Evaluating Kernel Performance in Multi-Category
Hypertext Classification

{llya Grigorik, Francis Lau}
ivgrigor@uwaterloo.ca, fkwlau@uwaterloo.ca

Introduction

Support Vector Machines (SVMs) are learning systems that utilize a hypothesis space of
separating functions in a high dimensional feature space. With rigorous mathematical
foundations from optimization theory and statistical learning theory, this approach first
introduced by Vapnik has been shown to outperform many other systems in a variety of
applications. One of the successful uses of SVM algorithms is the task of text
categorization into fixed number of predefined categories based on their content.
Commonly utilized representation of text documents from the field of information
retrieval (IR) provides a natural mapping for construction of Mercer kernels utilized in
SVM algorithms; when dealing with hypertext and plaintext documents which do not
have a natural vector representation, explicit kernel structures have to be constructed, a
procedure for which a number of construction algorithms have been proposed and
investigated: TFIDF (Bag of Words), String, Syllable and Composite kernels. In this paper
we investigate the efficacy of these methods for multi-category classification of
hypertext documents. We discuss the theory and computational construction
algorithms for each of the aforementioned kernel structures and the possibility of
creating and utilizing composite kernel structures to simulate information boosting. We
also use the SVMPython package®’ on a set of 1000 categorized documents to
empirically evaluate the performance of the discussed kernels.

Composite Kernels

The idea proposed by Joachims et al. (2001) that the performance of a kernel increases
when it is the combination of two or more independent kernels has made the task of
finding good kernels a lot easier. Rather than trying to capture all the required features
into one kernel simultaneously, one can now use Joachims et al.’s results to design and
combine smaller kernels. Not only is the task of designing smaller kernels easier, the
idea of composite kernels also allows the reuse of existing kernels that are known to
have good performance.

To construct a composite kernel, the first step is to verify that all kernels are valid.
Joachims et al. (2001) states that as long as a kernel satisfies all the kernel closure
properties, it can be classified as valid and thus can be used as a building block of more

complex kernels. After the kernels that are designated to be combined into the
composite kernel are all classified as valid, two kernels can be combined using the
following simple technique (Joachims et al., 2001):

Let ¢' : X — R be the feature mapping correspond-
ing to the kernel I;, ¢ = 1,2. Now consider the feature
vector

¢(x) = [VA! (z), /(1= N)é? (2))].

The corresponding inner product satisfies

(6(x), 6(2)) = Mo' (2), 0" (2)) + (1 = N)(¢* (), ¢*(2))
= A (z,2) + (1 = M Ks(z, 2)
= K(z,2)

The resulting composite kernel will be better than the two kernels considered
separately because it has a smaller soft margin® (Joachims et al, 2001). This leads to the
conclusion that the composite kernel optimizes the upper bound.

We will now use the results from Joachims et al. (2001) as a basis to study the String
Kernel and the Syllable Kernel, both of which utilize the concepts of composite kernels
to construct enhanced performance kernels.

Text Classification using String Kernels

In this paper a new kernel construction theme is proposed, where the feature space is
generated by all subsequences of length k as derived from the document T to be
classified. As argued by the authors, the simple Bag of Words approach loses all word
order information — by discarding stop words, only the words’ frequency is used and
useful structural information is lost in the process. Instead, they consider documents as
symbol sequences and construct the feature space as a set of all (non-contiguous)
substrings of k-symbols. In turn, the feature vector similarity is then determined by the
number of common substrings each document contains. This approach does not utilize
any domain knowledge but is nonetheless capable of capturing topic information,
making it a powerful technique for all text-classification applications.

Text Classification using String Kernels

In this paper a new kernel construction theme is proposed, where the feature space is
generated by all subsequences of length k as derived from the document T to be

classified. As argued by the authors, the simple Bag of Words approach loses all word
order information — by discarding stop words, only the words’ frequency is used and
useful structural information is lost in the process. Instead, they consider documents as
symbol sequences and construct the feature space as a set of all (non-contiguous)
substrings of k-symbols. In turn, the feature vector similarity is then determined by the
number of common substrings each document contains. This approach does not utilize
any domain knowledge but is nonetheless capable of capturing topic information,
making it a powerful technique for all text-classification applications.

An important part of the String Kernel construction lies in the notion that substrings do
not need to be contiguous, and the degree of contiguity of one such substring in a
document determines how much weight it will have in the comparison. In order to deal
with non-contiguous substrings, the authors propose the introduction of a decay factor
A € (0,1) that is used to weight the presence of certain features in the text. Thus,
combining the notions of k-length substrings and the decay factor A, for k =2 and words
‘cat’ and ‘car’ we obtain the following matrix:

c-a ct a-t c-r a-r
@ (cat) A? A? A?
¢(car) A2 FE 12

Hence, the unnormalised kernel is K(car, cat) = A? and the normalized version is:

4
K(car, car) = K(cat, cat) =2A*+A° and therefore K(car,cat) = 2/14A+ =7 -&AZ

Of course, a document to be classified usually contains more than one word, but same
procedure can be extended to create a mapping into the feature space for any number
of words. Thus, to generate a string kernel:

Let) be a finite alphabet. We denote by)" the set of all finite strings of length n, and by
Y *the set of all strings, therefore: YE= Ul D

And the feature mapping @ for a string s is given by defining the u coordinate ¢,(s) for
each u €);*. We define: ©ulS) = Xiu=si] 2

However, experimental analysis of this approach has shown that while it is a successful
technique for text-classification, it suffers from practical limitations for big datasets and
for values of k > 4. Therefore, to scale this approach the authors propose several
dynamic programming techniques to try to efficiently approximate the Gram matrices.

The authors then designed three different composite kernels using the results from
Joachims et al. to perform an empirical study. Consistent with the results from Joachims
et al. (2001), the performance of the system improved when a composite kernel consists
of two independent kernels that contain different information. For combination of
similar kernels, the system showed no performance improvements, just as Joachims et
al. (2001) predicted.

Syllables and other String Kernel Extensions

Syllable Kernel constructions proposed by Shawe Taylor, Craig Saunders and Hauke
Tschach aim to reduce the computational complexity of the String kernel construction
by utilizing Speech Segmentation techniques widely employed in the field of Natural
Language Processing. By analyzing the document as a string of syllables, this approach
allows the capture of more fine-grained data relationships as compared to the Bag of
Words kernel while avoiding the computational complexity of considering individual
characters of the String kernel. Unlike the String kernel, the Syllable kernel captures
domain specific information of the phonetic structure of the underlying language of the
document. Since the number and relevance of different syllables varies with every
language, this approach is not as generic as the String kernel but it allows higher level
analysis of data relationships and offers a less computationally complex kernel
generation scheme. The authors also propose two extensions to the String kernel to
improve the performance of the Syllable kernel. The first suggestion introduces the idea
of using different decay values A for each character to assign different weights to each
syllable. Therefore, under this framework the weight of any syllable can be defined in
the following fashion:

Let Y be a finite alphabet. We denote by)" the set of all finite strings of length n, and by
Y *the set of all strings, therefore:

S*= U g

n=0

Define for each symbol c €), its own decay factor A. € (0,1). Then the u coordinate of the

feature vector for string s is now defined by:
_ LI
@uls) = [T.2; As
i:u=sli] J=h

Thus, the feature ‘cart’ for the document ‘cartridge’ would receive the weighting:
AAAA: and the weighted string kernel K of two strings s and t is evaluated as:

Ka(s,0 =) Gul)9u()

uEeyn

By allowing different values of lambda we are able to incorporate prior domain
knowledge such as different weights for different length syllables, or if words can be
grouped into syntactical groups (adverbs, verbs, nouns, etc.) then authors propose
assigning penalties for adverbs which are usually less likely to change the meaning of
the sentence.

The second suggestion proposes the idea of soft matching or considering not only
‘equal’ symbols, but also ‘similar’ symbols with an extra factor that ensures that soft
matches have lower weights than exact matches. This suggestion is similar to evaluating
noncontiguous strings in the string kernel except here we only consider predefined
similar pairs, ex. {v, f} for strings ‘calf’ and ‘calves’. Thus, for each pair {u, v} of similar
characters we define a similarity value A, , which leads to a symmetric matrix:

A= (A,)uy €D E]ROIZ.an | Yn|

Thus, we can define the new kernel K that uses this soft margin technique as:

Kn(s,t) = @u(s)TA@u(t) = Z Z ou(s)Tou(H)Au, v

UEY™ VEY N

Furthermore, the authors also propose creating a composite kernel by combining
several different length-kernels. In their experiment a new syllable kernel was created
by combining syllables with lengths 1-4 to produce a new kernel which was weighted in
the following way: K(-,-) = 0.2xK; + 0.3xK, + 0.4xKs+ 0.4xK,;. This method proved to
have slightly worse performance on small samples, but for larger datasets it
outperformed all the other methods. Thus, through experimentation the authors have
demonstrated that phonetic Syllable kernels work in principle and provide a more
general form of String kernel which can be applied to different application domains with
reduced computational costs and the ability to embed language specific domain
knowledge into the kernel.

Empirical Study of Different Kernels
Experiment Setup:

To run our experiment we obtained a list of 1000 unique links classified into nine
distinct categories®. Each document, which corresponds to a tutorial link from the
website, is labeled with respect to one of the following categories:

Adjusting Colors

Animation and Image Ready
Basics and Tools

Interfaces and Buttons
Miscellaneous

Photo and Scanning

Special Effects

Text Effects

Textures

W oo NOU R WN R

The original dataset contained approximately 1500 unique documents. We pruned 500
documents that contained unavailable links and links not leading to HTML documents.
(e.g. pdf, jpg, gif). Next, we randomly picked a sample of 130 links for classification and
used the remaining 870 links to train our multiclass SVM algorithm. To generate the
@(x) mappings we used the following procedures:

1. Each document was downloaded by an automated script and processed as
follows:
a. All JavaScript, CSS (Cascading Style Sheet), DOM declarations and HTML
comments were removed from the HTML source of the document.
b. Structural HTML tags were removed from the document.
c. The remaining user-visible (content as rendered by the browser and as
seen by the visitor) content was stored for further analysis.
2. Kernels were constructed in the following fashion:
a. Syllable Kernel:

i. Using the Moby syllable dictionary* we identified the set of all
distinct syllables (each syllable was given a unique ID number) and
computed their weights using the Scrabble weighting scheme”’.

ii. The feature vector was generated on the basis of the obtained
syllable IDs and weights; for each document, every word was split
into syllables and the document feature vector was constructed.

b. Bag of Words (TFIDF):

i. Word stemming algorithm was applied to all documents in order
to lower the number of overall features.® (Based on our
experimental results, this proved to be largely redundant because
the bottleneck turned out to be the misspelled words — a problem
not present in academic and formal documents).

ii. Word frequency over all documents was computed.

iii. Feature vectors for each document were constructed, where each
word had a unique feature identifier and a weight assigned
according to the classic BowW (Bag of Words) formula.

c. Bag of Words (Global Frequency):

i. Same as in the classic TFIDF kernel.

ii. Global word frequency (total number of occurrences of word w;)
was computed.

iii. Same as in the classic TFIDF kernel, except new weight values
were used.

3. After computing the feature vectors of each document, each vector was
normalized, as suggested in Chris Burges’ tutorial’ for SYM-Light.

4. Similar procedure was repeated for the remaining 130 classification links to be
used later for measuring the performance of our kernels.

Computing Kernel specific feature vectors:

TFIDF Kernel: To run the bag of words approach we parsed the string contents of each
page and assigned the weights according to the standard BoW (Bag of Words) formula:

. _ | _n
weight(word) = TF(wj, document)x IOg(DF(wi))

Where TF(w;, document) is the number of times the word w; occurs in the document, n
is the total number of documents and DF(w;) is the number of documents in which the
word w;occurs.

TFIDF-Global Kernel: We modified the BoW scheme such that in DF(w;) now represents
the total number of occurrences of the word w; over all documents. Effectively this
allowed us to now modify the value of n (total number of documents in classic TFIDF) to
reflect a threshold cutoff value where any word that surpasses this limit is omitted in
our final analysis. When generating our feature vectors we omitted all negatively valued
features, thus removing all words that have surpassed our limit n.

Syllable Kernel: To set up the Syllable Kernel, we used the Moby Hyphenator® word list
to obtain the syllables for 185,000 words. Then, we calculated the weights of the
syllables with respect to the character scoring system in Scrabble. For example, the
word ‘boy’ would be given a score of 8 because ‘b’ has a score of 3, ‘0’ has a score of 1,
and ‘y’ has a score of 4 in Scrabble. After obtaining the weights (scores) of all the
syllables, we constructed the kernel by finding the number of instances a syllable occurs
in a document and giving it the appropriate weight. In our Syllable Kernel, the syllables
that appeared in the documents make up the feature space.

Running of the experiment:

Using the SVMPython package based on the SVM™ %5 9 quadratic optimizer we trained
our SVM using the obtained feature vectors from the experiment setup. The SVMPython

COde, which comes with a SVMmuIticlass

sample implementation was largely unchanged,
only minor data processing and setup modifications were introduced to read in our
data. Once the SVM was trained we used the resulting model to evaluate the
performance of our kernel by feeding the remaining 130 feature vectors and comparing

the predicted category IDs with the true labels.

Experiment results:
Prediction
RIS Kernel Type Success K] Correct Incorrect
Vector Kernel yp Variables
Rate
TFIDF Radial Basis Function 64.29 G=0.5 81 45
TFIDF Linear 57.94 N/A 73 53
TFIDF Global Radial Basis Function 67.46 G=0.5 85 41
TFIDF Global Linear 61.90 N/A 78 48
Syllable Radial Basis Function 54.76 G=0.5 69 57
Syllable Linear 49.21 N/A 62 64
Table 1.

From our experiments we can conclude that all three types of kernels perform well.
Unlike the binary classification model, our experiments require classifying web-pages
into one of the nine distinct categories. Given a naive-random prediction rule, the
expected accuracy rate is only 11.1 percent. However, as Table 1 shows, our SVM
multiclass algorithm yields much higher prediction rates over all three types of kernels.

multiclass

In general, we found that RBF (Radial Basis Function) kernels (predefined SVM
kernel) performed better than the default linear kernel. This increase in performance is

likely due to the better fit of a non-linear model and noise smoothing properties made
use of by RBF kernel. For all of our tests, we set the value of gamma for RBF kernels to
0.5.

In terms of performance, TFIDF Global kernel was the best performer, followed by the
standard TFIDF kernel, and finally the Syllable kernel. We theorize that TFIDF Global
kernel had the best performance because we found that only 30% of the words
appeared in more than one document. (Even with word stemming, as previously
described). In turn, this results in similar weighting for 70% of all features; resulting in a
sparse binary representation of each document, where only the presence of a word is
recorded.

We were surprised that the Syllable kernel was the worst performer, because Saunders
et al. (2002) concluded that Syllable kernels should achieve a better overall performance
relative to String and BoW kernels. A possible explanation for this poor result lies in our
naive Scrabble weight scheme, which does not implement any higher level phonetic
analysis proposed by the authors and thus may have a poor weight distribution relative
to our actual set of documents.

Conclusion

In this paper we have examined three different types of kernels for the task of multi-
category classification of hypertext documents. Using recently published papers in the
realm of constructing kernels for SVM-based text classification, we investigated the
theory behind the String, Syllable and the Composite kernels. Specifically, we analyzed
the theory behind the String kernel construction and problems associated with using it
in practice. Since the computational aspect of using the String kernel makes it infeasible
for practical usage, we explored Syllable kernels, which are similar to String kernels but
reduce the computational complexity. Furthermore, we investigated the theory behind
Composite kernels which aims to improve the general performance of kernels by
combining kernels that contain different information (information boosting).

To test the theory, we empirically evaluated the performance of multi-category
classification with the Syllable/String and BoW kernels. Based on our results from
running our dataset of 1000 documents on SVMPython, we conclude that all kernels
performed well. In all four instances, the kernels accurately categorized about 60% of
the documents. This is a significantly better result than the expected value of a random

categorization, which is only % or approximately 11.1 percent.

We speculate that an improvement for a future study would entail using a larger
document corpus to obtain a better generalization bound. Also, improving the
preprocessing of the document, such as correction of common typographical errors
should reduce the number of features and theoretically improve the accuracy of the
algorithm.

References:

1. J. Thorsten, N. Christianini, H. Shawe-Taylor. Composite Kernels for Hypertext
Categorization (2001)

2. C.Saunders, H. Tschach, J. Shawe-Taylor. Syllables and other String Kernel
Extensions (2002)

3. H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Christianini, C. Watkins. Text
classification using String Kernels (2002)

! SVM Struct for Python (Multiclass) is available at: http://www.cs.cornell.edu/~tomf/svmpython/

? We are making an implicit assumption that the kernels to be combined capture relative information
about the feature space and the application domain.

* Dataset was obtained from: http://www.graphics-world.com/Photoshop/
Each document is equivalent to a tutorial link found on the website.

* http://www.speech.cs.cmu.edu/comp.speech/Section1/Lexical/moby.html

> http://www.thepixiepit.co.uk/scrabble/rules.html

® Word-stem dictionary used was obtained from: http://snowball.tartarus.org/algorithms/english/diffs.txt
7 http://www.kernel-machines.org/papers/Burges98.ps.gz

8 http://www.speech.cs.cmu.edu/comp.speech/Section1/Lexical/moby.html

? http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html

