other results tabulated in Appendix A, we
can find that:

1. Both in keyword search engines and existing natural language search engines,
different inputs conveying the same keywords result in different search results;

whereas, in NLAISE results appear consistent.

2. The total number of sites listed in NLAISE is much lower in comparison to

results from the existing search engines in 92% of the sample inputs .

3. Queries in NLAISE can be expressed in much simpler and easier form when

compared to the existing search engines.

4. The search terms generated by NLAISE is relevant to the user query in all cases

whether the query is a word, words, phrase, sentence or question.

52

User Input Results | Results | Results | Results | Results
in Yahoo | in Alta |in Info- { in Web | in HotBot
Vista seek Crawler
Canada 115 category | 7583480 | 68668 102947 126887
8046 sites
South Africa 26 category | 596540 9950 122425 251576
1427 sites
Air Canada 8 category | 188100 1060 178350 149974
316 sites
travelling in 8 category 85500 1994 128101 70111
Japan 170 sites
shopping in 12 sites 20900 757 71196 10750
Vancouver
air travel in 30 sites 4100 104 264476 38370
U.S.A.
Give me some 5 sites 4260 813 47535 1405
places of tourist
attractions in
Singapore
What is the exchange | 2 category 7370 713 176562 5662
of Canadian
currency?
What is the weather 198 sites 198 24 68795 316
forecast for
Regina?
I want to travel 14 sites 21630 169 156407 16902

Europe by rail

Table 5.1: Ease of Expression in NLAISE

53

User Input

Keywords generated
by the system

Search results

I want to stay in
Vancouver for two
days.

+(hotel OR motel OR
lodge), +vancouver

20820 sites
returned.

visiting Tokyo

+travel, +tokyo

26660 sites returned.

I want to schedule
a visit to Tokyo

+travel, +tokyo

26660 sites returned.

I want to make an
online reservation
for hotels in Toronto

+reservation, +hotel,
+toronto

3100 sites returned.

What is the currency
of Canada?

+currency, +canada

24660 sites returned.

What is the Canadian
currency?

+currency, +canada

24660 sites returned.

Canadian currency

+currency, +canada

24660 sites returned.

Show me web sites on
current weather
condition in Alaska

current, +weather

+alaska

37490 sites returned.

I want to see the
road maps of Canadian
cities.

+maps, +canadian
+city

23830 sites returned.

Give me details about
Alaska cruise

+alaska, + cruise

33400 sites returned.

I would like to know
some details about shopping
malls in New York.

+shopping, + mall
+new, +york

9580 sites returned.

Table 5.2: Search Results in AltaVista with NLAISE

54

User Input

Keywords generated
by the system

Search results

I want to stay in +(hotel OR. motel OR 655 sites
Vancouver for two lodge), +vancouver returned.
days.
visiting Tokyo +travel, +tokyo 237 sites returned.

I want to schedule
a visit to Tokyo

+travel, +tokyo

237 sites returned.

I want to make an
online reservation
for hotels in Toronto

+reservation, +hotel,
+-toronto

49 sites returned.

What is the currency of
Canada?

+currency, +canada

910 sites returned.

What is the Canadian
currency?

+currency, +canada

910 sites returned.

Canadian currency

+currency, +canada

010 sites returned.

Show me web sites on
current weather
condition in Alaska

current, +weather
+alaska

641 sites returned.

I want to see the
road maps of Canadian
cities.

+maps, +canadian
+city

95 sites returned.

Give me details about
Alaska cruise

+alaska, + cruise

1285 sites returned.

I would like to know
some details about shopping
malls in New York.

+shopping, + mall
+new, +york

45 sites returned.

Table 5.3: Search Results in Infoseek with NLAISE

55

User Input Search results
accommodation, vancouver | 115620 sites returned.
hotels, toronto 736230 sites returned.
visiting, tokyo 852950 sites returned.
online, reservation, hotel, | 424350 sites returned.

toronto
currency, canada 385200 sites returned.
canadian currency 383670 sites returned.
current weather 718660 sites returned.
condition, Alaska
road maps, candian 1034330 sites returned.
cities
Alaska cruise 381820 sites returned.
shopping malls, 954520 sites returned.
New York

Table 5.4: Search Results in AltaVista without NLAISE

5.3 Error Handling

When a natural language system cannot understand a query, it is important that
the system respond to the user by providing diagnostic messages, showing the reason
for its inability to handle the query. This becomes very significant when the domain
is limited. Sometimes the user may try to rephrase the query in a different syntactic
manner, although the failure is due to limitation of the domain.

In our system error handling is performed at two levels. The Figures 5.5 and
5.6 are handled by the front-end JavaScript. The validation of errors in JavaScript
reduces delays, as otherwise validations are to be performed by the server. Hence,
data must travel from client to server, be processed, and then return to the client.
Also the handling of errors in the front-end simplifies the server program.

The back-end PERL script validates the input for the following and prompts the

user accordingly.

1. Lexical Error: for words that are not present in the lexicon,

56

User Input

Search results

“ accommodation in Vancouver”

4 sites returned.

accommodation in Vancouver

4834645 sites returned.

Where to stay in Vancouver

20060160 sites returned.

Visiting Tokyo

315235 sites returned.

“hotels in toronto”

132 sites returned.

What are the hotels
in Toronto that provide
provide online reservation?

22461233 sites returned.

Online reservation for hotels
in Toronto

11952387 sites returned.

What is the currency
of Canada?

22461318 sites returned.

What is the Canadian currency?

22461308 sites returned.

Canadian currency

113517 sites returned.

What is the current
weather condition in

Alaska?

26435568 sites returned.

road maps, Canadian
cities

3430194 sites returned.

Alaska cruise
details

1922574 sites returned.

shopping malls,
New York

23462205 sites returned.

Table 5.5: Search Results in Infoseek without NLAISE

57

O| Meiscape: Error

Figure 5.6: Javascript Error for “search engine” Field

2. No Keywords: for a text which does not contribute any keyword, and
3. Syntactic Error: for text that does not get parsed by the lexicon.

For syntactic errors the system will proceed using the keywords found in the text,
after displaying appropriate error message to the user. This is necessary to account
for grammatical errors made by the user. For example, if the user enters the query
“I want visit Japan”, the system will display an error message as shown in Figure
5.7 and proceed further with the keywords “travel, japan”. Also our system, at the
present stage, can handle only a portion of the syntax of the English language.

Conclusions drawn and future extensions of the system are discussed in
Chapter 6.

58

Figure 5.7: Sample Display for Syntax Error

59

Chapter 6

Conclusions

With the constantly increasing number of documents in the World Wide Web,
and many of these documents containing natural language texts, there is wide scope
for applying NL techniques in the WWW. We have presented one such application of
natural language processing for information retrieval in the WWW. Some common
problems encountered by the users employing the existing search tools include finding
the most appropriate search term and scanning through a large number of potentially
relevant documents to find the exact requirement.

In order to relieve users from finding the appropriate search terms, natural lan-
guage search engines are available in WWW. However, even in these natural language
search engines, different queries yielding to the same keywords, yield different results.
Hence the user has to paraphrase the query in different ways to obtain the desired

results.

6.1 Contributions

We have provided an application of natural language processing to improve the
handling of user queries. Our system, NLAISE, enables users to present their queries
to major search engines in natural language (English), without the need to study
the various options provided by each search engine (such as phrase within quotes,
questions only, and keywords only). Web searchers can describe the object of their
search easily and meaningfully in English, knowing that the appropriate keywords

60

will be extracted from their description.

We have used a HPSG parser to analyze the semantics of the user query to gen-
erate appropriate keywords for searching. Since the semantic content of the words
is analysed in parallel while performing the syntactic analysis, the influence of non-
keywords in a search is completely eliminated, thus maintaining consistency, reduction
in number of sites returned while retaining relevancy.

Various tests performed on our system demonstrate the following:

1. NLAISE provides easy and friendly access to some of the existing search engines.

2. NLAISE improves the search results by generating appropriate keywords after

performing semantic analysis of the query.

3. NLAISE also demonstrates that natural language processing concepts can be
positively applied for better performance of information retrieval tools in WWW.

Of course NLAISE is only an initial experiment providing positive feasibility for
this type of web searching. Several enhancements should prove instructive for the

future.

6.2 Future Extensions

Several extensions can be made to NLAISE. One desirable extension is to enhance
its domain knowledge. We have tested this system for a limited “travel” domain. How-
ever, simple extensions to other domains are made possible because of the modularity
of domain dependent and domain independent knowledge. While extending coverage
over other domains, we anticipate an increase in the complexity of the intrinsic prob-
lem of natural language understanding, in particular, “handling the ambiguities”. We
propose to allow users to choose the appropriate keywords from alternatives to resolve
ambiguity, if the parser cannot choose amongst alternatives.

Another possible extension is improving the syntactic knowledge of the parser to
handle more complex and powerful queries in natural language such as handling long

distance dependencies and ellipses.

61

As a further step to filter out irrelevant information, we also propose to have an
interactive interface as a future extension. The information gathered from the user’s
response is to be used for further analysis of the sites returned to help choose the
relevant sites from them. For example, if the user types in a text “I want to schedule a
trip to Japan”, the system might respond by asking further details as to whether it is
a business trip or a vacation trip. This information can be used to filter out irrelevant
sites from the sites listed for the search “I want to schedule a trip to Japan”.

At present we have not explored the options exclusively provided by each search
engine such as, searches within top 5% sites, maximum hits and searches on docu-
ments added after a specific period. Also the users cannot specify words that must
be present in the search term. For example, for a query “List all web sites on current
weather in Alaska”, the system selects keywords as “current, weather, Alaska”. Some
times the user may wish to include specific words like “web, site” in the search term.
In future extensions we propose to retain all the features offered by a search engine
while providing a natural language access and allow the users to specify words that

must be present in the search term, if any.

62

Appendix A

In this section, some sample search results with and without NLAISE are fur-
nished. Figure A.1 and A.2 show the search results in Infoseek with NLAISE for the
text “What is the weather forecast for Regina?”. Figure A.3 and A.4 illustrate the
search results in Infoseek for the text “What is the weather forecast for Regina?”
without NLAISE. Figure A.5 and A.6 present the search results in AltaVista for the
query “I want to see the road maps of Canadian cities” with NLAISE. The search
results for “road maps, Canadian cities” in AltaVista without NLAISE are presented
in Figures A.7 and A.8.

63

UPmofof Malgegs‘:ﬁtma ’ Gﬁ?:;

Infoseek found 21 pages containing at least one of these words: +weather, +forecast,
+regina,

» |[N“s""ﬂ l|§m=h'l‘umnuuu|

WEB CPAWLER
Fozx free stock quotes, check Infoseelc Investor.

OPEN TEXT Click heve

Search Results 1 - 10

Hide Suramaries | next10

INTELLICAST: ina We

HOME | WORLD WEATHER | REGINA | regina weather report
sections: four day forecastimages to download regina four day forecast
Last updated Tuesday, 22-Oct-96 04:05:14 temperaturesin ...
hup:itwww. intellicast.comMweatherlyqr! (Size 3.4K)

T | fRelated Topics|

Howxrd’s Wi
Howudts Westher Saskatchewan Weather Howard Thomtox brings

ITFCSEEK e e e e

Figure A.1: Sample Result in Infoseek with NLAISE

64

Howard's Weather
Howard’s Weather Saskatchewan Weather Howard Thomton brings
the province up to date, twice deily, with all the latest weather
information. | Regina Forecast | Saskatoon Forecast| ...
hetpliwwe.che.calsitesicbe_sask/tw/howardwxhtml (Size 4.5K)

Forecasts and Data - Canada

[Athene] [Curiculum] [Weather] Updated Weather Data and
Forecasts Cenada Here is a satellite view of current cloud cover in
Canada provided by The Weather Channel. About Fahrenheit...
http:/Anspire.ospi wednet. edu:8001 /curric/weather/intiweat/canada html

WEB {P4WLER ' . (Size 8.3K)

i mmolet (UV) Indmes (latest bulletm availahle atSun Oct 27
YAHCSS : 15:41:33 EST 1996) Try our new cuxrent conditions and city forecasts
i pages FPCN48 CWAO 271945 ENVIRONMENT CANADA ...

T T e e http:fivnew.ondoe.ceftextfpend8. waohun (Size 4.9K)

CPEI TEXT

Thls page dedxmed to the munoxy of Regina D. Wirl "Gram” Weather
links for the City of Pittsburgh, Pennsylvania. National Weather Sexvice
Forecast From the National Weather Se

http/Awww nauticomnetosers/imatmoasimatthtm (Size 2.6K)

Saskatchewen extended (la.ﬂest bu]letm avuilable at Wed Nov 6 9:11:36
EST 1995) Try our new current conditions and city forecasts pages
FPCN54 CWXE 050915 EXTENDED FORECASTS FOR ...
http/Awww.ondoe.coltextfpenS4. wxehtm (Size 3.3K)

IMNEFCSEEK

Figure A.2: Sample Result in Infoseek with NLAISE

65

Home | AddURL | Eree Software | Help

infoseek- &

proof of intelligent life on the nets Whis & Yellow Pages Global Services

Infoseck found 26,439,167 pages containing at least one of these words: What is the weather forecast for Regina?

|jxusm| Ils«mtmemuu]

To search fox terms embedded ina URL, type "wrl " before the texm.
Exsmplezurl:science

Related Topics

Hide Summaries | next 10

Weather Farecast England for the weekend, Good News from Your Personal
‘Weather Forecast England for the weekend, Geod News from Your Personal Informer. Weather

Forecast England delivered to YOUR DESKTOP every friday. The Weather Forecast England good

hupﬂwww.pohtezs.co.n]dkcyiinfomwealhed (Size 48K)

UK Weather For for theweekend, Good News lzom Your Personal Informe: UR Wr.athu
Forecast delivered to YOUR DESKTOP every friday. The UK Weather Forecast good or bad
decides ...

- - . - . . sree a ovrs

Figure A.3: Sample Result in Infoseek without NLAISE

66

Related Topics _ J]Search Results 1 -10

Weather Forecast Englnnd for the weekd Goo d News fxom Your Pers onal Informer Weather
Forecast England delivered to YOUR DESKTOP every friday. The Weather Forecast England good

httpa‘lwww.pointers.co.uldkeyfmfomweadmﬂ (Size 48K)

UK Weather F oreeest for theWeekend Guod News from Your Pe:sonal Infoxmer UK Weather
Forecast delivered to YOUR DESKTOP every friday. The UK Weathexr Forecast good or bad
decides ...

heep:Aiseww pointers.co.uk/key/nformukweather! (Size 4.6K)

IEXAS WEATHER

AN EXCLUSIVE OF THE LONE STAR STATE. THIS PAGE WILL BE RECONSTRUCTED IN
TWO WEEKS. Temp Dewpt Press Wind Dir Wind Speed COLLEGE STATION DC YOU WANT
TO GO ON AN EXCITING ...

http:/Arwrw.met.tamu edupersonnel/studentsimeeveritexas2.html (Size 23.1K)

Weathe! Forecast Softwues Duwn]oad Slte Free downloa.d the latest ’Wm Weather’ the best
weather forecast software along with previewing actual screen shots of the main features ! ..
hup /v shinbiro.com/~51101 Aveatherforecasthuml (Size 4.6K)

Ohio zane fore TIONAL R SERVICE LAND OH 1123 PM
EST SATURDAY NOVEMBER 9 1996

---------- NWS-WEATHER-FORECAST----------
Defiance~Fulton-Hancock~Henry - Lucas-Ottawa- Paulding- Putnam-Sandusky -

Seneca- Williams-Wood- Wyandot- Including the ...

http:/fns noas.goviweather/zone_forecastZFPOH TEXT (Size 44.5K)

Weathex Sites

A Comprehensive Weather Directory - The Best Weather Sites On The Web - Very User Friendly
- Weather Maps - Weather Forecasts - Severe Weather Wamings
hetp:ifvrwwe . websites2000.comiweathersites! (Size 9.9K)

Figure A.4: Sample Result in Infoseek without NLAISE

67

89

ASIVIN UM eIstAe)[Y Ul ynsay s[dureg :¢'y aIndrg

ysudug ~ 5~ Ko-8 ~ 2 23S — PR IOBDSC D0 BoRps MAmAyy. 4 [
*“I0TAS ST YRTA\ "03 SOlp UBTPRIRS) 3013 Sf) TR PUB BPRTVY UT SUORSUDSIP
Tre X0} 301xes Sutddeur Liw © 51 dBUX 203890 3ARHB) 1M SULJ USPUUBY YL,

TSR OS] SNP DS P FH Wein’) 2

ysyug - zs—m'v—w - 301 9ns — PR OTI0]eLRoqqR~ {00 Y SOSR ARAqHYT- e [

L8661 VIADY 9B 03 WP, “wpeued up sanbmdesB o) saanpry

39 59NBIR0IVY SIP UONUBOSSY "SIATPIY Pue ST degA] weIpRURS J0 WONKROSSY
STUBISP0] L661 (V INIV) SOARPAY Pub SoLeIr] T 70 wopet T

*A12nb INOA YITeW SIUBWINJOP DZSEZ IhOqY

UoRag PaduRADY * {oieag MI * taduadapeld * GlsH INIL [EdT

JIATATED dIs

uouNjoALY . FEO M SO Sy MICMEOPY OGS

| e e YSIAVILY

£

A P

B herp ./ 1library usask cal-hubbertzlecmia homi - size 10K — 14—~Apr-97 - English
2. Canadisn Plus inter@ctive locator map

The Canadian Plus inter@ctive locator m@p is a ity mapping sexvice for all
destinations in Canada and the US that Canadian flies to. With this sexvice...

8 hewp Srwww cdnair. calepifiocator.heml ~ size 2K — 8-May—97 - English

3. The NEXT CITY -The Canadian Intexrnational Marathon
Created: SBAS Updated: 9/23/86 webmaster@nextcity.com.
B hetp £ www nexcity. comigoleimentryform heml — size 577 bytes — 23-Sep—86 -
English

4 The NEXT CITY -The Canadian International Marathon
link back to The Next City. Created: 5886 Updated. 9723/86 webmaster@nextcity.com.

.MMMM_ size 622 bytes — 23-Sep-86 — English

‘ Inioma.uon ahout Ottawa, Ontmo for tourists, travellers, people who e relocating,
studems and others. Attncuons climate, transportation,
Wi O 2 gwa brm — size 17K ~ IO-MG}’-W ETth

OPEM TEXT

n nita wadien City Informstion Page:
Inionnauon abom: W‘nmmeg, Manitoba for tourists, tmvenus, people who are
xelocaung. students and others. Attractions, climate, transportation,

B keep wwiw. duben. comicityinfolwinnipeg.bam - size 14K — 10-May—97 — English

Information about Canadian cities for tourists, travellers, people who are relocating,
students and others. Attractions, climate, transportation,

betp Hwww. dubon. comleizvinfollinks.htm — size 3K — 11 —Feb-97 — English
8. Vancouver, Britich Columbia: Canadian City Information Pages

Information about Vancouver, British Columbia for tourists, travellers, pesple who are
relocating, students and others. Attractions, climate,

7

Figure A.6: Sample Result in AltaVista with NLAISE

69

AliaVista~

Soarcht Nofwork

About 1034940 documents match your query.

1.

Four Canadian uues raved in top ten in survey of locational advantages. Corporate Resources Group (CRG) of Geneva
Te; mveys ma]orworld cities...
wp fiwy zech gc.ca/engl - size 3K — 29-Jan-97 - English

CANADIANCITIES HOME Agmts Airlines Canadmnlnfomanon Destinations Hotels ..
B hezp 44 nz.net/ho - size 9K — 19-Aug-96 - Engzuh

nbsp,Afewclnuds 9°C.66% 2°C.102.7 kPa. 24 k/h E. 3 2C. Mainly clear skies. 12 °C,

B berp Lwww. heweatheretwork com/eitylean/daalsarnia biml ~ size 9K — - 22-May~97 ~ Ea\gl‘wh

Figure A.7: Sample Result in Alta Vista without NLAISE

70

any suveys mo]ox wona aaes...

2Stury bam ~ size 3K — 29-Jan—-97 ~ English

CANADIAN CITIES. HOME Agents Airlines Canadian Information Destinations Hotels ...
beep Hwww fronz netihome hwebsitesitraveliedn_cities.htmid - size 9K - 29-Aug—~96 — English

3. Canadian Cities — Sania
nbsp; A few douds. 9 °C. 66% 2 °C. 102.7 kPe. 24 km/h E. 3 *C. Mainly dear skies. 12°C. ...
: thew twork iry/can/dotalsamnia heml — size SK — 22-May-97 — Englisk

4. Canadion Gities — Gimli
nbsp,2°c 75% -9°C.N/A. 33 km/h N. -2 *C. Mainly clear skies. 15°C. 2°C...

B beap Hwww. theweathernenwork com/eizylcam/deatalgimli hemd - size 9K — Z?—May—ﬂ English

s, Canadian -M
nbsp,AfeW douds 14 °C 4475 10°C. 1020 kPa. 17 kmh NW. 2 ¢C. Clear. 16°C.
(=] ‘ Aozt : comieirv/canidaramontreal kami — size 9K —~ Z?—Ma:y—97 English

WHO Cnllnbonung Cue for Reseaxch on Healthy Cmcs Healthy Cites Related References in Canada: Healthy
Cities Homepeages. Toronto Healthy City...
B bazp twrww. rulimberg il ~who—cizylequref biml - size 729 bytes — 28-Oct96 — English

‘enad je xlotte
nbsp, Puﬂycloudy 5°c m -2°C.1012kPe. 22 kawh N.0 {C. Cloudy with clear bresks. 12°C...
8 zthe Jdazalchariozerown, hemi - size 9 - 23-May~97 - English

- size 9K - 24-May-9? English

9. =
nbsp; Fog.3°C. 100% 1 °C. 1009 kPa. 11 km/h N. 3 2C. Maeinly doudy. §°C. 0°C...

Bl peep thwww ork comleityl — size 9K - 20-May—97 - English

10. Weather Data - Canadian Cities
Figure A.8: Sample Result in Alta Vista without NLAISE

71

User Input Results Results | Results | Results Results
in Yahoo in Alta | in Info- | in Web | in HotBot
Vista seek | Crawler
U.S.A 37 categories | 241766 67451 123259 1487128
1170 sites
New York 154 categories | 4735220 9806 88881 1309440
4169 sites
Canadian 2 categories 26710 1483 52374 548446
Airlines 25 sites
auto rentals in 4 categories 3560 35 150215 2298
Canada 53 sites
booking flight 5100 sites 5100 170 128090 7116
tickets (AV)
Give me a list 35 categories 31640 161 115169 47174
of restaurants 283 sites
in New York
I like to see 18 categories 8410 1995 117734 787
the travel 337 sites
guidebook for
China
List all hotels 6 sites 293 562 60373 56374
and motels in
Tokyo.
I want to schedule 20 categories | 20020 164 435586 68606
a business trip 268 sites
to New York
List all travel 5 sites 3020 98 139301 3417
agents in Vancouver
What is the airfare 8570 sites 8570 198 12246 638
from Toronto to (AV)
Vancouver
Which hotels in U.S.A 6 sites 2910 324 172685 8363
have online resevation?
I would like to see 24 sites 3160 630 130182 9275
the sites on boating
in U.S.A.
What is the currency 1 site 10530 1279 32681 16483
of China

Table A.1: More Samples with NLAISE

72

User Input Results Results Results
in Yahoo | in Web crawler | in Hot Bot
I want to stay in 12 sites 79786 564334
Toronto for two
days.
visiting Tokyo lcategory 106421 23133
22 sites
I want to schedule 1 category 106421 23133
a visit to Tokyo 22 sites
I want to make an 3100(AV) 77331 2067
online reservation
for hotels in Toronto
What is the currency 2 categories 111580 31597
of Canada? 14 sites
What is the Canadian 2 categories 111580 31597
currency? 14 sites
Show me web sites on 1 category 213925 11971
current weather 17 sites
condition in Alaska
I want to see the 1 category 264325 17823
road maps of canadian 46 sites
cities.
Give me details about 1 category 28912 9325
Alaska cruise 71 sites
1 would like to know 1 category 780333 13699
some details about shopping 9 sites
malls in New York.

Table A.2: Search Results in Yahoo, WebCrawler and HotBot with NLAISE

73

User Input Results in Results Results
in Yahoo in HotBot in Web Crawler
U.S.A 37categories No results 123259
1181 sites 1487128 for USA
Air Canada 8 categories 150037 178350
316 sites
New York 154 categories 1309942 38881
4185 sites
accomodation, 16 sites 1151 25569
Toronto
shopping, 1 category 57778 139998
New York
air travel, U.S.A. 30 sites 38370 264476
weather forecast, 150590(AV) 316 68795
Regina
staying, toronto 99660(AV) 5623 29590
visiting, Tokyo 857520(AV) 10324 61722
online reservation, 8 sites 635 264617
hotels, Toronto
currency, 2 categories 31597 111580
Canada 14 sites
Canadian, 2 categories 17524 52169
currency 18 sites
current weather 6 sites 2078 231440
condition, Alaska
road maps, canadian 1 site 2631 199802
cities
Alaska cruise 1 category 9325 108215
shopping mall, 1 category 45 141599
New York 9 sites

Table A.3: Search Results in Yahoo and HotBot and Web Crawler without NLAISE

Appendix B

Program Listings

Y dekeseskoke ke e skskoke ok ok o ok Rk ok sk skl skl sk sk sk skl ook sk sk sk ek ok ok ok ok ok
% This file contains the program code for the

% HPSG parser developed for the travel domain.

% Last modified on August 14th, 1997

% System: ALE 2.0.1 under Sicstus 2.1 #9
Y sk ok ok sk ek ok ok sk ko ok ok ek ok Ak ks ok ok

'/. ke 3fe sk 3 3k ok e 2k e 3k e sk sk 36 ok 2k 3 9k o e 3k e sk s e ke ok sk e e e ke e o e e e o e o e sk sk ok ok ke ok sk o ek 3k k-

% Type Declaration
Y dekkkskok sk ok ok ok sk ook kKR koK sk ks ok ok sk ok kKoK Kk Kk ok

% The hierarchy under bot
% Bot has three top-level subtypes
bot sub [system, syntax, semantics].

% basic data types
system sub [bool, list].

% syntax: subset of english grammar
syntax sub [sign, synsem_or_none, loc, cat, head, case, marking,
agr, pers, num, pfarm, vform].

% semantics: domain specific
semantics sub [cont, keyword, db_action, dconcept].

WARIIIIALAALARLL L LA LAAL LY
% Basic data types:
boolean and list.

%
RARIALLLLIAALEL LR ADAAR LA NL
% boolean

75

bool sub [minus, plus].
minus sub []
plus sub [J.

% list
list sub [e_list, ne_list, synsem_list, sign_list, key_list].
e_list sub [J.
ne_list sub [ne_synsem_list, ne_sign_list, ne_key_list]
intro [hd:bot,
tl:1ist].

synsem_list sub [e_list, ne_synsem_list].
ne_synsem_list sub
intro [hd: synsem,
tl: synsem_list].
sign_list sub [e_list, ne_sign_list].
ne_sign_list sub [
intro [hd: sign,
tl: sign_list].

key_list sub [e_list, ne_key_list].
ne_key_list sub []
intro [hd: keyword,
tl: key_list].

%%%%%%%%7%%?7%7%%7%7/%7%%7%%7%7%7%7%%777%7%777%7%7%%%%%
% Syntactic Hierarchy

%%%%%%%%7L%VA%YA%Y//A%VA%%%%VAZ%%%?A%%Y/A%%%V/AZV/A%YA%

sign sub [word, phrasel
intro [synsem:synsem].
word sub [
phrase sub [].

synsem_or_none sub [synsem, nomne].
synsem sub []
intro [loc:loc].
none sub [J.

loc sub [0
intro [cat: cat,
cont: cont].

% The CAT feature
cat sub [J
intro [head: head,
subcat: synsem_list,

76

spr: synsem_list,
% used for specifier selection
marking: marking].

head sub [funct, subst, dummy, how].
funct sub {[det, mark]
intro [spec: synsem_or_none].
det sub [J.
mark sub [].
subst sub [adj, noun, verb, prep]
intro [mod: synsem_or_none].
adj sub [
noun sub []
intro [case: case,

agr: agr].
verd sub [
intro [aux: Dbool,
inv: Dbool,
vform: vform].
prep sub [J
intro [pform: pform].
dummy sub [].
how sub [].

marking sub [marked, unmarked].
marked sub [comp, conjl.

comp sub [for, that].
%%% for sub [O.
that sub [].

conj sub [and, or].
and sub []. or sub [J.
unmarked sub [J.

case sub [nom, acc, dat].
nom sub [].
acc sub [J.
dat sub [.

agr sub []
intro [person: pers,
num: num].

pers sub [first, second, third].
first sub [J. second sub [J. third sub [].

num sub [singular, plural].
singular sub []. plural sub [J.

77

pform sub [after, at, between, by, during, for, from,
in, of, on, over, to, with, under, about, near].

after sub [J. from sub [J. with sub [J.

at sub [J. in sub [J. between sub [].
of sub []. by sub []. on sub [].
during sub [J. over sub []. for sub [I.

to sub [J. under sub [J]. about sub [].

near sub [J.

vform sub [fin, bse, ger, inf, pas, prt, psp] .

fin sub [. % f1n1te e.g., speaks, spoke

bse sub (. % base, e.g., speak, be

ger sub []. % gerundive, e.g., speaking

inf sub [J]. % infinitive, e.g., to see

pas sub [. % passive, e.g., spoken

prt sub [] % present participle, e.g., speaking

psp sub 0. % past participle, e.g., spoken
'/.'/.'/'/.'/'/.'//'/.'/.'/.'//.'/.'/'/-'/.'/'/.'/.'/'/.'/.'/.'/.'/'/.'/'/.'/'/.'/.'/.'/.'.'/.'/'/.'/'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/'/'/.

% Semantic Hierarchy

R A L AR AR L

% The CONT feature
cont sub [
intro [
sem_mark: dconcept,
keyword: key_list].

keyword sub [ykey, nkey, dconcept].
ykey sub [specific_con].
nkey sub [gencon].

% used for selectional restrictioms
% especially in nominal compounds
P y P

dconcept sub [gencon, specific_con].

gencon sub [J.
specific_con sub [places directions, transportation, weather,
food, accomodation, economics, bu51ness]

places sub {asia, africa, america, canada, europe, midwest,
toronto, vancouver, tokyo, usa, new, york alaska, regina,
publlcatlons c1ty, country, region, asian, african, canadian,
british, attractions].

asia sub [india, bhutan, china, japan, bali, singapore, korea,
nepal, thailand, taiwan, tibet].

78

india sub []. china sub [J.

bhutan sub [J. japan sub [J.
bali sub [J. singapore sub [J.
korea sub [J. nepal sub [J.
thailand sub [J. taiwan sub [].
tibet sub [J. usa sub [J.
tokyo sub [J. toronto sub [J.

vancouver sub [J. alaska sub [].
regina sub []J.

africa sub []. europe sub [].
america sub [J. midwest sub [J.
canada sub []. new sub [].
york sub [J.

publications sub [guide, guidebook, magazines].

transportation sub [air, flight, train, rail, fare, rate,
ticket, auto, rentals, boat, boating, cruise, booking, airport,
airlines, airways, road, map, fly, information, reservation,
agency, agent, international, tourist, travel].

directions sub [north, south, east, west, central].

food sub [restaurants].

accomodation sub [hotel, motel, lodging, cheap, economicall.
weather sub [current, forecast].

economics sub [currency, exchangel].

business sub [shopping, malls, gift].

flight sub []. air sub [J.
train sub [J. fare sub [].
auto sub [J. information sub [J.
restaurants sub [J. guidebook sub []
rate sub [J. rail sub [J.
region sub []. magazines sub [].
guide sub [J. ticket sub [J.
boat sub [1. boating sub [].
shopping sub []. gift sub [].
malls sub []. booking sub [].
asian sub [J. african sub [J.
canadian sub [J. british sub [J.
north sub []. east sub [J.

south sub []. west sub [].
current sub []J. currency sub [].
agent sub []. hotel sub [].
motel sub [J. travel sub [J.
lodging sub []. city sub [J.

79

country sub []. airport sub [J.

airways sub []. airlines sub []

road sub []. map sub [J.

rentals sub []. reservation sub [].
international sub [J]. exchange sub [].
agency sub []. fly sub [J.
economical sub [J. central sub [J.

cheap sub []. cruise sub [].
tourist sub [J. attractions sub [J.

forecast sub [I.

8 sk ok skok sk ok ok sk sk ek ok o ok ak sk sk ok sk ook o sk ok ok ok ok ek e sk e
od
% Basic syntactic macros: for accessing feature values.

% type synsem
Y ok kR ok sk ok Rk Rk ok kol ks ok ok ok

%%% head
head_s(X) macro (loc:cat:head:X).

%%% subcat
subcat_s(X) macro (loc:cat:subcat:X).

W% spr
spr_s(X) macro (loc:cat:spr:X).

%%Y% specifier
spec_s(X) macro @head_s(spec: X).

%%/ verd

vform_s (X) macro ©®head_s(vform:X).
%% aux

aux_s(X) macro Qhead_s{aux:X).
%%% inv

inv_s(X) macro Qhead_s(inv:X).
%%% noun

case_s(X) macro Qhead_s{case:X).

agr_num_s(X) macro Qhead_s(agr:num:X).
agr_pers_s(X) macro Qhead_s(agr:num:X).

%%% preposition

pform_s(X) macro Qhead_s(pform:X).
%4% mod
mod_s (X) macro Qhead_s(mod: X).

80

%% marking
marking_s(X) macro (loc:cat:marking:X).

Y skotestake ek ook akakok sk sk ok ook sk ok sk o sl o sk sl oo ok sk ok ke sk ok ok ok ok ok ok
7 Basic syntactic macros: access feature values.

% type sign

Y, oKk ek ok ok ok o ook e o ok ok ek ok ok sk ke ke ek ok sk ok ok ke ok o o ok ook e sk ok

%%% head
head(X) macro (synsem: Qhead_s(X)).

%%% subcat
subcat (X) macro (synsem: @subcat_s(X)).

%%4% spr
spr(X) macro (synsem: Q@spr_s(X)).

%4% specifier
spec(X) macro (synsem: @spec_s(X)).

%44 verd

viorm(X) macro (synsem: Qvform_s(X)).
A% aux

aux(X) macro (synsem: Qaux_s(X)).
%% inv

inv(X) macro (synsem: Q@inv_s(X)).

%%% noun

case(X) macro (synsem: Qcase_s(X)).
agr_num(X) macro (synsem: Qagr_num_s(X)).
agr_pers(X) macro (synsem: Qagr_pers_s(X)).
%%% preposition

pform(X) macro (synsem: Q@pform_s(X)).
%%4% mod

mod (X) macro (synsem: @mod_s(X)).

%%% marking
marking(X) macro (synsem: @marking_s(X)).

% sk koo ook ook ok ok sk sk sk sk ko ok ok s kok sk ook ek ok sk sk ksk ok ook ok ok
% Macros use in subcategorization lists and modifier features.
% type synsem

81

y. 3¢ s afe sfe e e ok ke 3de ke e 3 e e ke ek e 2 ok ke sk 3 ke e ke ke sk 2 ke sk e 3 sk A 3k e s o ofe sk afe s ke e 3k e e e e e sk o ek ek ek ko ke k

4%% adjective
adjective_s macro

@spr_s(e_list),

%%% determiner

determiner_s macro
/*

@spec_s((Qhead_s(noun),

Q@subcat_s(ne_synsem_list))),

@spec_s(@head_s(noun)),
@spr_s(e_list),

possesiveDet_s macro

%%% noun
common_s macro

0spr_s([0@determiner_s])).

np_s macro
npObj._s macro
npSubj_s macro

%%% preposition

prep_s(PForm) macro
@spr_s(e_list),

/*

preposition_s(PForm) macro

% @mod(nomne),

*/

% Preposition subcats for one
% and it modifies a noun or a

(Qhead_s(adj),
@subcat_s([1),

®mod_s (Ghead_s(noun))).

(Chead_s(det),

*/

Osubcat_s([)).
(Qhead_s(det),
@subcat_s([@np_s])).

(Qhead_s(noun),

%%% @subcat_s([@determiner_s])).
(@head_s(noun),

@subcat_s([)).
(Qnp_s,

Qcase_s(acc)).
(onp_s,

Qcase_s(nom)).

(Qhead_s(prep),
@pform_s(PForm)).
(@prep_s(PForm),
@mod_s((@head_s(noun), @subcat_s([1))),

@subcat_s{[@head_s(noun), Ghead_s(noun)])).

NP and a ’dummy’ head
VP

preposition_s(PForm) macro (@prep_s(PForm),

(Omod_s{(@head_s(noun));

@mod_s(Qhead_s(verb))),
Osubcat_s([Chead_s(dummy), Qhead_s(noun)])).

82

%%% verb

verb_s (VForm) macro { Q@head_s(verb),
@vform_s(VForm)).
xcomp_s (VForm) macro (@verb_s(VForm),

Qaux_s(minus),
@inv_s(minus),
Q@subcat_s([@np_s])).

%A% conjunct
% temporary fix for conjunction and general coordination

Y see note and lex re: coordination in coord.txt
/ and coord.zale

conj_s(ConjForm) macro (Ghead_s(mark),
% @spec_s(none),

espr_s(e_list),

@subcat_s(e_list),
Cmarking_s{ConjForm)).

] o ks e sk ok o ok ok sk ke oo Ao sk o sk s ook sk ook o
% type: sign

%A% adjective
adjective macro (Q@head(adj),
@subcat (1),
@spr(e_list),
Cmarking(unmarked),
@mod (Qcommon_s)).

%%% determiner
determiner macro (Qhead(det),
@spec(Ghead_s(noun)),
@spr(e_list),
Omarking(unmarked),
@subcat ([1)).

possesiveDet macro { Q@head(det),
% @spec(none),
0spec(Qhead_s(noun)),
Ospr(e_list),
Omarking(unmarked),
@subcat ([@head_s(noun)])).

%%% noun

83

common macro (Qhead(noun),
% @spr([@determiner_s]),

0spr([Ohead_s(det)]),

Omod (Q@head_s(noun)),

Omarking(unmarked),

@subcat (e_list)).

% @subcat([@determiner_s])).
np macro (Qhead(noun),
@spr(e_list),

Omarking(unmarked),
Q@subcat ([1)).

npNonMod macro (Qnp,
Q@mod(none)).

npSubj macro (OnpNonMod,
Qcase(nom)).

np0Obj macro (@npNonMod,

Qcase(acc)).

%%4% preposition

prep(PForm) macro (Qhead(prep),
Q@spr(e_list),

@pform(PForm)).
/*
preposition(PForm) macro (@prep(PForm),

% @mod{(nomne),
@mod ((@head_s(noun), @subcat_s([]))),
Q@subcat ([0head_s(noun), Q@head_s(noun)])).

*/

% Preposition subcats for one NP and one ’dummy’ head
% This avoid having to add an additional phrase rule
% to capture PP -> P, NP.

% Preposition modifies a noun or a VP

preposition(PForm) macro (@prep(PForm),
Omarking(Marking),
(@mod(Qhead_s(noun));

@mod (@head_s(verb))),
@subcat ([@head_s (dummy),
]gogead_s(noun), Omarking_s(Marking))

preposition(PForm, Mark)
macro (Qprep(PForm),
(@mod((Q@head_s(noun),

84

@smarker_s(Mark))

),
Osubcat([@head_s(dummy), @head_s(noun)])).
%%% verb

verb(VForm) macro (Qhead(verb),
Omarking(unmarked),
Cvform(VForm)).
vp macro (Q@head(verb),
@vform(bse),
Qaux(minus),
Omarking(unmarked),
@mod (none)).

xcomp (VForm) macro (Qverb(VForm),
Qaux(minus),
@inv(minus)).

% auxiliary

auxil (CompForm) macro (@head(verb),
@vform(£fin),
Qaux(plus),

Omarking(unmarked),
@subcat([@npSubj_s,

(Chead_s(verdb), @vform_s(CompForm,

@subcat_s(ne_synsem_list)

)
1)).

%%% Verbs subcat for (saturated) noun phrase
W%

% ditransitive

% e.g., "John gives Sandy the book"

ditrans macro (Qvp,
@subcat([@np_s,
@npObj_s,
f@?e?d_s(noun), Qcase_s(acc))

% control verbs
icontrolv(VForm, CForm)
macro (Qverb(VForm),
Omod (none),

85

@subcat([@np_s, @xcomp_s(CForm)])).

tcontrolv(VForm, CForm)
macro (@verb(VForm),
Q@mod (none) ,
O@subcat([@npSubj_s,
QnpObj_s,
0xcomp_s{(CForm)

12).

% intransitive
intrans macro (Qvp,
Q@subcat([0np_s])).

intransPP(PForm) macro (Qvp,
@subcat([@npSubj_s, @prep_s(PForm)])).

% transitive
trans macro (Qvp,
@subcat([@np_s, @npObj.s])).

%“%% conjunct

conj(ConjForm) macro (Qhead(mark),
% @spec(none),

@spr(e_list),

Q@subcat(e_list),
Omarking(ConjForm)).

Y ook sk ok ke sk sk o ke sk ke e ok e o ke sk ke e e e ok e ek sk e e e ok sk sk sk e ek sk s ok sk ook e ok ok ek F

% Macros for use in lexical entries
Y sk ok ke s sk sk e sk e sk sk ook el e s o ke e s ke s sl e o oo e o e ok e ke s sk s e s e ke e ke e e ook e ek sk ok ko o
(]

AN AN S YA A YA AAA
%%% adjective

adjective_lex macro (word, Qadjective).

ARRARA R AR AR RN

%%% determiner

86

determiner_lex macro (word, Q@determiner).
possesiveDet_lex macro (word, @possesiveDet).

WABBANRAARALLALLA

%% noun

cn_lex macro (word, Q@common) .

proper_lex macro (word, OnpNonMod),
Q@keyword(gencon).

ppronSubj_lex macro (word, QnpSubj),
Qkeyword(gencon).

ppronObj_lex macro (word, QnpObj),
Qkeyword(gencon).

Y AN A NS YN AAA A A AA

%%% preposition

preposition_lex(PForm) macro (word, Qpreposition(PForm)),
Qkeyword(gencon).

preposition_lex(PForm, Mark)

macro (word, Q@preposition(PForm, Mark)),

Qkeyword(gencon).

for_lex macro (word, @for_prep).

YAAASAS AN N AAN AN AN YA
%%% verdb

aux_lex (CompForm) macro (word, Qauxil (CompForm)) .
ditrans_lex macro (word, @ditrans).

icontrolv_lex(VForm, Form)
macro (word, Qicontrolv(VForm, Form)).

intrans_lex macro (word, Q@intrans).
intransg_lex macro (word, Q@intransger).
intransPP_lex(PForm) macro (word, QintransPP(PForm)).

tcontrolv_lex(VForm, Form)
macro (word, Q@tcontrolv(VForm, Form)).

trans_lex macro (word, Qtrans).
ditrans_lex macro (word, Q@ditrans).

YYYANN YA AN Y Y AN A A A
%%% conjunct
% temporary

conj_lex(ConjForm)} macro (word, Qconj(ConjForm)).

and_coord_lex macro (@conj_lex(and)).

87

or_coord_lex macro (Q@conj_lex(or)).

'/. aBc ok 3k 2k 2k 3k 2k 3 o o ok ok e e 3¢ 3 ok e e sk ok ek e e e e e e e e b ek e 2 e e e b ek ok ke sk ok e e e e e ofe e ok e e ok

% Semantic Macros: Domain Independent
Y kst okok sk sk ook sk koo ek sk s ok ok ko ok ks o ok e koo

% eskokokokokskok ook Kok
% type synsem

Y ko sdeok ok ok o sk ok ok
cont_s(Cont)
action_s(Act)
smarker_s(Marker)
keyword_s(Keys)

% kR kskdkokkkk

% type sign

% koK k kK

cont (Cont)

action(Act)

smarker (Marker)

keyword(Keys)
tl:e_list))).

subkeyword(Keys)

tl:key_list))).

macro
macro
macro
macro

macro
macro
macro
macro

macro

(loc:cont:Cont).
Qcont_s(action: Act).
Qcont_s(sem_mark:Marker) .
Q@cont_s(keyword: (hd:Keys)).

(synsem:loc:cont:Cont) .
Qcont(action:Act).

Qcont (sem_mark:Marker) .

Qcont (keyword: (ne_key_list, (hd:Keys,

Qcont (keyword: (t1: (ne_key_list, hd:Keys,

% The following macro definitions for nouns and adjectives
% are used when semantics is taken into consideration.

%%% We also classify nouns into classes

hhle
hhh
Wil
/A4 A

B WN -

np takes complement and acts as a modifier of other nouns.
np takes complement and not a modifier.

np takes no complement and acts as a modifier.

np takes no complement and not a modifier.

npCompMod(Comp, Mod) macro (Q@head(noun),

% @spr([@determiner_s]),
0spr([@head_s(det)]),
Omod((@head_s(noun),

Osmarker_s(Mod))

),
@subcat([(@head_s(noun),
@smarker_s(Comp))]

)
).

npCompNoMod(Comp) macro (@head(noun),

88

% @spr([0determiner_s]),
0spr([Qhead_s(det)]),
Qmod (none),

@subcat([(Qhead_s(noun),
y @smarker_s(Comp))]

).

npNoCompMod(Mod) macro (@head(noun),
% @spr([@determiner_s]),
@spr([@head_s(det)]),
@mod ((Ghead_s(noun),
@smarker_s(Mod))
)s
Q@subcat(e_list)).

npNoCompNoMod macro (@head(noun),
% @spr([0determiner_s]),

@spr([@head_s(det)]),

@mod (none),

@subcat(e_list)).

npMod(Mod) macro (Qnp,
Omod((Q@head_s(noun),
@smarker_s(Mod)))

).

% adjective that modifies an object having a specific concept

adj (Mark) macro (Q@adjective,
Omod (@smarker_s(Mark))).

% Macros to be used in lexical entries.

%4%% nouns

npCompMod_lex(Comp, Mod)

macro (word, @npCompMod(Comp, Mod)).

npCompNoMod_lex(Comp) macro (word, @npCompNoMod(Comp)).
npNoCompMod_lex(Mod) macro (word, @npNoCompMod(Mod)).
npNoCompNoMod_lex macro (word, @npNoCompNoMod) .

npMod_lex(Mod) macro (word, @npMod(Mod)).

% adjective

adj_lex(Marker) macro (word, Qadj(Marker)).

'/, she 3 3 3 ok 3k 3k 2 3k 2 3k 2k o ok ke sk s ok sk ok o e e e e e o sl e sk e s e e e ke e ok e s sk sk ek ke ke sk ke ke sk ok

89

% This file contains lexical entries
Y sk ko dskok ki kol sk ok ok Aok Al ok ok ok Rk Aok sk ok ok sk ke ok

YA XA AN YA AN YA

%%% determiner

a -=-> Qdeterminer_lex.
an -—=> Qdeterminer_lex.
all -—-> Qdeterminer_lex.
any -—=> Q@determiner_lex.
each ---> Qdeterminer_lex.
every -=-=> Q@determiner_lex.
some -=-> Q@determiner_lex.
the -==> Qdeterminer_lex.
this -=-> Q@determiner_lex.
that -==> Qdeterminer_lex.
is -=-> @determiner_lex.
are -=-> Qdeterminer_lex.
am -=-> Q@determiner_lex.

% possessive determiner

s ---> QpossesiveDet_lex.
RARRARAALL LI AT

%%% noun

asia —-—=> Q@npNoCompNoMod _lex,

Qkeyword(asia).

africa -—=> @npNoCompNoMod_lex,
Qkeyword(africa).

america -——=> QnpNoCompNoMod _lex,
Qkeyword(america).

europe -——=> @npNoCompNoMod_1lex,
Qkeyword(europe).

midwest ——=> @npNoCompNoMod_lex,
Qkeyword(midwest).

india ——=> CnpNoCompNoMod_lex,
Qkeyword(india).

bhutan —_——> QnpNoCompNoMod _lex,
Qkeyword(bhutan).

bali —-— @npNoCompNoMod _lex,

90

Qkeyword(bali).

china -—=> @npNeCompNoMod _lex,
Qkeyword(china).

japan -——=> @npNoCompNoMod _lex,
Qkeyword(japan).

singapore -—=> OnpNoCompNoMod _lex,
@keyword(singapore).

korea -—=> @npNoCompNoMod _lex,
Qkeyword(korea).

nepal -—=> @npNoCompNoMod _lex,
Qkeyword(nepal).

air ———> @npNoCompNoMod _lex,
Qkeyword(air).

canada —-—> ¢npNoCompNoMod _lex,
Qkeyword(canada).

toronto -—=> @npNoCompNoMod _lex,
Okeyword(toronto).

vancouver -==> @npNoCompNoMod _lex,
Qkeyword(toronto).

tokyo -—=> @npNoCompNoMod _lex,
Qkeyword(tokyo).

usa ——=> @npNoCompNoMod _lex,
Qkeyword(usa)

fare -—=> @npNoCompNoMod _lex,
Qkeyword(fare).

rate -—=> @npNoCompNoMod _lex,
Qkeyword(rate).

region -—=> @npNoCompNoMod _lex,
Qkeyword(region).

travel -—=> OnpNoCompNoMod _lex,
Qkeyword(travel).

trip -—=> @npNoCompNoMod_lex,

91

weather

new

currency

condition

york

forecast

site

hotel

motel

lodge

lodging

accomodation

city

country

magazine

map

-—=>

-—>

-—=>

-—=>

-——=>

-—=>

-—=>

-—>

-—=>

-—=>

-—=>

-—>

——=>

-—->

-—=>

-—=>

Qkeyword(travel).

@npNoCompNoMod _lex,
Qkeyword(weather).

OnpNoCompNoMod _lex,
Okeyword(new).

@npNoCompNoMod _lex,
Okeyword(currency).

@npCompNoMod__lex(weather),
Okeyword(gencon).

@npCompNoMod_lex(new),
Qkeyword(york).

@npCompNoMod_lex(weather),
Qkeyword(forecast).

@npNoCompNoMod _lex,
Qkeyword(gencon).

@npNoCompNoMod _lex,
Okeyword(hotel).

Q@npNoCompNoMod _lex,
Qkeyword(motel).

@npNoCompNoMod _lex,
Qkeyword(lodging).

@npNoCompNoMod_lex,
Okeyword(lodging).

@npNoCompNoMod _lex,
Qkeyword(accomodation).

@npNoCompNoMed _lex,
Okeyword(city).

@npNoCompNoMod _lex,
Okeyword(country).

@npNoCompNoMod _lex,
Okeyword(magazines).

@npNoCompNoMod _lex,

92

information

reservation

train

rail

detail

airport

restaurant

guidebook

guide

rental

agent

agency

airline

airway

day

today

-—=>

-—>

—-—>

-—>

-—->

-—>

-—>

-—>

-—>

-—>

-—>

-—=>

-—>

-—>

—>

Qkeyword(map).

@npNoCompNoMod_lex,

Qkeyword(information).

@npNoCompNoMod _lex,

Qkeyword(reservation).

@npNoCompNoMod _lex,
Qkeyword(train).

@npNoCompNoMod _lex,
Qkeyword(rail).

@npNoCompNoMod _lex,
Qkeyword(gencon).

@npNoCompNoMod _lex,
Qkeyword(airport).

@npNoCompNoMod _lex,

Qkeyword(restaurants).

@npNoCompNoMod _lex,

Qkeyword(guidebook).

@npNoCompNoMod _lex,
Q@keyword(guide).

QnpNoCompNoMod _lex,
Q@keyword(rentals).

@npNoCompNoMod _lex,
Q@keyword(agent).

@npNoCompNoMod _lex,
Qkeyword(agency).

@npNoCompNoMod _lex,
Qkeyword(airlines).

OnpNoCompNoMod _lex,
Qkeyword(airways).

@npNoCompNoMod _lex,
Qkeyword(gencon).

@npNoCompNoMod _lex,

93

Qkeyword(gencon).

tommorrow ——=> @npNoCompNoMod _lex,
Okeyword(gencon).
regina -—=> @npNoCompNoMod_lex,
Qkeyword(regina).
week -—=> @npNoCompNoMod _lex,
Ckeyword(gencon).
list —-— OnpNoCompNoMod _lex,
Qkeyword(gencon).
ticket —==> @npNoCompNoMod _ lex,
Okeyword(ticket).
cruise -==> OnpNoCompNoMod _lex,
Q@keyword(cruise).
alaska -==> @npNoCompNoMod _lex,
Okeyword(alaska).
boat -—=> enpNoCompNoMod _lex,
Qkeyword(boat).
attraction -—=> OnpNoCompNoMod _lex,
Okeyword(attractions).
place -—=> CnpNoCompNoMod _lex,
Qkeyword(gencon).
shopping -—=> @npNoCompNoMod_lex,
Qkeyword(shopping).
mall -—=> @npNoCompNoMod_1lex,

Okeyword(malls).

%%% personal pronoun

you --—> Qproper_lex.

i --=> Q@ppronSubj_lex.
he ---> Q@ppronSubj_lex.
she --=> QppronSubj_lex.
they --=> @ppronSubj_lex.
we -==> @ppronSubj_lex.

94

her
him
me
us
them

AAAAYANA

air

east

eastern

west

western

north

northern

south

southern

central

current

web

african

==-=> Q@ppronObj_lex.
===> @ppronObj_lex.
—-=> Qppronlbj_lex.
—---> Q@ppronObj_lex.
—-=> Q@ppron0bj_lex.

Adjectives %UAAUAAY

-—=>
-—>
-—=>

--->

-—>
-—=>
-—>
-—=>
—-—>
-—->
-—=>

-—->

Qadjective_lex,
Qkeyword(air).

Qadjective_lex,
Qkeyword(east).

Qadjective_lex,
@keyword(east).

@adjective_lex,
Qkeyword(west).

Qadjective_lex,
Qkeyword(west).

Qadjective_lex,
Q@keyword(north).

Qadjective_lex,
Qkeyword(north).

Qadjective_lex,
Qkeyword(south).

Qadjective_lex,
Qkeyword(south).

Qadjective_lex,
Qkeyword(central).

Qadjective_lex,
Qkeyword(current).

Qadjective_lex,
Qkeyword(gencon).

Qadjective_lex,

95

asian

canadian

road

travel

online

economical

cheap

lodging

international

auto

exchange

one

two

three

alaska

flight

-—->

-—=>

-—->

-

-—

-—

-—>

-—>

-—>

—-—=>

-—>

-—

-—=>

-—=>

—-—D

Qkeyword(african).

Qadjective_lex,
Okeyword(asian).

Qadjective_lex,
Okeyword(canadian).

Qadjective_lex,
Qkeyword(road).

Qadjective_lex,
Qkeyword(travel).

Qadjective_lex,
Okeyword (gencon).

Qadjective_lex,
Qkeyword(economical).

Qadjective_lex,
Qkeyword(cheap).

@adjective_lex,
Qkeyword(lodging).

Qadjective_lex,
@keyword(intermational).

Qadjective_lex,
Qkeyword(auto).

Qadjective_lex,
Okeyword(exchange).

Qadjective_lex,
Qkeyword(gencon).

Qadjective_lex,
Qkeyword(gencon).

Qadjective_lex,
Qkeyword(gencon).

Qadjective_lex,
Qkeyword(alaska).

Qadjective_lex,

96

Qkeyword(flight).

tourist ---> @adjective_lex,
Qkeyword(tourist).

gift --=> Qadjective_lex,
Qkeyword(gift).

shopping --=> Qadjective_lex,
Qkeyword(shopping).

british ---> Qadjective_lex,
Qkeyword(british).

business --=> Qadjective_lex,
Qkeyword(business).

boating -==> Qadjective_lex,
Qkeyword(boating).

weather ===> Qadjective_lex,
Qkeyword(weather).

YANNANNAAAAA AN A A A S AN A A
%%% verbs

%%% intransitive
stay -—> Qintrans_lex,
Okeyword(accomodation).

boat —-—> Q@intrans_lex,
Qkeyword(boating).

fly ---> (Qintrans_lex,
Qkeyword(gencon).
%%% transitive

have ---> Qtrans_lex.

visit --=> Qtrans_lex,
Qkeyword(travel).

travel ---> Q@trans_lex,
Qkeyword(travel).

want ~~=> Q@trans_lex,
QOkeyword(gencon).

schedule ---> @trans_lex,
Qkeyword(gencon).

list --=> Q@trans_lex,

97

know

make

book

%%% ditransitive

reserve --=> Q@ditrans_lex,
Qkeyword(gencon).
see -=-=> @ditrans_lex,
Okeyword(gencon).
give --=> @ditrans_lex,
Ckeyword(gencon).
show --=> @ditrans_lex,
Okeyword(gencon).
%%% control verbs
% e.g., I want to see the report
like ---> Qicontrolv_lex(bse, inf),
Qkeyword(gencon).
to —--> Qicontrolv_lex(inf, bse),
Q@keyword (gencon).
want ---> Qicontrolv_lex(bse, inf),
@keyword(gencon).
%%% auxilliaries
can ---> Qaux_lex(bse).
may ---> Qaux_lex(bse).
would ---> Qaux_lex(bse).
ought ---> Qaux_lex(inf).
do --=-> Qaux_lex(bse).
%%% preposition
after ---> Qpreposition_lex(after).
at ---> Qpreposition_lex(at).
between ---> Qpreposition_lex(between) .
by --~> Q@preposition_lex(by).
during ---> Qpreposition_lex(during).
from ---> Qpreposition_lex(from).
in ---> Qpreposition_lex(in).
on ---> Q@preposition_lex(on).
over ---> Q@preposition_lex(over).

Qkeyword(gencon).

-=-=> Q@trans_lex,

Qkeyword(gencon).

--=> Qtrans_lex,

@keyword (gencon).

--=> Qtrans_lex,

@keyword (booking).

98

to --=> Qpreposition_lex(to).

under --=> Qpreposition_lex(under).
with ~-=> Qpreposition_lex(with).
for ---> Qpreposition_lex(for).
of ---> Qpreposition_lex(of).
about ---> Qpreposition_lex(about).
near ---> Qpreposition_lex(near).
and -~--> Qand_coord_lex.

or ---> Qor_coord_lex.

% koo sk kb ok ok ok

% Lexical rules
Y ek sk ko kA ok ek o ok ok

'/. s 3 e s she e 3k s 3 3k 3k ok e 3 ke ke e ok o e sk e e ke e e ok e o o A ok ok ok ok e ok

% singular nouns-> plural nouns
Y koo sk Rk Rk ok

sing_to_pl_noun lex_rule
(word, Qhead(noun),
Qagr_num(singular),
0spr((ne_synsem_list, Spr)),
@mod (Mod) ,
@subcat (Sub) ,
Omarking(Mark),
Q@cont (Cont))
%>
(word, Qhead(noun),
Qagr_num(plural),
@spr((ne_synsem_list, Spr)),
@mod (Mod) ,
@subcat (Sub),
Omarking(Mark) ,
Q@cont(Cont))
morphs
goose becomes geese,
child becomes children,
airway becomes airways,
[kx,e,y] becomes [k,e,y,s],
(X,day) becomes (X,days),
(X,man) becomes (X,men),
(X,F) becomes (X,F,es) when fricative(F),
(X,y) becomes (X,[i,e,s]),
X becomes (X,s).

99

fricative([s]).
fricative([c,h]).
fricative([s,h]).
fricative([x]).

% ke ok 3 ke o 3k 2k 2k 2k ok ok ok ok s ke kb ek ok ok s e ook ek ok ook 3 e ok o ok ok ok

% bse verbs -> fin verbs
Y sk ok sk ook sksk oo sk ook sk ok ok ok sk o ok K ok

bse_to_3_sing lex_rule

(word, Qhead(verb),
@vform(bse),
Qaux (minus),
@mod (Mod) ,
Qinv(Inv),
@subcat ([Subcat |MoreSubcats]),
Qcont (Cont))
*%>

(word, Qhead(verb),
ovform(fin),
Q@aux (minus),
@mod (Mod) ,
Qinv(Inv),

@subcat ([Subcat |MoreSubcats]),

Q@cont (Cont))

% if bse_to_3_sing _check(Subcat, NewSubcat)
morphs

(X,y) becomes (X, i, e, 8), % try -> tries

have becomes has,

X becomes (X, s). % walk -> walks

% For third singular rule, we need to ensure that NPs that the
% verb subcategorize for have the same agreement as the verb itself.

bse_to_3_sing_check(X, X) % not implemented
if true.

% ke 3 3k 3 ok ok ok s 3 s ok e o ke e ke ok ok S e sl sl sk dfe e e ke e ke ke oke ek

% passive lex rule
A L T S R 2 e

bse_to_pass lex_rule
(word, Qhead(verb),
Qvform(bse) ,
Qaux (minus),
@mod (Mod) ,

100

Qinv(Inv),
@subcat ([Subcat |MoreSubcats]),
Q@cont(Cont))
*%>
(word, Q@head(verb),

@vform(pas),

Qaux(minus),

Qmod (Mod) ,

Qinv(Inv),

Osubcat ([Subcat |[MoreSubcats]),

Qcont (Cont))

morphs
(X,y) becomes (X, ied),
give becomes given,
see becomes seen,
have becomes had,
X becomes (X,ed),
(X,e) becomes (X, ed).

'/. e ok ok o ok e e s e s ke o s ok ok o o sl sk ok ok ok e sl e ofe ok ok ek Sk ok ok ok ke ok

% gerform lex rule
A T e e S T

gerform lex_rule
(word, Q@head(verb),
Qvform(bse),
Qaux (minus),
Q@mod (Mod) ,
Qinv(Inv),
@subcat ([Subcat |MoreSubcats]),
Qcont (Cont))
*%>
(word, @head(verb),
@vform(ger),
Qaux(minus),
@mod (Mod) ,
Qinv(Inv),
@subcat ([Subcat |[MoreSubcats]),
Qcont (Cont))

morphs
(X,e) becomes (X, ing),
travel becomes travelling,
X becomes (X, ing).

T
% Principles

101

9 seokoke sk ke e Aok ok ook Ak ok ok sk ok ok ook sk koo skl ook sk kokeakok ko ook sk sk ook ok ook ook ok e ok

A e T
% head_feature_principle(Mother, Head_Dtr)
% The HEAD value of any headed phrase is structure-shared

% with the HEAD value of the head daughter.
8 ks ks aka ok ok ok ok ok ok ke sk ek Aok ks sk s sk sk ksl ok ok ok ok sk ok ok ok ok ok sk ok ok

head_feature_principle(Chead(X), @head (X))
if true.

‘/. 2k 3k ok s s e o 3 ok s s e ke ke ke ok s ok ok e 3k 3 e 3 ke ke e 3k e ok e ek ke s e ko ok e ko e o S ok ke ake ok ke ok o ok ke ok K ok ek

% subcat_principle(Mother, Head_Dtr, Comp_Dtr_Synsems)
Y okl stk ook ek sk ko sk ook ok ok koo sk ok sk koK o

subcat_principle(@subcat(MotherSubcat),
@subcat (HeadDtrSubcat),
CompDtrSynsems)
if append(MotherSubcat, CompDtrSynsems, HeadDtrSubcat).

% koo sk ok ok sk sk K ok ok kR ko ko ok ek sk sk sk ok Aok ok

% semantic_principle(Mother, SemHead_Dtr, Comp_DtrsList)

Y ko ok ok sk sk ks ok ok ks ok ok sk ke ok Aok ok sk ok sk ok

semantic_principle(SemHd, SemHd, []) if

true.

semantic_principle(Comp, [], Comp) if

true.

semantic_principle(Mother, SemHd, [Comp|Comps]) if

unify_cont_features(SemHd, Comp, NewSemHd),

semantic_principle(Mother, NewSemHd, Comps).

7 sk sk o ek ke ol sl s s sk sk s sk s sk sk s ek sk ek skl s sk sk e stk s sk ke ok sk s sk o ok o sk ok sk ok ok sk ok sk ok ok ok
{]

% specifier_principle(Spec_Dtr, Head_Dtr)
./, 3k 3 3 2k 3 e 2k 2k ke 3k e A e e e e ok e ke 30 3k 3k e e e ke vk o 3 e e ke e 3k ke e ke e 3 e o e e 2 3 e A A3k 3 o e e ek e A ok e ook %k

/* original

specifier_principle(Q@head(OtherDtr), synsem: HeadDtrSynsem) if
specifier(OtherDtr, HeadDtrSynsem).

*/

% adding constrain that SpecDtr must have an empty subcat
specifier_principle((@head(OtherDtr), @subcat(e_list)),
synsem: HeadDtrSynsem) if

specifier(OtherDtr, HeadDtrSynsem).

%specifier(subst, _) if true.
%specifier((funct, spec: Spec), Spec) if true.

102

'/. sk 3k 3 e 3 ok 3 s ale ke e 3 3 2k 3k ke 3 e ok e e e o e e ek Ak ek ek ke e e e dkafe ok e ok ok ok ak e Sk ke e e e ek e e o e e ke ek ok ok

% marking_principle(Mother, Dtr)
Y ks ok ko ok ok sk ook sk ok ok sk S sk sl sk ok ks e ok ok ok ok ook

marking_principle(@marking(Mark), @marking(Mark)) if
true.

Y sk sk ok sk ks koo ok ook ks sk ook ok ok ok ok ok sk
% principles(Mother, HeadDtr, SemHead,

% OtherDtrs, CompDtrsSynsem)
Y sk koo ook sk sk ook ook ko ok ook sk e ook sk sk sk ok sk ok ook ok sk ok o

principles(Mother, Head, SemHead, Comps, CompDtrsSynsem) if
(head_feature_principle(Mother, Head),
subcat_principle(Mother, Head, CompDtrsSynsem),
marking_principle(Mother, Head),
semantic_principle(Mother, SemHead, Comps)

).

Y sk sk ok ko ok sk sk ok ok ok ok ok ok ok o ks ek ks sk ok o

% unify_cont_features(SemHd, Comp, NewSemHd)

Y stk sk sk sk ok ook sk skl ok ok oo ok ok S ok ok sk ook sk sk e ke e s ok ek e ke ok e o ek o o

unify_cont_features(SemHd, Comp, NewSemHd) if

unify_action_features(SemHd, Comp, NewSemHd),
unify_sem_list_features(SemHd, Comp, NewSemHd),
unify_sem_mark_features(SemHd, Comp, NewSemHd).

unify_action_features(Qaction(Hd), @action(Comp),
(@action(Hd), Qaction(Comp))

) if
true.

% Semantic marker of mother is inherited from the semantic marker
% of the semantic head daughter,
% except in the case of prepositional phrases
% For this later case, semantic marker of mother is obtained
% by unifying the semantic marker of semantic head daughter
% and the complement dtr.
unify_sem_mark_features((Qhead(prep), @smarker(Hd)),
@smarker(Comp),

(@smarker (Hd), @smarker(Comp))

) if

!, true.

103

- (TITeY3ol ‘TlIzadwop ‘pHIzadwo) ‘T1I3QPH)eInionags urol~egesrd ‘j

¥01

€ .

FT (
((1LToq3ol :13
‘PHIQPH :PY) ‘3sTT Aoy eou)
¢ ((TIx3qduwop :13
‘pyaagduo) :py) 3IsTT Ley~eu)
‘((T1T3dPH 13
‘PHIIQPH :PY) ‘3sTT ey eum))SBurpuryTurol

/*

anxy ‘|

It (

(((z3qdwop ‘7TaH):T3 ‘JAH:PY) ‘3ASTT ey ou)

¢ 13qdwo)
“(CIQH: T “4QH:PY) ‘3sTT ey au) yaoun(uoo~Aex~AFTun
*/

*(((TLIey3onhey 13
‘zoqjoday :py) ‘asti Aoy au)
¢ ((t1dmop :T13
‘dmopfey :py) ‘astT Loy eu)
‘ ((TlpHA®Y :T3
‘pukey :py) ‘3sTr Aex au))BurpuryTurol
3T (
((((TLroqzoNLay :13
‘Ioqjopdey :pyY) ‘3STT Aoy eu):piomiex)3uodp)

‘((((t1dmwop :1%
‘duophey :py) ‘3ISTI Loy ou):pIomiel)3uodp)

‘((((1LpHL®Y :T3
‘pgAey :py) ‘3STT Loy eu):pIomfey)3uocdp))seinjeez~3stT wes AFrun

‘anIy ¢
Fr (
((CC((asTT®:13
‘dwophey:py) ‘asti Loy eu): T2

‘pufey:py) ‘asTT1 £e¥ ou):pIomfsx)Iuodp)
‘((((astT®:T3
‘dwophey:py) ‘3sTT1 Loy ~om):piomdex)uodp)

‘((((asTT ®: 13
‘ pHAaY: PY) ‘asT1 Loy ou): promkex)juody))Seanjee 3sTT wos LFTUN

‘onxy
FT ((pH)xeojxewsp ‘- °(PH)IONICUSD vmmHaBwalemsuammnhHﬁg

Z 3k 3 3 e 3 e 2k o 2k o sk ok 3 e e e e e 2 ke e e e ek e ke 3k e e e s o ek Aok A e e e o ke e ek A ek

% create_join_structure
Y skt ok ok sk ok ook ko ook ook oo sk s ok sk sk ok sk ok ok ok ok o ok ko
create_join_structure(e_list,
CompDtrHd,
CompDtrTl1,
(ne_key_list, (hd: CompDtrHd,
tl: CompDtrTl))
) if
!, true.

create_join_structure((ne_key_list, (hd: HdDtrHd,
tl: HdDtrT1)),
CompDtrHd,
CompDtrTl,
(ne_key_list, (hd: HdDtrHd,
tl: Mother))
) if
!, create_join_structure(HdDtrT1l, CompDtrHd,
CompDtrTl, Mother).

Y sk ok sk koo sk ki ok ok ik skoksk okl ok ok sk ok sk ok ok i o ke s o sk sk skl o ok ks sk ok ok
% Utilities
Y stttk sk sk sk ok stk sk e e ook ook kol ko ok sk sk e ok ke sk oo ko sk ok ke o ok

% append(Listi, List2, AppendedList)

append([], L, L)

if true.

append ([Hd|T11, L2, [Hd|NewT1])
if append(Tl, L2, NewTl).

% synsem_to_phrase(Synsem, Phrase)

synsem_to_phrase(0, 00)
if !, true.

synsem_to_phrase([Syn|Synsems], [(phrase, synsem:Syn) | Signs])
if synsem_to_phrase(Synsems, Signs).

% sign_to_synsem(Sign, Synsem)
sign_to_synsem(synsem:Synsem, Synsem) if
true.

% The following predicates are intended for use

% within schema 2 to enforce the requirement
% that complement dtr is not a subject dtr.

105

is_not_subject ([_Compl|_Comps], _Subj)
if true.

’/. 3k 3 ok 2k o ok 3k e e vk 3 3 e e ok sk ok o o ok sk ok ok ok e e ke ke ke ol ok s sl i ok sk ok ok sk sk ko ok kK ok

% Grammar rules
Y sk ook sk skl Rk ARk ik skl kAR KRk Kk K

np_det rule
(@npNoCompNoMod_lex, @keyword(Xyz))

cat> Q@determiner_lex,
cat> (@npNoCompNoMod_lex, Qkeyword(Xyz)).

adj_det rule
(0adjective_lex, QOkeyword(Xyz))

cat> Q@determiner_lex,
cat> (Qadjective_lex, Q@keyword(Xyz)).

schemal rule
(Mother, phrase, (@spr(Spr), Q@subcat(e_list)))

cat> (SubjDtr, phrase, synsem:SubjSynsem),
cat> (HeadDtr, phrase, @spr(Spr)),

goal>
(principles(Mother, HeadDtr, HeadDtr, [SubjDtr], [SubjSynsem])).

% Here, we should enforce that Comp cannot be the subject daughter
% Dtherwise, sentence like ’kim walk’ would be
% admissible by both schemas 1 and 2.

schema2 rule
(Mother, phrase, @subcat([SubjSynsem]))

cat> (HeadDtr, word, (@subcat([SubjSynsem|CompSynsem]))),
goal> (synsem_to_phrase(CompSynsem, Comp),
is_not_subject(Comp, SubjSynsem)
),

cats> Comp,
goal> (principles(Mother, HeadDtr, HeadDtr, Comp, CompSynsem)).

% Admission of auxiliary and inverted structure.

% To avoid the admissibility of "“can who walk",

% we should enforce more constraint on the head daughter
% should enforce that nonloc is empty

schema3 rule

106

(Mother, phrase, Q@subcat(e_list))

cat> (HeadDtr, word, (@subcat([SubjSynsem|CompSynsem]),
Qaux(plus),

Q@inv(plus))),

goal> synsem_to_phrase([SubjSynsem|CompSynsem] , SComps),

cats> SComps,

goal> (principles(Mother, HeadDtr, HeadDtr, SComps,

[SubjSynsem|CompSynsen])).

%% specifier head

specifier_head rule
(Mother, phrase, (@spr(e_list), Q@subcat(e_list)))

cat> (SpecDtr, phrase, (Qhead(det), @spr(e_list))),

goal> (sign_to_synsem(SpecDtr, SpecDtrSynsem)),

cat> (HeadDtr, phrase, @spr([SpecDtrSynsem])),

% cat> (HeadDtr, phrase, (@spr([SpecDtrSynsem]), @subcat(e_list))),

oal> (

% principles(Mother, HeadDtr, HeadDtr, [SpecDtr], [SpecDtrSynsem]),
head_feature_principle(Mother, HeadDtr),

semantic_principle(Mother, HeadDtr, [SpecDtrl),

§pecifier_principle(SpecDtr, HeadDtr)

% enforcing the req. that SpecDtr must be a determiner
/*

specifier_head rule

(Mother, phrase, (@spr(e_list), @subcat(Sub)))

cat> (SpecDtr, word, (Qhead(det), @spr(e_list), @subcat(Sub))),

goal> (sign_to_synsem(SpecDtr, SpecDtrSynsem)),

cat> (HeadDtr, phrase, @spr([SpecDtrSynsem])),

goal> (

% principles(Mother, HeadDtr, HeadDtr, [SpecDtr], [SpecDtrSynsem]),
head_feature_principle(Mother, HeadDtr),

semantic_principle(Mother, HeadDtr, [SpecDtr]),

specifier_principle(SpecDtr, HeadDtr)

).

*/
%%% head/adjunct structures

schemaba rule
(Mother, phrase)

107

cat> (AdjnDtr, phrase, (@mod(Mod), ((Qhead(nmoun), @spr(ne_synsem_list));
Qhead(adj);
(Qhead (prep) ,@subcat ([@head_s(dummy)]))
)

)),
cat> (HeadDtr, phrase, synsem: Mod),
goal> (principles(Mother, HeadDtr, AdjnDtr, [HeadDtr],).

schemaSb rule
(Mother, phrase)

cat> (HeadDtr, phrase, synsem: Mod),
cat> (AdjnDtr, phrase, (@mod(Mod), Chead(prep), @subcat([Chead_s(dummy)])))
goal> (principles(Mother, HeadDtr, AdjnDtr, [HeadDtr]l, [ID).

conjunct rule
(Mother, phrase, (@head(Head), @subcat(e_list)))

cat> (FirstDtr, phrase, (@head(Head), @subcat(Subcat), @spr(Spr))),
cat> (ConjDtr, phrase, (Qhead(mark), @marking(conj))),

cat> (SecDtr, phrase, (Qhead(Head), @subcat(Subcat), @spr(Spr))),
goal> (marking_principle(Mother, ConjDtr),

semantic_principle(Mother, FirstDtr, [SecDtrl)).

word_to_phrase_ 0 rule
(phrase,synsem:Synsem)

cat> (word, synsem:(Synsem, @subcat_s(e_list))).

word_to_phrase_1 rule
(phrase, synsem:Synsem)

cat> (word, synsem:(Synsem,@subcat_s(ne_list))).

ke ke ke sk e ke ke s e e ook ke e sk e sk e o sk e s sk ke sl s ok sl s sl ke e sl ok s s ke sk s ke e sk ke sk sk ke ke sk sk e s obe ek e ke e s sk ok s e e ok o ke ok o

108

ke sk sk sk e ke ke o ke o o oo o sk o e el sl o sk s ke ok e sk o o o e sk sk ok s s sk sk s e e e e e sk sk ek sk o ok ek sl sk e el ok sk ok s e e sk ok e ek ok
Front-end HTML files

e o s 3 ok 3k 3k 3k ok ok sk sk s 3 ok 2k ok o e e e ke 3 e e e e e o e ek 3ok 3k sk o ok o ok o ke 3 o e e e sk e e ek o e e el e e e e ok e e ke ok e sk o ek

This file splits the screen into three frames.

e 3k 3k ok e ol ke ok e 2k ke e o 9k sk ok ok sk sk she sk o Sk 3 3k o o e ke e el e ek ke e 3 e ke oo e ek e ok ok o ok sk ke sl e b e e ke o s e e ke sk e ek

<html>

<head>

<title> Natural Language Interface To Internet Search Engines </title>
</head>

<frameset cols="30%, 70%4'">

<frame src="links.html" name = "framel'>
<frameset rows="75Y%, 254">

<frame src='main.html” name = "frame2">
<frame src='"comments.html" name = "frame3'>
</frameset>

</frameset>

</html>

sk 3 3 3 o 2k ke ok sk ok ke e o o ok sk ol ke sl ke o sk s o s 3 sk 3 o dke ke ke s 3k 3 o sk e e e 3k sk e ok ke 2 e e ke ok fe ok ke s o de e e e ke o e ke o ek ok ok Kok

109

s ok ok ke s e s e ek s sl s ke sk ol s o e ke e s e sk ke i kel 3 o s ol sk sk o s sl e o ok sk ke o ke sl s e ek s sk s e s e o ks o e ke e ok ke ok

This file provides links to the exisiting search engines.

e ke 3 ook o ok ol ok o ol ke s ek sk o ok o s ke sk e 3 ke ol ookl s sl ke o ol e o ol ke s s sl o sk sk ok ok ok ok sk ke o e sk ke e sk ke ok

<html>

<head>

</head>

<BODY BGCOLOR = "#BB99AA">

</BODY>

<h2>

Links to selected search engines

</h2>

<h4>

Keyword and Phrasal Searching:

</h4>

<

</
<h4>

Concept Searching:

</h4>

</

<h4>

Natural Language Searching:

</h4>

</
</html>

sk s sk ke s oo o ook o e ofe i e e i sk ek i ek e sk sl ok sk ke sk e oo st ke s s e ok s ke ke s se sk stk o se s ol sk sk o s sk sk o e sk o sk sk s e s e ok e ok

110

ek o ol e o ok o o e e ke e ke ofe 3 s s oo 3 e sl st ke e e e e e ook o sk e e s stk sk ke o skl ke ok sk ook ok ok sk o ok o e e sk ke ke ok e ok sk ok

Code for the comments form.

3 s o e e e o ke 2 2k o 3 o 3 ol o e e e ek o e sk ok 3 ok sk s she ok o e ke ok ke ke s sk o 3 ek 3 s o o ok ook o sk s e s ke e ok e e e o o ok e e sk ke ke ok ke ke

<html>

<head>

<SCRIPT LANGUAGE="JavaScript'">
<!-- HIDE ME FROM THAT BROWSER
var timerID = null

var timerRunning = false

function stopclock(){
// cannot directly test timerID on DEC OSF/1 in beta 4.
if (timerRunning)
clearTimeout (timerID)
timerRunning = false

function startclock(){
// Make sure the clock is stopped
stopclock()
}showtime()
function showtime(){
var now = new Date()
var hours = now.getHours()
var minutes = now.getMinutes()
var seconds = now.getSeconds()

var timeValue = "" + ((hours > 12) ? hours - 12 : hours)
timeValue += ((minutes < 10) ? ":0" : ":") + minutes
timeValue += ((secomnds < 10) ? ":0" : ":") + seconds

timeValue += (hours >= 12) ? " P.M." : " A M. "
document .clock.face.value = timeValue

timerID = setTimeout ("showtime()",1000)
timerRunning = true

}
function testfun(){
document.test.submit();

//-=>
</SCRIPT>

</head>

111

<BODY BGCOLOR = "#BB99AA" onLoad="startclock()">
<h2>
<CENTER>
COMMENTS </CENTER></h2>
<div align = right>
<FORM NAME="clock" onSubmit="0">
<INPUT TYPE="text" NAME="face" SIZE=13 VALUE ="">
</div>
</FORM>
<align = left>If you wish to enter your comments/suggestions please
£ill in the form. </align>
<FORM NAME = "comments'" METHOD="post" ACTION="http://www.cs.uregina.ca/
cgi-bin/cgiwrap?user=mahaling&script=comments.pl">
<d1>
<dt> Name :
<dd><input type="text" name= "name" size=30>
<dt> EMail Address:
<dd><input type="text" name="email" size=30>
</d1>
<p>
Your comments / suggestions :
<textarea name='"suggs" rows=4 cols=65></textarea>
<p>
<input type= "submit" value="submit the form">
<input type= "reset' value="clear the form" >
</body>
</form>
<hr>

</BODY>

</html>

sk ke 3 o ke 3 2 2k o 3 2 ke ok ok ke 2 e e e e e e ke ok s o e ke e e ofe e e ofe ke s ok e ok s e ke ke e o e e e sk e e e e o ke ke ke e e e o ke e ok e e ke e e ok ke ok ok

112

s s oo ke sk s sk ke o o o e e e sl e e ek o sk o e e sk ek o e o o sk ok o s sk o e ke s e ek i Sk ae ke ke sl sl sk s o e sk s ke ke ek
This is the main HTML file which allows the users to select the search
engine and enter the text for searching.

e sk o ke o e e sk Sk sk o sk ke s ok ok o e sl o e sk ke ok e o ol ok o ek ok ok ok ok S ek sk ok 3 e ok ke e ok sk ok ok s ok ok ok ok e sk s ook ke ok koK

<html>
<head>
<SCRIPT LANGUAGE="JAVASCRIPT">
{l=-
function testfun(form){
var cSname = form.sname.value
var cText = form.text.value
var nStringlength = cText.length
if(('form.sname[0].selected) && (!form.sname[1].selected)
2& (!'form.sname[2].selected) &% (!form.sname[3].selected)
&% (!form.sname[4].selected)) {
alert ("You have not selected the search engine.");
}
else if(cText == "")
alert("You have not entered the text for searching.")
else {
document .test.submit();
}
}
function tessel () {
alert("Please check the list of words in the lexicon");

}

[/-=>

</SCRIPT>

</head>

<body bgcolor = "#BB99AA" background = "fossil4.gif" LINK="#994455">

<h2>

<center>

<applet code=welcomel.class WIDTH=400 Height = 40> <PARAM NAME="text"

VALUE="English Access To Internet Search Engines"></applet>

</center>

</h2>

<h3>
WELCOME! !! This site is a prototype model for English
access to Internet Search engines. No more hassles of
finding appropriate keywords or synonyms. Just select
any search engine and enter the phrase / sentence to
be searched. At present, this search is limited to the
‘ ‘travel’’

113

domain (with 150 words in the lexicon) .

</h3>

<FORM NAME="test" METHOD="post" ACTION="http://www.cs.uregina.ca
/cgi-bin/cgiwrap?user=mahaling&script=nla.pl">

Select any search engine:

<SELECT NAME="sname" size = 3 onchange = "tessel()">

<OPTION>ALTAVISTA</OPTION>

<OPTION>HOTBOT</OPTION>

<OPTION>INFOSEEK</OPTION>

<OPTION>YAHOO</OPTION>

<OPTION>WEB CRAWLER</OPTION>

</SELECT>

<a href="http://www.cs.uregina.ca/~“mahaling/nlaise/tips.html"
TARGET = "frame2">

</br>

Enter the text to be searched:

<textarea name = "text" rows="4" cols="40"></textarea>

<input type="button" name="buttonl" value="Continue...

onClick = "testfun(this.form)'">

<input type="reset" name="Clear All">

</FORM>

</BODY>

</html>

s e s s s o o s s e sk sk e o s e sl s sk o e sk e s e ke s sk sk s o s ke e e sk ok s sl s ol e ke s sk e e s e s sk s sl sk s ok sk e e s ok sk sk s ook e e

114

sk s e o i e o e sl ol i e s ol sl e s sk sl e skl e sk ok o sk e ke e s s st sk ok sk oo sk o sl ok ok kel sl o ke ok sk sk s ook e ek s ok ok ook ok A o e ok

This file contains the code for back-end PERL script, and semantic
intrepreter.

stk o e ke e skl ok ookl sk ok sk ok ook ok sk ks sk sk ok ko sk ko ok sk Aok ok ok o
#!/usr/local/bin/perl.5

Define constants.
$recipient = ’'mahalingQcs.uregina.ca’;

Print out a content-type for HTTP/1.0 compatibility
print "Content-type: text/html\n\n";

Print a title and initial heading.
print "<Head><Title>NLA SCRIPT.</Title></Head>";

Get the input.
read (STDIN, $buffer, $ENV{’CONTENT_LENGTH'’});

Split the name-value pairs
Qpairs = split(/&/, $buffer);

foreach $pair (@pairs)
($name, $value) = split(/=/, $pair);
Un-Webify plus signs and %-encoding

$value =~ tr/+/ /;
$value =~ s/%([a-fA-F0-9] [a-fA-F0-9])/pack("C", hex($1))/eg;

For debugging purposes
print "Setting $name to $value<P>";

$FORM{$name} = $value;

}
$sename = $FORM{’sname’};
$ttext = $FORM{’text’};

If there is no name entered, then produce an error message.
&invalid_response unless $FORM{’sname’};

115

subroutine blank_response
sub invalid_response

{
print " The required field \"Search Engine Name\"

was blank. Please enter this.";

print "

Go Back";

exit;

}

&text_response unless $FORM{’text’};
subroutine blank_response
sub text_response

{
print " The required field \"text to be searched\"

was blank. Please enter this.

";

print "
 Go Back";

exit;

}

Pre-processor transforms capitalized letters and punctuationms.

tr/A-Z/a-2/;
~ s/[~a-zA-Z20-9\s]//g;

$ttext =
$ttext =
Verification for words not in the lexicon and printing
apprpriate error message.

$lexfile = "/u/mahaling/public_html/cgi-bin/lexifile";

@words = split(’ ’, $ttext);

foreach $word (@words) {

$lex_lines = ‘grep $word $lexfile’;

chop ($lex_lines);

if ($lex_lines eq "") {

print "<BODY BGCOLOR = \"#BB99AA\'">";

print " Sorry! No matching lexical entry found.
Please check the list of words in the lexicon and try again.

";

print "
<KFONT SIZE = 5> Go Back";

exit;

}

}

split the text into words and format it to suit the parser.

116

$spa ="’ 7;
$vari .= ’[’;
Qwords = split(’ ’, $ttext);

$j = ($#twords);

if ($#words == 0) {

$varl .= $words[0];

splice(@abz, $#abz+1, 0, $vari);
splice(@abz, $#abz+1, 0, $spa);
$var2 .= ’].7%;

splice(@abz, $#abz+1l, 0, $var2);
}

else {

$varl .= $words[0];

$vari .= $sep;

splice(Qabz, $#abz+1, 0, $varl);
for($i=1; $i<$j; $i++) {

splice(Qabz, $#abz+1, 0, $words[$i]);
splice(@abz, $#abz+1l, 0, $sep);
;plice(@abz, $#abz+1, 0, $spa);

$var2 .= $words[$#words];

$var2 .= ’].?;

splice(Qabz, $#abz+1, 0, $var2);
}

#print "The array is:Q@abz
";

Since at present the parser cannot handle the entire syntax of the
English language, the system has to proceed with the keywords found
even if there is a syntactic error.

$sep = ?,7;

$keyfile = "/u/mahaling/public_html/cgi-bin/keyfile";
Quwords = split(’ ’, $ttext);

FILE:

for ($i = 0; $i <= $#words; $i++) {

if ($words[$i] eq * ’) {

;ext FILE;

else {
gkey_lines = ‘grep $words[$i] $keyfile‘;
z = 0;
foreach $z (0 .. $#tkey_lines) {
($fieldl , $field2) = split(":", $key_lines[$z]);
if ($fieldl eq $words[$il) {
$compl .= $field2;
$compl .= $sep;

117

}
}
}

b3k sksk ol ek sk ook s sk ok otk ok ksl ok ek o oo ok Ak sk sk ok sl s ok oo sk ke o ook s s ke ke ke sk ok ke kok

#Send the formatted array to the parser.

system("/u/mahaling/search/Internet/research/C_code/client Qabz");

The different parses of the parser will be analysed by the
semantic extractor and extracts the keywords alone from the correct parse.
Get the output of the semantic extractor.

$out = "/u/mahaling/public_html/cgi-bin/newfile";
open(outfile, $out);
$_ = <outfile>;

Verify for all types of error and print error messages.

if ($_ eq uu) {

print "<BODY BGCOLOR = \"#BBOGAA\'">";

print " Sorry! Background process needed to proceed further";
exit;

¥

if (($_ =~ /No parses/)&&($compl eq "")) {

print "<BODY BGCOLOR = \"#BBO9AA\'>";

print " Syntactic Error! No Keywords found!!
Please retry with some other text.
 <a href = \"http://
www.cs.uregina.ca/ mahaling/nlaise/main.html\">
Go Back
";

exit;

if ((1($_ =" /No parses/))&&($compl eq "")) {

print "<BODY BGCOLOR = \"#BBO9AA\">";

print " No Keywords found!! Please retry again.

 <a href = \"http://www.cs.uregina.ca/“mahaling/
nlaise/main.html\">Go Back
";

exit;

}

if (($compl ne ")) {
if (($_ =~ /No parses/)) {
print "<BODY BGCOLOR = \"#BB99SAA\'">";
print " Syntactic Error! However search results
will be displayed based on the keywords selected from your text :

118

Q@xyz
 ";

if (1($_ =~ /No parses/)) {
print "<body bgcolor = \"#BB99AA\">";
print " Thank You! The keywords selected for
searching in $sename
are:

 Q@xyz
 ";

}

__________________________ - —————————— — - — - o - -
Findout if there are any synonymes to the keywords.

___________ - ————— — - —— 1 = — > o

$synofile = ’/u/mahaling/public_html/cgi-bin/synofile’;

Group nominal Compounds before finding synonymes to avoid
substitution of new or recent in New York

if($compi ne ") {
if (($compl =~ /south,/)&&($compl =~ /africa/)) {
($compl =~ s/south,africa/southafrica,/);

if (($compl =" /new,/)&&($compt =" /york/)) {
§$comp1 = s/new,york/newyork,/);

@words = split(’,’, $compl);

$i = 0;

$j = ($#words);

for($i=0; $i<=$j; $i++) {

@synolines = ‘grep $words[$i] $synofile’;
foreach $syn (0 .. $#synolines) {
($fieldl , $field2) = split(":", $synolines[$synl);
if ($fieldl eq $words[$il) {

splice(@xyz, $#xyz+1, 0, $field2);
splice(@xyz, $#xyz+1, 0, $sep);
;plice(@xyz, $#xyz+1, 0, $spa);

}

}

#@syno = ‘grep $words[$#words] $synofile’;
#foreach $syni (0 .. $#syno) {

#($fieldl , $field2) = split(":", $synol$syni]);
#if ($fieldl eq $words[$#words]) {
#;plice(@xyz, $#xyz+1, 0, $field2);

#

#3}
}
B ———————

119

#Format the list of keywords with synonymes to suit the individual

#search e
$k=0;

ngine.

for ($k=0; $k<=$#xyz; $k++) {
$strl .= $xyz[$k];

}

$strialta = $stri;
$strialta =
$strialta ="

~ s/\,
s/\,

~ s/\, AND\, \+/ OR /g;
~ s/\, OR\, \+/ OR /g;

AND\, / AND /g;
OR\, / OR /g;

$strl =

$strl =

$str2 = $stri;

$str2 =~ s/AND/ /g;
$str2 =~ s/0R/ /g;
$str3 = $stri;

$str4 = reverse($str3);
$stra =~ s/\,//;

$str3 = reverse($strd);
if (($stxr3 ="/AND/)||($str3 =~ /OR/)) {

$str3 =~ s/\+//g;

$str3 =~ s/\,/ AND /g;

$hot = ’B
}

else {
$str3 =~

chop $str
ihot = 'M

).
?

s/\,/ /g;
#$str3 =~ s/\+//g;

3;
C’;

#--

#Send the final strings to the search engine selected by the user.

#-

if ($sename eq ’ALTAVISTA’) {

print STDOUT "<FONT SIZE = 5";

print STDOUT "<FORM ACTION=\"http://www.altavista.digital.com/
cgi-bin/query\" METHOD=\"GET\">";

print
print
print
print
print
print
print

STDOUT
STDOUT
STDOUT
STDOUT
STDOUT
STDOUT
STDOUT

"<INPUT TYPE=\"submit\" VALUE=\"CONTINUE\">";

“"<INPUT TYPE=\"hidden\" NAME=\"q\" VALUE=\"$strialta\">";
“<INPUT TYPE=\"hidden\" NAME=\"what\" VALUE=\"web\" CHECKEI
“"<INPUT TYPE=\"hidden\" NAME=\"fmt\" VALUE=\"d\">";
"<INPUT TYPE=\"hidden\" NAME=\"pg\'" VALUE=\"g\">";
"" ;

"</FORM>" ;

120

}

if ($sename eq ’YAHOO’) {
print STDOUT "";
print STDOUT "<FORM ACTION=\"http://search.yahoo.com/bin/search\"
METHOD=\"GET\'>";

print
print
print
print
print
print
print
print
print
print

¥

STDOUT
STDOUT
STDOUT
STDOUT
STDOUT
STDOUT
STDOUT
STDOUT
STDOUT
STDOUT

"<INPUT TYPE=\"submit\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
II(IFUNT)II;

"</FORM>";

if ($sename eq ’INFOSEEK’) {
print STDOUT "";
print STDOUT "<FORM ACTION=\"http://www2.infoseek.com/Titles\"
METHDD=\ "GET\ tyn ;

print
print
print
print
print
print

}

STDOUT
STDOUT
STDOUT
STDOUT
STDOUT
STDOUT

"<INPUT TYPE=\"submit\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
"< /FONT>";
"< /FORM>" ;

if ($sename eq ’LYCOS’) {
print STDOUT "";
print STDOUT "<FORM ACTION=\"http://lycospro.lycos.com/cgi-bin/
pursuit\" METHOD=\"GET\'>";

print
print
print
print
print
print

print
print

print
print

}

STDOUT
STDOUT
STDOUT
STDOUT
STDOUT
STDOUT

STDOUT
STDOUT

STDOUT
STDOUT

"<INPUT TYPE=\"submit\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"

"<INPUT TYPE=\"hidden\"
"<INPUT TYPE=\"hidden\"

"";
"</FORM>";

121

VALUE=\"CONTINUE\">";

NAME=\"p\" VALUE=\"$stri\">";
NAME=\"n\" VALUE=\"50\" SELECTED>";
NAME=\"t\" CHECKED>";

NAME=\"u\" CHECKED>";

NAME=\"c\" CHECKED>";

NAME=\"s\" VALUE=\"a\" CHECKED>";
NAME=\"w\" VALUE=\"s\'">";

VALUE=\"CONTINUE\'>";
NAME=\"qt\" VALUE=\"$stri\">";
NAME=\"cat\" VALUE=\"\">" ;
NAME=\"col\" VALUE=\"WW\'>";

VALUE=\"CONTINUE\'>";
NAME=\"query\" VALUE=\"$str2\">";
NAME=\"cat\" VALUE=\"lycos\" SELECTI
NAME=\"matchmode\" VALUE=\"and\'">";
NAME=\"mtemp\" VALUE=\"nojava\">";
NAME=\"etemp\" VALUE=\"error_nojava'

NAME=\"maxhits\" VALUE=\"50\">";
NAME=\"adv\" VALUE=\"1\'">";

if ($sename eq ’WEB CRAWLER’) {

print STDOUT "";

print STDOUT “<FORM ACTION=\"http://webcrawler.com/cgi-bin/WebQuery\"
METHOD=\"GET\">";

print STDOUT "<INPUT TYPE=\"submit\" VALUE=\"CONTINUE\">";

print STDOUT “<INPUT TYPE=\"hidden\" NAME=\"searchText\" VALUE=\"$stri\"
print STDOUT "<INPUT TYPE=\"hidden\" NAME=\"andOr\" VALUE=\"\'>";
print STDOUT "<INPUT TYPE=\"hidden\" NAME=\"maxHits\" VALUE=\"50\">";
print STDOUT "";

print STDOUT "</FORM>";

}

if ($sename eq *HOTBOT’) {

print STDOUT "";

print STDOUT "<FORM ACTION=\"http://www.hotbot.com/\" METHOD=\"GET\">";
print STDOUT "<INPUT TYPE=\"submit\" VALUE=\"CONTINUE\">";

print STDOUT "<INPUT TYPE=\"hidden\" NAME=\"sw\" VALUE=\"web\'">";
print STDOUT "<INPUT TYPE=\"hidden\" NAME=\"SM\" VALUE=\"$hot\">";
print STDOUT " ";

print STDOUT "<INPUT TYPE=\"hidden\" NAME=\"MT\" VALUE=\"$str3\">";
print STDOUT "<INPUT TYPE=\"hidden\" NAME=\"DE\" VALUE=\"1\'>";
print STDOUT "";

print STDOUT "</FORM>";

122

[1]
[2]
[3]

[4]

[5]

6]

[7]

(8]

Bibliography

AAAI Symposium on Natural Language Processing in Web. 1997.
http://crl.nmsu.edu/users/mahesh/aaai-web-nlp-symposium.html.

Alta Vista Home Page. June 1997. http://altavista.digital.com/.
ANDROUTSOPOULUS, L., RITCHIE, G. D. and THANISCH, P. March 1995.

“Natural Language Interfaces to Databases - An Introduction”. Computation and

Language E-Print Archive. hitp:/ /xxx.lanl.gov/list/cmp-lg/9503, no. cmp-ig/9503016.

ANIKINA, N., GOLENDER, V., KOZHUKHINA, S., VAINER, L., ZAGATSKY,
B. March 1997. “REASON: NLP-based Search System for the WWW™”, AAAJ
Spring Symposium Paper on Natural Language Processing for the World Wide
Web. Stanford University, USA.

CAPINDALE, R. A. and CRAWFORD, R. G. 1990. “Using a Natural Language
Interface with Casual Users”. International Journal of Man-Machine Studies. 32:
341-362.

CARPENTER, B. and PENN, G. December 1994. “The Attribute Login Engine
User’s Guide”. Computational Linguistics Program. Carnegie Mellon University.
PA.

CERCONE, N., McFETRIDGE, P., POPOWICH, F., et.al. 1993. “The SystemX
Natural Language Interface: Design, Implementation and Evaluation™. Technical
Report 93-03. Simon Fraser University, BC, Canada.

CERCONE, N. and McCALLA, G. 1986. “Accessing Knowledge through Natural

123

(9]

[10]

[11)
(12]

[13}

[14)

[15]

[16]

[17]

18]

[19)

(20]

CHANDRASEKAR, R. and RAMANI, S. 1989. “Interactive communication of
sentential structure and content: an alternative approach to man-machine com-
munication”. International Journal of Man-Machine Studies. volume: 30. pp
121-148.

Eureka! Secrets of Searching the Web and Promoting your Web site. June 1997.
http://www.best.com/mentorms/eureka—i.htm.

Excite Home Page. June 1997. http://www.excite.com.

GAL, A., LAPALME, G., et.al., 1991. Prolog for Natural Language Processing.
John Wiley & Sons.

GAZDAR, G. and MELLISH, C. 1989. Natural Language Processing in Prolog:
An Introduction to Computational Linguistics. Addison-Wesley Publishing Co,
Menlo Park, CA.

GROSZ, B. J., JONES, K.S. and WEBBER, B. L. 1986. Readings in Natural
Language Processing. Morgan Kaufmann Publishers Inc.

GUNDAVARAM, S. March 1996. CGI Programming on the World Wide Web.
O’Reilly & Associates, Inc. CA.

HELBIG, H., GNORLICH, C. and MENKE, D. Realization of a User-friendly Ac-
cess to Networked Information Retrieval Systems.
http://voss.fernuni-hagen.de/gebiete/pi7/papers/dag.ps(.gz).

Infoseek Home Page. June 1997. http://www.infoseek.com.

Infoseek Help Page. June 1997. .
http://www.infoseek.com/Help?pg=DChelp.html&sv=N4.

Infoseek Search Page. June 1997.
http://home.netscape.com/escapes/search/netsearch2.html.

KENT, P. and KENT, J. 1996. Official Netscape JavaScript Book. Netscape

Press.

124

[22]
(23]

[24]

[25)

(26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]
[35]

aby, BC.

Lycos Home Page. June 1997. http://www.lycos.com.

MATHESON, C. May 1996. HPSG Grammars in ALE.
http://www.ltg:hcrc.ed.ac.uk/projects/ lecitools/ ale-hpsg.

MAYASARI, S. I. September 1995. “An HPSG Lexicon for a Physical Activity
Database”. Technical Report CS-95-09. Department of Computer Science.
University of Regina, Regina, SK.

Opentext Home Page. June 1997. http://www.opentext.com.

PENN, G. “Compiling Typed Attribute-Value Logic Grammars”. Computational
Linguistics Program. Philosophy Department, Carnegie Mellon University.
POLLARD, C. and SAG, 1. 1987. Information-based Syntez and Semantics: Fun-
damentals. CSLI. Stanford University, CA. Volume 1.

POLLARD, C. and SAG, 1. 1992. Head-driven Phrase Structure Grammar. CSLI.
Stanford University, CA.

SAMAD, T. 1986. A Naturel Language Interface for Computer-Aided Design.
Kluwer Academic Publishers, USA.

STERLING, L. and SHAPIRO, E. 1986. The Art of Prolog Advanced Program-
ming Techniques. MIT Press, USA.

WALL, L. and SCHWARTZ, R. L. 1992. Programming PERL. O'Reilly & asso-
ciates, Inc. USA.

Webcrawler Home Page. June 1997. http://www.webcrawler.com.

Web Master’s Guide to Search Engines. June 1997. http://calafia.com/webmasters.
Yahoo Help Page. June 1997. http://search.yahoo.com/search/help?p==&a=n.

Yahoo Home Page. June 1997. http://www.yahoo.com.

125

m
™

&L *
=

L2 s s

10 k= =
= k|
e 0

B

150mm

6 14

APPLIED £ IMAGE. Inc

=== 1653 East Main Street

=== Rochester, NY 14609 USA

=== Phone: 716/482-0300
Fax: 716/288-5989

