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Abstract 

We present a framework for characterizing Bayesian 
classification methods. This framework can be 
thought of as a spectrum of allowable dependence in a 
given probabilistic model with the Naive Bayes algo- 
rithm at the most restrictive end and the learning of 
full Bayesian networks at the most general extreme. 
While much work has been carried out along the two 
ends of this spectrum, there has been surprising little 
done along the middle. We analyze the assumptions 
made as one moves along this spectrum and show the 
tradeoffs between model accuracy and learning speed 
which become critical to consider in a variety of data 
mining domains. We then present a general induction 
algorithm that allows for traversal of this spectrum 
depending on the available computational power for 
carrying out induction and show its application in a 
number of domains with different properties. 

Introduction 

. 

Recently, work in Bayesian methods for classification 
has grown enormously (Cooper & Herskovits 1992) 
(Buntine 1994). Bayesian networks (Pearl 1988) have 
long been a popular medium for graphically represent- 
ing the probabilistic dependencies which exist in a do- 
main. It has only been in the past few years, however, 
that this framework has been employed with the goal of 
automatically learning the graphical structure of such 
a network from a store of data (Cooper & Herskovits 
1992) (Heckerman, Geiger, & Chickering 1995). In this 
latter incarnation, such models lend themselves to bet- 
ter understanding of the domain in which they are em- 
ployed by helping identify dependencies that exist be- 
tween features in a database as well as being useful for 
classification tasks. A particularly restrictive model, 
the Naive Bayesian classifier (Good 1965), has had a 
longer history as a simple, yet powerful classification 
technique. The computational efficiency of this classi- 
fier has made it the benefactor of a number of research 
efforts (Kononenko 1991). 

Although general Bayesian network learning as well 

as the Naive Bayesian classifier have both shown suc- 
cess in different domains, each has it shortcomings. 
Learning in the domain of unrestricted Bayesian net- 
works is often very time consuming and quickly be- 
comes intractable as the number of features in a do- 
main grows. Moreover, inference in such unrestricted 
models has been shown to be NP-hard (Cooper 1987). 
Alternatively, the Naive Bayesian classifer, while very 
efficient for inference, makes very strong independence 
assumptions that are often violated in practice and can 
lead to poor predictive generalization. In this work, we 
seek to identify the limitations of each of these meth- 
ods, and show how they represent two extremes along 
a spectrum of data classification algorithms. 

Probabilistic Models 
To better understand the spectrum we will present 
shortly for characterizing proabilistic models for clas- 
sification, it is best to first examine the end points and 
then naturally generalize. 

Bayesian Networks 
Bayesian networks are a way to graphically represent 
the dependencies in a probability distribution by the 
construction of a directed acyclic graph. These mod- 
els represent each variable (feature) in a given do- 
main as a node in the graph and dependencies between 
these variables as arcs connecting the respective nodes. 
Thus, independencies are represented by the lack of 
an arc connecting particular variables. A node in the 
network for a variable Xi represents the probability 
of Xi conditioned on the variables that are immediate 
parents of Xi, denoted II( Nodes with no parents 
simply represent, the prior probability for that variable. 

In probabilistic classification we would ideally like to 
determine the probability distribution P(CIX) where 
C is the class variable and X is the n-dimensional data 
vector (21,22, . . . . z,.J that represents an observed in- 
stance. If we had this true distribution available to us, 
we could achieve the theoretically optimal classication 
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Figure 1: Bayesian networks representing (a) P(CIX), (b) P(CIX) ft a er arc reversal, and (c) Naive Bayes. 

by simply classifying each instance X into the class ck 
for which P(C = cklX) is maximized. This is known 
as Bayes Optimal classification. This general distribu- 
tion can be captured in a Bayesian network as shown 
in Figure l(a). 

It is insightful to apply arc reversal (Shachter 1986) 
to the network in Figure l(a) to produce the equivalent 
dependence structure in Figure l(b). Here, II = 
{C, Xl, “‘, Xi-r}. Now, we can see that the true com- 
plexity. in such an unrestricted model (i.e. no inde- 
pendencies) comes from the large number of feature 
dependence arcs which are present in the model. 

Since Bayesian networks allow for the modeling of 
arbitrarily complex dependencies between features, we 
can think of these models as lying at the most general 
end of a feature dependence spectrum. Thus, Bayesian 
networks have much representational power at the cost 
of computationally expensive learning and inference. 

Naive Bayes 
The Naive Bayesian classifier represents the most re- 
strictive extreme in our spectrum of probabilistic clas- 
sification techniques. As a Bayesian approach, it pre- 
dicts the class ck that maximizes P(C = ck IX), for a 
data vector X, under the restrictive assumption that 
each feature Xi is conditionally independent of every 
other feature given the class label. In other words: 
P(xIc = ck) = ni P(x$ = ck) 

The Naive Bayesian model is shown in Figure l(c). 
In contrast to Figure l(b), we see that the Naive 
Bayesian model allows for no arcs between feature 
nodes. We can think of the Naive Bayesian algorithm 
as being at the most restrictive end of the feature de- 
pendence spectrum, in that it strictly allows no depen- 
dencies between features given the class label. 

We now formalize our notion of the spectrum of 
feature dependence in Bayesian classification by intro- 
ducing the notion of k-dependence Bayesian classifiers. 
The proofs of the propositions we give subsequently are 
straight-forward and are omitted for brevity. 

Definition 1 A k-dependence Bayesian classifier is a 
Bayesian network which contains the structure of the 
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Naive Bayesian classifier and allows each feature Xi 
to have a maximum of k feature nodes as parents. In 
other words, II = {C, Xdi} where &, is a set of 
at most k feature nodes, and II(C) = 0. 

Proposition 1 The Naive Bayesian classifier is a O- 
dependence Bajyesian classifier. 

Proposition 2 The full Bayesian classifier (i.e. no 
independencies) is a (N-1)-dependence Bayesian clas- 
sifier, where N is the number of domain features. 

Geiger (1992) h as defined the related notion of a 
conditional dependence tree. This notion is captured 
in our general framework as a l-dependence Bayesian 
classifier. Friedman & Goldszmidt (1996) have also de- 
veloped an algorithm, named TAN, which is similar to 
Geiger’s method for inducing conditional trees. These 
algorithms generate optimal l-dependence Bayesian 
classifiers, but provide no method to generalize to 
higher degrees of feature dependence. 

By varying the value of Ic we can define models that 
smoothly move along the spectrum of feature depen- 
dence. If k is large enough to capture all feature depen- 
dencies that exist in a database, then we would expect 
a classifier to achieve optimal Bayesian accuracy if the 
“right” dependencies are set in the model’. 

The KDB Algorithm 
We presently give an algorithm which allows us to con- 
struct classifiers at arbitrary points (values of Ic) along 
the feature dependence spectrum, while also captur- 
ing much of the computational efficiency of the Naive 
Bayesian model. Thus we present an alternative to 
the general trend in Bayesian network learning algo- 
rithms which do an expensive search through the space 
of network structures (Heckerman, Geiger, & Chicker- 
ing 1995) or feature dependencies (Pazzani 1995). 

‘The question becomes one of determining if the model 
has allowed for enough dependencies to represent the 
Markou Blanket (Pearl 1988) of each feature. We refer the 
interested reader to Friedman & Goldszmidt (1996) and 
Koller & Sahami (1996) for more details 



Our algorithm, called KDB, is supplied with both 
a database of pre-classified instances, DB, and the k 
value for the maximum allowable degree of feature de- 
pendence. It outputs a k-dependence Bayesian clas- 
sifier with conditional probability tables determined 
from the input data. The algorithm is as follows: 

I. For each feature Xi, compute mutual 
information, I(X;;C), where C is the class. 

2. Compute class conditional mutual information 
I(Xi;XjIC), f or each pair of features 
Xi and Xj, where i#j. 

3. Let the used variable list, S, be empty. 
4. Let the Bayesian network being constructed, 

BN, begin with a single class node, C. 
5. Repeat until S includes all domain features 

5.1. Select feature X,,, which is not in S 
and has the largest value I(X,,,;C). 

5.2. Add a node to BN representing X,,,. 
5.3. Add an arc from C to X,,, in BN. 
5.4. Add m =min(lSl,/c) arcs from m 

distinct features Xj in S with the 
highest value for I(X,,,;X,jC). 

5.5. Add X,,, to S. 
6. Compute the conditional probabilility tables 

infered by the structure of BN by using 
counts from DB, and output BN. 

In this description of the algorithm, Step 5.4 requires 
that we add m parents to each new feature added to 
the model. To make the algorithm more robust, we 
also consider a variant where we change Step 5.4 to: 
Consider m distinct features Xj in S with the highest 
value for 1(X,,, ; Xj IC), and only add arcs from Xj 
to Xmasc if 1(X,,,; XjIC) > 0, where 0 is a mutual 
information threshold. This allows more flexibility by 
not forcing the inclusion of dependencies that do not 
appear to exist when the value of k is set too high. 

Another feature of our algorithm which makes it very 
suitable for data mining domains is its relatively small 
computational complexity. Computing the actual net- 
work structure, BN, requires O(n2mcv2) time (domi- 
nated by Step 2) and calculating the conditional prob- 
ability tables within the network takes O(n(m + vk)) 
time, where n is the number of features, m is the num- 
ber of data instances, c is the number of classes, and v 
is the maximum number of discrete values that a fea- 
ture may take. In many domains, 21 will be small and 
k is a user-set parameter, so the algorithm will scale 
linearly with m, the amount of data in DB. Moreover, 
classifying an instance using the learned model only 
requires O(nck) time. 

We have recently become aware that Ezawa & 
Schuermann (1995) 1 h a so ave an algorithm similar in 
flavor to ours, but with some important differences, 
which attempts to discover feature dependencies di- 
rectly using mutual information, as opposed to em- 
ploying a general search for network structure. 

Dataset 
Corral 
LED7 
Chess 
DNA 
Vote 
Text 

No. No. Training 
Classes Features Set Size 
2 6 128 

10 7 3200 
2 36 3196 
3 180' 3186 
2 48* 435 
3 3440 1084 

Testing 
Set Size 

lo-fold CV 
lo-fold CV 
lo-fold CV 
lo-fold CV 
lo-fold CV 

454 

Table 1: Datasets. * Denotes Boolean encoding. 

Dataset 

corral 

LED7 

Chess 

DNA 

Vote 

Text 

k 
0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 - 

Accl tacy 
KDB-orig KDB-6’ 

88.4 f 10.5% 88.4 f 10.5% 
100.0 f 0.0% 100.0 =to.o% 
96.7 f 5.8% 96.7 f 5.8% 

88.4 f 17.2% 100.0 f 0.0% 
72.9 f 2.1% 72.9 f 2.1% 
73.1 f 3.9% 73.0 f 2.9% 
73.5 f 2.3% 72.9 f 2.4% 
73.2 f 2.3% 73.4 f 1.3% 
86.2 f1.9% 86.2 f 1.9% 
93.9 f 1.3% 93.8 f 1.4% 
95.lf 1.2% 95.5 f 1.6% 
94.9 f 1.1% 95.3 f 1.2% 
94.0 f 0.9% 94.0 f 0.9% 
94.0 f 1.6% 94.lf 1.1% 
95.3 f 1.2% 95.6 f 1.1% 
93.3 f 0.9% 95.5 f 1.8% 
90.2 f 3.8% 90.2 =t3.8% 
92.6 =t3.6% 92.lf 5.3% 
92.3 *3.5% 93.5 =t4.1% 
93.0 f 2.2% 94.0 =t3.2% 

87.0% 87.0% 
87.9% 87.4% 
87.0% 88.3% 
86.8% 86.8% 

Table 2: Classification accuracies for KDB. 

Results 
We tested KDB on five datasets from the UC1 repos- 
itory (Murphy & Aha 1995) as well as a text classi- 
fication domain with many features (a small subset 
of the Reuters Text database (Reuters 1995)). These 
datasets are described in Table 1. Specifically, we 
wanted to measure if increasing the value of k above 0 
would help the predictive accuracy of the induced mod- 
els (i.e. compare the dependence modeling capabilities 
of KDB with Naive Bayes). Moreover, we wanted to 
see if we could uncover various levels of dependencies 
that we know exist in a few artificial domains by see- 
ing how classification accuracy varied with the value of 
k. We also tested the modified KDB algorithm which 
employs a mutual information threshold, 0. In these 
trials we set 8 = 0.03, which was a heuristically deter- 
mined value. The results of our experiments are given 
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in Table 2 with KDB-orig refering to the original al- 
gorithm and KDB-0 refering to the variant using the 
mutual information threshold. 

The two artificial domains, Corral and LED7, were 
selected because of known dependence properties. The 
Corral dataset represents the concept (AA B) V (CA D) 
and thus is best modeled when a few feature dependen- 
cies are allowed, as is borne out in our experimental 
results (higher accuracies when k > 0). The LED7 
dataset, on the other hand, contains no feature depen- 
dencies when conditioned on the class. Our algorithm 
helps discover these independencies, as reflected by the 
similar accuracy rates when k = 0 and k > 0. 

In the real-world domains we find that modeling fea- 
ture dependencies very often improves classification re- 
sults. This is especially true for the KDB-0 algorithm, 
where classification accuracies when k > 0 are almost 
always greater than or eqal the k = 0 (Naive Bayes) 
case. In the Chess (k = 1,2,3), Vote (k = 2,3) and 
DNA (k = 2,3) d omains, these improvements are sta- 
tistically significant (t-test with y < 0.10). Moreover, 
by noting how the classification accuracy changes with 
the value of k we get a notion of the degree of fea- 
ture dependence in each domain. For example, in both 
Chess and DNA, we see large jumps in accuracy when 
going from k = 0 to k = 2 and that there is no gain 
when k = 3, thus indicating many low-order interac- 
tions in these domains. 

It is important to note that the Boolean encoding 
of the Vote and DNA domains has introduced some 
feature dependencies into the data, but such represe- 
tational issues (which are often unknown to the end 
user of a data mining system) also argue in favor of 
methods that can model such dependencies when they 
happen to exist. Also worth noting is the fact that as 
k grows, we must estimate a larger probability space 
(more conditioning variables) with the same amount of 
data. This can cause our probability estimates to be- 
come more inaccurate and lead to an overall decrease in 
predictive accuracy, as is seen when going from k = 2 
to k = 3 in many of the domains. The KDB-0 al- 
gorithm is less prone to this effect, but it is still not 
impervious. In many data mining domains, however, 
we may have the luxury of have a great deal of data, 
in which case this degradation effect will not be as se- 
vere. Nevertheless, these results indicate that we can 
model domains better in terms of classification accu- 
racy and get an idea for the underlying dependencies 
in the domain, two critical applications of data mining. 

In future work, we seek to automatically identify 
good values for k for a given domain (possibly through 
employing cross-validation) and better motivate the 
value of the 0 threshold. Also, comparisons with other 

Bayesian network learning methods are planned. 
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