
Providing A Simple Question Answering System By Mapping Questions to
Questions.

Tait Larson
Johnson(Heng) Gong
Josh Daniel

Abstract

Most current QA systems attempt to find answers to input questions by cleverly selecting
portions of related documents. In this paper, we discuss an alternative approach for taking
advantage of the large amount of pre-answered questions available on the web and
finding a similar question that has already been answered. Our approach involves query
transformation as breadth-first search with expansion by Wordnet and pruning by
language model, in order to transform the question into the language of the question
corpus. We use a combination of NLP and IR techniques to return the most relevant pre-
answered question. We discuss experimental results comparing our system to other QA
systems.

Introduction

In the last several years, question answering systems have become very popular, as
evidenced by the TREC QA competition. Standard search requires users to enter
keywords to guide a search engine, but an interface that allows users to ask questions
directly is much more intuitive for many users. Question answering systems are
especially useful in that they allow a user to enter a question, and the system attempts to
use the added context in the question to provide a better answer than simply extracting
keywords for standard document search.

Most current QA systems attempt to retrieve an answer from a set of documents, or
generate an answer from a data source. We propose a slightly different approach. The
internet contains vast amounts of knowledge including questions that have already been
answered, along with those answers.

This data exists in FAQs, Yahoo answers, Google answers, lawguru.com, and many other
resources. Rather than answer the question ourselves, our QA system uses these already
answered questions as the answers to an input question. Thus, our system attempts to find
the most similar question to that of the user, and then hopefully the stored answer is also
a good answer to the input question.

We return the best several questions if they appear to be relevant, and let the user choose
which answer he wants to see. If there are no relevant questions, we indicate that we do
not have a stored answer, and a complete application could revert to standard information
retrieval techniques. Our goal is a system that produces results with better precision than
Yahoo answers, but still has reasonable performance.

 2

Algorithms/Method

Overall Description

Given a set of questions and answers as a knowledge base, we take as input a user's
question phrased as one to several English sentences. We then attempt to map the user's
question to the questions and answers in our repository. Our system returns a set of
ranked relevant question and answer pairs to the user.

Note that this is distinctly different from traditional Information Retrieval in that we are
attempting to map input questions to stored questions (that we already have answers to),
as opposed to mapping input questions directly to documents.

The core of our approach is an attempt to transform input questions into the language of
the question corpus, and then find the closest matching repository question. The
transformation is done by a breadth-first search via rewriting of words in the input
question according to Wordnet synonyms, and pruning the search tree by removing low-
probability rewritten sentences according to a language model trained on the question
corpus. Once the input question has been rewritten into language close to that of the
question corpus, we run tf-idf information retrieval algorithms with only bigrams to find
the closest questions. If the final scores are too low, we determine that there is no
matching question/answer pair in the repository. A diagram of the process is below.

 3

Question
Repository

Input
Question

Part-of-
Speech
Tagger

Language
model

Internet
(Yahoo

Answers)

Web crawler

Wordnet
expansion w/

pruning

10 rewritten
sentences

Combine
sentences +

bigram
extraction

Term vector

Bigram IRBest
question(s)

Figure 1: Overall data flow for our Question->Question system.

Data

We chose to use a subset of Yahoo questions as our question repository. This data was
easily available to download with a web crawler, and contains a very large number of
pre-answered questions. We obtained around 100,000 question/answer pairs from the
health section of Yahoo questions, but there are many other categories as well. We used
the health questions exclusively in the IR component of our process, but added about
50,000 question/answer pairs from related sections (like pregnancy/parenting, etc.) for
training the language model. We chose health because we initially wanted to limit our
domain in order to apply domain-specific knowledge from some data source (expert
system or semantic web, etc.) Our final project did not actually use a semantic web, so
our system should generalize to other questions as well.

Question Rephrasing

Question rephrasing consists of several parts, which are described in the following
subsections.

 4

POS tagging

As a preprocessing step, we tag each word in the input question with its part of speech.
This is useful for limiting Wordnet to only expand word senses for the correct part of
speech. We use the Stanford Log-Linear Part-Of-Speech Tagger for this step.

Language Model

In order to transform the input question into language similar to that of the question
corpus, we use a language model to measure how likely a given sentence is in the
question corpus. We chose to use our Good-Turing bigram language model with backoff
from assignment 1 because it performs well and was easy to implement as we already had
working code. We trained this model on the question corpus so that it emphasizes
sentences which are likely to occur in the question corpus. We believe there to be enough
data in the 140,000 repository questions that a unigram model would be insufficient, so
we started with a bigram model, with the option to switch to a trigram model if memory
and time permit.

Rewriting words with Wordnet

Each word has been tagged with its part of speech, and Wordnet is used to generate a list
of related words to try during query rephrasing. Given a word and its part of speech,
Wordnet typically contains several senses of the word (around 3 or 4), and each sense
typically contains around 5-10 synonyms. We chose to generate words for nouns, verbs,
and adjectives because they are usually the most important content words in each
sentence, and expanding other words would significantly increase the computational time
required for question rephrasing. Also, we chose to generate all synonyms of all senses
for each word (but only for the proper part of speech). In our implementation, we used
JWord, a Java version of Wordnet, for word rewriting.

Rephrasing the question

In order to rephrase the question into language similar to that of the question corpus, we
perform a breadth-first search, guided by the language model. The search tree begins with
the input question, and Wordnet is used to rewrite each important lexical word. We start
by generating all sentences with rewrites of the first lexical word, and adding those
sentences to the search tree. If necessary, we prune the search tree down to the 100
sentences syntactically closest to the question corpus according to the language model.
We then iteratively move to the next lexical word, rewrite it according to Wordnet
synonyms, generate all rewrites of the sentences at the leaves of our search tree, and
prune the search tree via the language model. Pseudocode for this process follows:

Function RephraseQuestion (inputQuestion)
 Tree searchTree(inputQuestion)
 For (position = 0 to inputQuestion.numWords) {
 String[] rewrites = currentQuestion.getNthWord(position).GetRelatedWords()

 5

 For (each leafNode of the searchTree) {
 currentQuestion = leafNode.getQuestion
 for (each rewrite in rewrites) {
 newQuestion = currentQuestion.replaceNthWord(position, rewrite)
 leafNode.addChild(newQuestion)
 }
 }
 Prune all leaf nodes except top 100
 }
 Return searchTree.getTop10Leaves()
}

Pruning with the language model

Pruning is necessary because of the high branching factor. A typical question consists of
about 10 words of which around 6 may be content words, and each content word may
generate about 10 synonyms. Given these numbers, generating all sentences with all
rewritten content words would result in 10^6 sentences, which is too costly in terms of
computational time and memory. In addition, there are many sentences longer than this
average, for which the problem is even greater. Furthermore, many of these sentences
look nothing like proper English or any questions in the question corpus, so they will not
contribute much value to the question matching procedure.

To deal with this challenge, at each step of the search process, we prune the search tree
down to the 100 most likely sentences according to the language model. This means that
on each iteration of sentence rewriting (each iteration corresponds to rewriting one word
for each leaf sentence with about 10 synonyms for that word), we typically start with 100
sentences, grow to about 1000 sentences, and then prune down to 100 sentences again. At
the end of this process, we want to end up with the 10 best rewritten sentences, so we
hope that keeping 100 sentences after each iteration does not prune away too many
potentially good sentences. Our intuition is that keeping around 10 times as many
sentences as we actually want to end up with is reasonable, as the branching factor for
each iteration is also 10, and we have a margin for error of one order of magnitude. An
example portion of the search tree is shown below in figure 2.

 6

Figure 2: Sample branching of question rephrasing search process. Note that nodes with
dotted borders will be pruned off due to low language model probabilities.

Ensuring relevant terms are expanded

The language model works as a very weak yet computationally efficient word sense
disambiguator. Given a set of synonyms of a word, the language model does an
extremely effective job of determining whether or not each of these synonyms
appropriately fits into a candidate sentence. Unfortunately, one drawback of using the
language model to prune our search space is that very common words get expanded.
Consider the following example:

“Were Einstein and Godel very good friends?”

The most common bigrams in this sentence are “very good” and “good friends”. Such
terms and their synonyms will dominate the score given by the language model.
Synonyms for “very”, “good”, and “friends” will populate the majority of expanded
sentences. Yet “Einstein” and “Godel” are the terms most relevant to the question. In
order to ensure our model expands the most relevant terms, we delineate our sentences
into a number of positions. Each position stores one word in the initial sentence and
contains an associated weight. Probabilities, as determined by the language model, are
multiplied by their corresponding position weights when determining the full sentence
probability. In the rare case where a term is expanded to two words, only one of the two
words is used to determine the probability of that position; therefore, all positions of all
expanded sentences contain the same part of speech. By default, each position was given
a weight of one.

Effectively any method could be used to determine the most relevant terms. We simply
assume all nouns (except pronouns) are most relevant and give higher weights to
positions containing nouns.

Information Retrieval

 7

Once we have chosen the 10 sentences most similar to the question corpus, we extract all
bigrams from those sentences and create a term vector with those bigrams. Much like tf-
idf information retrieval, we then find the cosine between the generated term vector and
the term vector for each repository question. The repository questions with the highest
scores are returned as potential matches. If the scores are too low for all repository
questions (according to a hand-tuned threshold), we then determine that our repository
does not contain a question that is a good match. Information retrieval was implemented
using Lucene.

Bigrams vs. unigrams

Note that typical tf-idf IR uses only unigrams for its term vectors, whereas we use only
bigrams. We use bigrams because the order of words in a question is more important than
in typical search/IR. For example, bigrams typically capture the context of the question
(e.g. the subject precedes a verb, and the object follows a verb), and the short length of
repository questions allows us to be more context-sensitive than if we were looking at the
full contents of an answer document.

Many IR solutions choose not to incorporate bigrams in their index. Indexing all bigrams
leads to a blow up in the index size because of the number of unique bigrams and their
associated entries. We can get away with this because we’re indexing questions much
smaller than documents.

By combining sentences, we have more bigrams to use for information retrieval. As each
of these bigrams was generated by synonyms of input words, and these bigrams are likely
to occur in the question corpus (because of the language model), these bigrams should be
a good intermediate representation of the question that is suitable for tf-idf scoring, and
should help precision. Note that we exclude unigrams because they cause noise in the
data due to multiple word senses, and there should (hopefully) be enough bigrams to
cover most phrases containing the constituent unigrams.

Stop words and stemming

Note that we do not use any stop words (unlike typical IR), because those pieces of our
bigrams are useful for distinguishing parts of speech or word senses, while they do not
provide much value in unigram IR. For example, “the fires” refers to burning objects,
while “she fires” refers to an act of terminating someone’s employment or using a gun.
We also chose not to stem, because is unclear how to stem bigrams, and stemming the
component unigrams would lead to a loss of contextual information.

Term frequency, and inverse document frequency

In addition, we determined that idf was definitely important for our modified IR as it
emphasizes the importance of bigrams that occur infrequently in the question corpus (and
therefore contain more discriminatory power). For example, common phrases like “why

 8

does” occur extremely often and we don’t want to place too much weight on those
phrases.

On the other hand, there was some internal debate as to the importance of using term
frequency values. Tf values may be useful as they emphasize bigrams that occur
frequently in a particular question. For example, “My cat is not potty trained, how can I
potty train my cat?” contains “my cat” twice and “potty train” once or twice depending
on stemming, and the question is clearly about those bigrams that occur twice.

Results

Testing methodology

Our testing regimen included several instances of our program, and Yahoo’s question
search as a benchmark. Our question repository contained approximately 100,000
questions in health and related topic areas, and 50 reference questions. Similarly to older
TREC competitions, we measured the Mean Reciprocal Rank of the first relevant
repository question for each system. The rank is the position of the first relevant result
(limited to the top 5 results), so the reciprocal rank is 1/4 if the fourth result is the first
relevant result.

The general population is constantly asking new questions, and is the best source of
representative questions. Our 50 reference questions were chosen randomly from among
the most recently asked and unresolved questions on Yahoo health to obtain a diverse,
representative sample. Our primary goal was to outperform Yahoo question search, but
we also mention results from other systems. Relevancy was manually determined by an
unbiased judge who was unaware of which questions were from our systems and from
Yahoo. Note that our judge actually looked at the answers linked to the result questions,
and determined whether the answer was relevant to the input question. This is important
because it demonstrates the effectiveness of our system at obtaining good answers even
though the process only looks at question text. Our 50 reference questions can be found
in appendix A.

Results

On our 50 reference questions, Yahoo question search scored an MRR of 0.1466. Our
baseline system scored an MRR of 0.2382. This is a significant improvement, and
demonstrates the success of our system. Further improvements on our system yielded
even better results, as can be seen in the following graph.

Version 2 contained a modification to idf calculations in the IR phase. After our initial
run we noticed that sentences containing many common bigrams would match other
sentences containing the same structure ignoring important uncommon bigrams. For
instance sentences like “Is there any natural way of getting rid of hayfever?” matched
questions in our corpus containing the substring “Is there any natural way of getting rid
of”. This occurs because the idf weight of “of hayfever” though large cannot compensate

 9

for the combined weights of the common bigrams. To compensate for this we modified
the comon idf score of idf=log(N/d) to idf = log(N/d) + square_root(N/d). This allowed
uncommon bigrams to more frequently dominate question scores.

Version 3 boosts the IR score of candidate bigrams containing a noun. We found that
some relatively uncommon yet useless bigrams such as “a reasonable” dominated
question similarity scores. Adding weight to bigrams with nouns compensates for this
effect.

MRR of our systems vs. Yahoo

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

Yahoo Baseline Modified idf Boost nouns +
Modified idf

System

M
R

R

Figure 3: Cumulative Mean Reciprocal Rank results of our systems.

Note that top scores at recent TREC proceedings have been around 0.70, but their
problem is significantly easier. Their set of documents is well defined, the questions are
much less ambiguous, and questions are written in proper English. Also, all TREC
questions contain answers in their corpus. Our questions are taken from the unresolved
Yahoo questions with the hope that they have been answered in the past, but many of
them have not. Also, most TREC questions are looking for short, factual answers (e.g.
“What movies do James Dean appear in?”) while Yahoo questions tend to be more open-
ended (e.g. “Yeah I'm a teenager who needs help on weight?”), and are therefore more
difficult to answer.

We’ve included several interesting pairs of input questions and the repository questions
they return. All these results were in the top 3 results for their input question, and are
from our baseline system.

Input: a sharp pain in the center of the chest breastbone area?
Result: keep getting a throbbing pain in the middle of my rib cage . any idea what it could
be?

 10

Note that many words are different here, but the question rephrasing translated “sharp” to
“throbbing” with Wordnet, and the language model scored it highly, so “throbbing pain”
was found in the IR stage. It appears that Wordnet did not actually translate “chest
breastbone” to “rib cage”, as several similar questions were also returned with other body
parts in that part of the sentence, but there were enough bigram hits to make IR
successful. Unigram IR would probably not correctly retrieve this question.

Input: my contact lens ripped is there any way that i can buy like one 1 lens without
having to buy a sixpack?
Result: does anyone know where i can order contact lens without having a prescription
verified?!?

Note that Wordnet does some of the rewriting very well (e.g. “buy” -> “order”), so there
are a few key bigrams used in the IR phase (“contact lens”, “can order”, “without
having”), but the two queries still do not match. In this case, bigram matching is not
sufficient to establish the proper meaning of the sentence. Also, note the word “like” in
the input question and the repeated “one 1” – many questions, like this one, are more
similar to casual spoken English than proper written English, and are more difficult to
process.

Input: what are some cures 4 the flu or if i have gastondridous?
Result: What are some good home remedies for the flu?

Here is another successful example, where Wordnet rewrote “cures” as “home remedies”,
and 4 as “for”. As a result, there are a lot of bigrams in common between the two
questions.

Input: is weed bad for asthma?
Result: marijuana for asthma?

Here, “weed” was rewritten as “marijuana”. Wordnet was useful for this question, but
unigram IR would probably perform just as well as bigram IR because “marijuana” and
“asthma” capture the meaning of the question well.

In addition, a significant subset of our reference questions are virtually impossible to
answer. For example, questions like “i would like advice on what i should do” do not
contain any useful information in the question itself, and one would need to look at the
full text of the message body or in the answers to properly process these questions.

Discussion/Analysis

There are several linguistic assumptions inherent to our models. One is that bigrams
represent the context of each question much better than unigrams. This is true, but
bigrams are clearly not sufficient to capture all information in the question, and deeper
semantic structures are important to fully understand questions. As a step in this direction,
we used Wordnet (guided by the language model) to capture semantic information. This

 11

was partially successful, but Wordnet has its limitations, and deeper semantic structures
would be useful.

The most obvious feature and limitation of our system was that we only looked at
question text in the repository. Obviously, using the answer as well would provide more
information, but our goal was to focus on NLP techniques and do a more thorough job of
exploiting the structure of the question. One could certainly run IR techniques on the
answers, and use the result as another feature for determining the best question/answer
pairs to return.

The most interesting feature of our system was the language model, and it (along with
Wordnet) is the foundation on which the rest of our system is based. One interesting
decision to note is that we train the language model on the same corpus that we use for
evaluation. Normally, it is considered “cheating” to train and test on the same corpus.
However, we are not testing the accuracy of the language model, but rather the results of
the entire process, and the language model is merely a tool used in the middle of the
process to rewrite questions. Language models are typically used for predicting the future.
In our case, the language model is used to guide query rewriting towards the language of
the question corpus. It also serves roughly as a word sense disambiguator, and tends to
emphasize sentences with bigrams that are relevant to both the input question and the
question corpus. Wordnet generates new sentences, and the language model keeps those
similar to questions in the corpus.

Much other work on question answering systems used FAQs or other resources for their
question repositories. We chose to use Yahoo answers because it seemed more interesting
than FAQs as it contains more realistic, casual questions asked by typical users as
opposed to very specific questions chosen by site administrators. The downside of using
this data source is that a large number of users are lazy or careless, and many questions
contain improper English. For example, “y” is used instead of “why”, capitalization is
often lacking, and punctuation is often used incorrectly. The primary result of this is that
the Part-of-Speech Tagger, which was trained on Wall Street Journal text, misclassifies
many words that are improper English (e.g. “i" is a foreign word, but is intended to be
used as “I”, which is a pronoun). As we only expand certain parts of speech, many of
these misclassifications are irrelevant, but some do adversely affect our results. We
expect that we would obtain better results if we used questions that correspond more
closely to proper English, or if we could train the POS tagger on a more appropriate,
labeled corpus.

We noticed that Yahoo question search contained highly stratified results, and was
overall not particularly impressive. Yahoo was very successful with some questions, and
their first returned result was highly relevant. In this case, the next several results were
typically good as well. On many other questions, Yahoo was very unsuccessful, and no
results were even close to the input question. There were very few input questions for
which the first result was irrelevant but any other highly ranked results were relevant.
Our interpretation of this is that Yahoo’s information retrieval algorithm works well on
certain easy questions, but not a lot of effort has gone into searching harder questions,

 12

and commercial interests tempt the user to click on sponsored links for these failed
questions. In addition, this is a hard problem. Many users are asking questions because
they can’t find the answers elsewhere on the web. Often, this is because the answer
doesn’t already exist in the Yahoo database, or because the user is inexperienced with
web search and is using ambiguous terms.

Another difficulty we faced was the sparse coverage of Wordnet. Wordnet does not
contain many drug names, it lacks common proper nouns (like “Honda”), and often has a
limited set of synonyms for words that it does contain. We attempted to improve the
performance of Wordnet by including hypernym/hyponym relationships in addition to
direct synonyms. Another difficulty we had was dealing with verb tenses. Wordnet could
find synonyms for a past tense verb, but the synonyms were generated as present tense,
and this adversely affected our language model and IR bigram scores.

Initially, we used only the Yahoo health section for both the language model and IR.
Based on the number of unknown bigrams generated by Wordnet rewriting, we decided
to add more questions from similar domains of Yahoo questions to training of the
language model. In general, increasing the corpus size of a language model is always a
good thing (if the new data is relevant to the original corpus). In particular, we hoped to
store more rare words in the model, and recognize that those words are less likely than
unknown words.

Also, our first attempt did not contain POS tagging, and it was so computationally
intensive that we didn’t even attempt a costly full evaluation on 50 sentences. The
problem is that there are a huge number of words in English that can be either nouns or
verbs. Because we didn’t know the part of speech of a particular instance of such words,
we had to expand all noun and verb senses of these words, and this was simply too noisy.
Adding the POS tagger was a necessary step to allow the more interesting portions of our
system to work properly.

Related work

The TREC Question Answering competition has been going for about 10 years, and
much research has been conducted into question answering systems. The majority of
these systems attempt to find an answer directly, rather than finding a similar question.
One fairly typical example of this is AskMSR, which categorized questions into types,
performed some syntactic rewrites of input questions, searched a large repository of
documents for the transformed text, and combined the most frequent search results into
an answer.

More successful QA systems have also been developed using deeper semantic
understanding of questions such as (Harabagiu, 2001). Most of these systems involve
reformulating an input question and expanding words, and many also involve question
type recognition, semantic processing, and applying world knowledge.

 13

Early question answering systems based on question to question mapping were attempted
by Ask Jeeves. Their system was based on question paraphrasing, and used a set of
manual rules to find similar questions based on predefined sentence patterns. When
successful, it returned the answers to those questions. As the rules needed to be created
manually, the system was very inflexible, and many answerable questions did not fall
into the preset patterns. Their backup system was pure information retrieval.

(Lytinen, 2002) use several features to match input questions to FAQ questions. They use
a sophisticated approach to question types involving 12 categories, machine learning on
about 90 content-independent prepositions, and similarity metrics between question types.
Their other features include cosine similarity between the input question and repository
questions, coverage (percent of input question words in repository questions), and
semantic similarity based on Wordnet distances between pairs of input and repository
words.

Future Work

There are many additional features we’d like to include in our system. The most
important of these is question type similarity. A simple possibility is to categorize
questions by their first words (e.g. who, what, why, how, etc.) but this has been shown to
perform somewhat poorly. (Lytinen, 2002) demonstrate a much more successful
approach to question types, as discussed in the previous section.

Also, we’d like to add a simple IR feature that runs basic tf-idf scoring on the unigrams
of the input question against repository questions. This would help out with cases where
our question rephrasing technique transforms the sentences too much from their actual
meaning towards irrelevant questions in the repository.

Another obvious feature is the content of answer documents. By only looking at the
repository question, we can better analyze its meaning. But the document contains much
useful information, and running IR on the answer document is another rich source of data.

Given these additional features (and potentially others as well), we could combine these
features with our rephrased question bigram similarity metric, and learn weight for each
feature via some machine learning technique. This could be something simple like
maximum likelihood estimation, or more complex like a maximum entropy model.

Another possibility would be to replace or augment Wordnet with a more complete data
source. Wordnet is useful, but is missing many words, particularly proper nouns like
“Honda” or drug names. If we limited the domain of the questions, then we could use a
richer data source like a semantic web or knowledge base containing domain-specific
word associations.

In addition, word sense disambiguation techniques could be applied to limit the
expansion of words such that only words related to the correct sense are generated. This
would improve precision, and speed up computation.

 14

Collaboration

We spent the majority of our project time working together and discussing ideas and
approaches, so it is difficult to specify an exact breakdown of responsibilities. That said,
the division of labor was roughly as follows. The overall design was entirely
collaborative. Tait and Johnson were primarily responsible for the coding, and Josh was
primarily responsible for the writeup.

Tait wrote the crawler for retrieving Yahoo questions. Josh wrote the initial Wordnet
code, and Johnson and Tait both enhanced it. Johnson and Tait were both partially
responsible for the query rephrasing search process. Tait was primarily responsible for
implementing the language model and the POS tagger, and Johnson was primarily
responsible for the IR component. Results were processed and analyzed by all group
members.

References

S. Lytinen, N Tomuro, The Use of Question Types to Match Questions in FAQFinder,
American Association for Artificial Intelligence, 2002

Marius Pasca and Sanda Harabagiu. High-performance question/answering. In SIGIR
Conference 2001.

Erika F. de Lima and Jan O. Pedersen. Phrase Recognition and Expansion for Short,
Precision-biased Queries based on a Query Log. http://citeseer.ist.psu.edu/558356.html

Zhai, C. (1997). Fast Statistical Parsing of Noun Phrases for Document Indexing. In
Proceedings of the Fifth Conference on Applied Natural Language Processing,
Washington, DC. To appear.

Ana-Marie Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of natural
language interfaces to databases. In Proceedings of the conference on Intelligent User
Interfaces, 2003.

Wordnet: JWord, http://www.seas.gwu.edu/~simhaweb/software/jword/

Stanford POS Tagger, http://nlp.stanford.edu/software/tagger.shtml

Lucene, http://lucene.apache.org/

Appendix A: Reference questions for testing

do bush's baked beans give you gas?
How can I get rid of my pimples by tomorrow without products?
Where can I purchase alpha hydroxy acid for mild acne? is there a specific brand that works good?
What tests might the doctor order for a man with low sex drive?

 15

How does someone get eggsma?
Does anyone know what these may be symptoms of ?: Extreme rapid weight loss and trembling hands?
Thank you!?
What are the best things to put in a home gym?
A sharp pain in the center of the chest (breastbone area)?
How can I pass a saliva drug screening?
Have any men had problems with laser hair removal in the face/neck? Also, what is a reasonable cost for it?
Help with infected and swollen acne cyst please!?
What is the best way to get rid anxiousness?
What's a good way to do a stomach crunch without tearing up your back?
Yeah I'm a teenager who needs help on weight?
Question about depression and anxiety.?
Lexapro and weight gain?
What can happen to someone who abuses laxitives and is it ever safe to take everyday?
When I bend my big toe upwards, the bottom of my foot hurts?
what type of schooling do you need for tattoo removal?
what causes heart palpitations.?
What are the symptoms of low sodium blood levels?
How can someone help stabilize their cholesterol? What foods can someone eat to lower the levels?
I would like advice on what i should do?
Where can I find or how can I get in touch with a specialized sex counselor or specialist?
health hazards of the mineral lime?
Teeth filing...?
Why does my resting heart rate of 60-65 speed up at night to 70-76 and I hear swishing noise in both ears?
My contact lens ripped, is there any way that I can buy like ONE(1) lens without having to buy a sixpack.?
I think I have a small medial cartilage tear- Some pain, full ROM, no swelling. How long before it heals?
Can Prozac make you extremely tired?
Chemical burns in mouth?
What should I do if I'm eating right and exercising but still fell sleepy during the day?
what are some cures 4 the flu,or if i have gastondridous.???.......?
Why I sweat? and How can I stop this problem?
I have acid in my back how can get ready of as soon as possible. my birthday party is soon and I need my
back?
How can I stop my hives from itching?
Hello, just wondering If anyone can help with sleep suggestions. Ive tried ambien, to expensive. Cant sleep.?
I have a pain on the left side of my waist, anyone know what that may be?
why is Provigil 200mg so expensive? mine cost $448.00 30 day supply for sleep disorder.?
hello....ive being diagnosed with hypothyroidism since i was 16...and now am 21...iam usually into
depression?
how do i cure my paranoia or however u spell it?
Can swimming after a mantoux test cause a false positive?
ECG Abnormal?
Where can I get Nitrofuradantoin 100 mg tablets?
what to take to pass a drug test for crystal meth?
My wife was diagnosed with kidneystones, what are good/bad food/drinks for her?
Is it true that postmenopausal women under 50 should take birth control for two years after their last period?
i got a spider bite and its now big and its purple in the middle should i worry?
is weed bad for asthma?
is there any natural way of getting rid of hayfever?

