
Learning Limited Dependence Bayesian Classifiers
Mehran Sahami

Gates Building lA, Room 126
Computer Science Department

Stanford University
Stanford, CA 94305-9010

sahamiQcs.stanford.edu

Abstract

We present a framework for characterizing Bayesian
classification methods. This framework can be
thought of as a spectrum of allowable dependence in a
given probabilistic model with the Naive Bayes algo-
rithm at the most restrictive end and the learning of
full Bayesian networks at the most general extreme.
While much work has been carried out along the two
ends of this spectrum, there has been surprising little
done along the middle. We analyze the assumptions
made as one moves along this spectrum and show the
tradeoffs between model accuracy and learning speed
which become critical to consider in a variety of data
mining domains. We then present a general induction
algorithm that allows for traversal of this spectrum
depending on the available computational power for
carrying out induction and show its application in a
number of domains with different properties.

Introduction

.

Recently, work in Bayesian methods for classification
has grown enormously (Cooper & Herskovits 1992)
(Buntine 1994). Bayesian networks (Pearl 1988) have
long been a popular medium for graphically represent-
ing the probabilistic dependencies which exist in a do-
main. It has only been in the past few years, however,
that this framework has been employed with the goal of
automatically learning the graphical structure of such
a network from a store of data (Cooper & Herskovits
1992) (Heckerman, Geiger, & Chickering 1995). In this
latter incarnation, such models lend themselves to bet-
ter understanding of the domain in which they are em-
ployed by helping identify dependencies that exist be-
tween features in a database as well as being useful for
classification tasks. A particularly restrictive model,
the Naive Bayesian classifier (Good 1965), has had a
longer history as a simple, yet powerful classification
technique. The computational efficiency of this classi-
fier has made it the benefactor of a number of research
efforts (Kononenko 1991).

Although general Bayesian network learning as well

as the Naive Bayesian classifier have both shown suc-
cess in different domains, each has it shortcomings.
Learning in the domain of unrestricted Bayesian net-
works is often very time consuming and quickly be-
comes intractable as the number of features in a do-
main grows. Moreover, inference in such unrestricted
models has been shown to be NP-hard (Cooper 1987).
Alternatively, the Naive Bayesian classifer, while very
efficient for inference, makes very strong independence
assumptions that are often violated in practice and can
lead to poor predictive generalization. In this work, we
seek to identify the limitations of each of these meth-
ods, and show how they represent two extremes along
a spectrum of data classification algorithms.

Probabilistic Models
To better understand the spectrum we will present
shortly for characterizing proabilistic models for clas-
sification, it is best to first examine the end points and
then naturally generalize.

Bayesian Networks
Bayesian networks are a way to graphically represent
the dependencies in a probability distribution by the
construction of a directed acyclic graph. These mod-
els represent each variable (feature) in a given do-
main as a node in the graph and dependencies between
these variables as arcs connecting the respective nodes.
Thus, independencies are represented by the lack of
an arc connecting particular variables. A node in the
network for a variable Xi represents the probability
of Xi conditioned on the variables that are immediate
parents of Xi, denoted II(Nodes with no parents
simply represent, the prior probability for that variable.

In probabilistic classification we would ideally like to
determine the probability distribution P(CIX) where
C is the class variable and X is the n-dimensional data
vector (21,22, z,.J that represents an observed in-
stance. If we had this true distribution available to us,
we could achieve the theoretically optimal classication

Rule Induction 6r Decision Tree Induction 335

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

(1 a 04 (1 C

Figure 1: Bayesian networks representing (a) P(CIX), (b) P(CIX) ft a er arc reversal, and (c) Naive Bayes.

by simply classifying each instance X into the class ck
for which P(C = cklX) is maximized. This is known
as Bayes Optimal classification. This general distribu-
tion can be captured in a Bayesian network as shown
in Figure l(a).

It is insightful to apply arc reversal (Shachter 1986)
to the network in Figure l(a) to produce the equivalent
dependence structure in Figure l(b). Here, II =
{C, Xl, “‘, Xi-r}. Now, we can see that the true com-
plexity. in such an unrestricted model (i.e. no inde-
pendencies) comes from the large number of feature
dependence arcs which are present in the model.

Since Bayesian networks allow for the modeling of
arbitrarily complex dependencies between features, we
can think of these models as lying at the most general
end of a feature dependence spectrum. Thus, Bayesian
networks have much representational power at the cost
of computationally expensive learning and inference.

Naive Bayes
The Naive Bayesian classifier represents the most re-
strictive extreme in our spectrum of probabilistic clas-
sification techniques. As a Bayesian approach, it pre-
dicts the class ck that maximizes P(C = ck IX), for a
data vector X, under the restrictive assumption that
each feature Xi is conditionally independent of every
other feature given the class label. In other words:
P(xIc = ck) = ni P(x$ = ck)

The Naive Bayesian model is shown in Figure l(c).
In contrast to Figure l(b), we see that the Naive
Bayesian model allows for no arcs between feature
nodes. We can think of the Naive Bayesian algorithm
as being at the most restrictive end of the feature de-
pendence spectrum, in that it strictly allows no depen-
dencies between features given the class label.

We now formalize our notion of the spectrum of
feature dependence in Bayesian classification by intro-
ducing the notion of k-dependence Bayesian classifiers.
The proofs of the propositions we give subsequently are
straight-forward and are omitted for brevity.

Definition 1 A k-dependence Bayesian classifier is a
Bayesian network which contains the structure of the

336 Technology Spotlight

Naive Bayesian classifier and allows each feature Xi
to have a maximum of k feature nodes as parents. In
other words, II = {C, Xdi} where &, is a set of
at most k feature nodes, and II(C) = 0.

Proposition 1 The Naive Bayesian classifier is a O-
dependence Bajyesian classifier.

Proposition 2 The full Bayesian classifier (i.e. no
independencies) is a (N-1)-dependence Bayesian clas-
sifier, where N is the number of domain features.

Geiger (1992) h as defined the related notion of a
conditional dependence tree. This notion is captured
in our general framework as a l-dependence Bayesian
classifier. Friedman & Goldszmidt (1996) have also de-
veloped an algorithm, named TAN, which is similar to
Geiger’s method for inducing conditional trees. These
algorithms generate optimal l-dependence Bayesian
classifiers, but provide no method to generalize to
higher degrees of feature dependence.

By varying the value of Ic we can define models that
smoothly move along the spectrum of feature depen-
dence. If k is large enough to capture all feature depen-
dencies that exist in a database, then we would expect
a classifier to achieve optimal Bayesian accuracy if the
“right” dependencies are set in the model’.

The KDB Algorithm
We presently give an algorithm which allows us to con-
struct classifiers at arbitrary points (values of Ic) along
the feature dependence spectrum, while also captur-
ing much of the computational efficiency of the Naive
Bayesian model. Thus we present an alternative to
the general trend in Bayesian network learning algo-
rithms which do an expensive search through the space
of network structures (Heckerman, Geiger, & Chicker-
ing 1995) or feature dependencies (Pazzani 1995).

‘The question becomes one of determining if the model
has allowed for enough dependencies to represent the
Markou Blanket (Pearl 1988) of each feature. We refer the
interested reader to Friedman & Goldszmidt (1996) and
Koller & Sahami (1996) for more details

Our algorithm, called KDB, is supplied with both
a database of pre-classified instances, DB, and the k
value for the maximum allowable degree of feature de-
pendence. It outputs a k-dependence Bayesian clas-
sifier with conditional probability tables determined
from the input data. The algorithm is as follows:

I. For each feature Xi, compute mutual
information, I(X;;C), where C is the class.

2. Compute class conditional mutual information
I(Xi;XjIC), f or each pair of features
Xi and Xj, where i#j.

3. Let the used variable list, S, be empty.
4. Let the Bayesian network being constructed,

BN, begin with a single class node, C.
5. Repeat until S includes all domain features

5.1. Select feature X,,, which is not in S
and has the largest value I(X,,,;C).

5.2. Add a node to BN representing X,,,.
5.3. Add an arc from C to X,,, in BN.
5.4. Add m =min(lSl,/c) arcs from m

distinct features Xj in S with the
highest value for I(X,,,;X,jC).

5.5. Add X,,, to S.
6. Compute the conditional probabilility tables

infered by the structure of BN by using
counts from DB, and output BN.

In this description of the algorithm, Step 5.4 requires
that we add m parents to each new feature added to
the model. To make the algorithm more robust, we
also consider a variant where we change Step 5.4 to:
Consider m distinct features Xj in S with the highest
value for 1(X,,, ; Xj IC), and only add arcs from Xj
to Xmasc if 1(X,,,; XjIC) > 0, where 0 is a mutual
information threshold. This allows more flexibility by
not forcing the inclusion of dependencies that do not
appear to exist when the value of k is set too high.

Another feature of our algorithm which makes it very
suitable for data mining domains is its relatively small
computational complexity. Computing the actual net-
work structure, BN, requires O(n2mcv2) time (domi-
nated by Step 2) and calculating the conditional prob-
ability tables within the network takes O(n(m + vk))
time, where n is the number of features, m is the num-
ber of data instances, c is the number of classes, and v
is the maximum number of discrete values that a fea-
ture may take. In many domains, 21 will be small and
k is a user-set parameter, so the algorithm will scale
linearly with m, the amount of data in DB. Moreover,
classifying an instance using the learned model only
requires O(nck) time.

We have recently become aware that Ezawa &
Schuermann (1995) 1 h a so ave an algorithm similar in
flavor to ours, but with some important differences,
which attempts to discover feature dependencies di-
rectly using mutual information, as opposed to em-
ploying a general search for network structure.

Dataset
Corral
LED7
Chess
DNA
Vote
Text

No. No. Training
Classes Features Set Size
2 6 128

10 7 3200
2 36 3196
3 180' 3186
2 48* 435
3 3440 1084

Testing
Set Size

lo-fold CV
lo-fold CV
lo-fold CV
lo-fold CV
lo-fold CV

454

Table 1: Datasets. * Denotes Boolean encoding.

Dataset

corral

LED7

Chess

DNA

Vote

Text

k
0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3 -

Accl tacy
KDB-orig KDB-6’

88.4 f 10.5% 88.4 f 10.5%
100.0 f 0.0% 100.0 =to.o%
96.7 f 5.8% 96.7 f 5.8%

88.4 f 17.2% 100.0 f 0.0%
72.9 f 2.1% 72.9 f 2.1%
73.1 f 3.9% 73.0 f 2.9%
73.5 f 2.3% 72.9 f 2.4%
73.2 f 2.3% 73.4 f 1.3%
86.2 f1.9% 86.2 f 1.9%
93.9 f 1.3% 93.8 f 1.4%
95.lf 1.2% 95.5 f 1.6%
94.9 f 1.1% 95.3 f 1.2%
94.0 f 0.9% 94.0 f 0.9%
94.0 f 1.6% 94.lf 1.1%
95.3 f 1.2% 95.6 f 1.1%
93.3 f 0.9% 95.5 f 1.8%
90.2 f 3.8% 90.2 =t3.8%
92.6 =t3.6% 92.lf 5.3%
92.3 *3.5% 93.5 =t4.1%
93.0 f 2.2% 94.0 =t3.2%

87.0% 87.0%
87.9% 87.4%
87.0% 88.3%
86.8% 86.8%

Table 2: Classification accuracies for KDB.

Results
We tested KDB on five datasets from the UC1 repos-
itory (Murphy & Aha 1995) as well as a text classi-
fication domain with many features (a small subset
of the Reuters Text database (Reuters 1995)). These
datasets are described in Table 1. Specifically, we
wanted to measure if increasing the value of k above 0
would help the predictive accuracy of the induced mod-
els (i.e. compare the dependence modeling capabilities
of KDB with Naive Bayes). Moreover, we wanted to
see if we could uncover various levels of dependencies
that we know exist in a few artificial domains by see-
ing how classification accuracy varied with the value of
k. We also tested the modified KDB algorithm which
employs a mutual information threshold, 0. In these
trials we set 8 = 0.03, which was a heuristically deter-
mined value. The results of our experiments are given

Rule Induction 6r Decision Tree Induction 337

in Table 2 with KDB-orig refering to the original al-
gorithm and KDB-0 refering to the variant using the
mutual information threshold.

The two artificial domains, Corral and LED7, were
selected because of known dependence properties. The
Corral dataset represents the concept (AA B) V (CA D)
and thus is best modeled when a few feature dependen-
cies are allowed, as is borne out in our experimental
results (higher accuracies when k > 0). The LED7
dataset, on the other hand, contains no feature depen-
dencies when conditioned on the class. Our algorithm
helps discover these independencies, as reflected by the
similar accuracy rates when k = 0 and k > 0.

In the real-world domains we find that modeling fea-
ture dependencies very often improves classification re-
sults. This is especially true for the KDB-0 algorithm,
where classification accuracies when k > 0 are almost
always greater than or eqal the k = 0 (Naive Bayes)
case. In the Chess (k = 1,2,3), Vote (k = 2,3) and
DNA (k = 2,3) d omains, these improvements are sta-
tistically significant (t-test with y < 0.10). Moreover,
by noting how the classification accuracy changes with
the value of k we get a notion of the degree of fea-
ture dependence in each domain. For example, in both
Chess and DNA, we see large jumps in accuracy when
going from k = 0 to k = 2 and that there is no gain
when k = 3, thus indicating many low-order interac-
tions in these domains.

It is important to note that the Boolean encoding
of the Vote and DNA domains has introduced some
feature dependencies into the data, but such represe-
tational issues (which are often unknown to the end
user of a data mining system) also argue in favor of
methods that can model such dependencies when they
happen to exist. Also worth noting is the fact that as
k grows, we must estimate a larger probability space
(more conditioning variables) with the same amount of
data. This can cause our probability estimates to be-
come more inaccurate and lead to an overall decrease in
predictive accuracy, as is seen when going from k = 2
to k = 3 in many of the domains. The KDB-0 al-
gorithm is less prone to this effect, but it is still not
impervious. In many data mining domains, however,
we may have the luxury of have a great deal of data,
in which case this degradation effect will not be as se-
vere. Nevertheless, these results indicate that we can
model domains better in terms of classification accu-
racy and get an idea for the underlying dependencies
in the domain, two critical applications of data mining.

In future work, we seek to automatically identify
good values for k for a given domain (possibly through
employing cross-validation) and better motivate the
value of the 0 threshold. Also, comparisons with other

Bayesian network learning methods are planned.

Acknowledgements We thank Moises Goldszmidt
for his comments on an earlier version of this paper.
This work was supported by ARPA/NASA/NSF under
a grant to the Stanford Digital Libraries Project.

References
Buntine, W. 1994. Operations for learning with
graphical models. JAIR 2:159-225.

Cooper, G. F., and Herskovits, E. 1992. A bayesian
method for the induction of probabilistic networks
from data. Machine Learning 9:309-347.

Cooper, G. F. 1987. Probabilistic inference using
belief networks is NP-Hard. Technical Report KSL-
87-27, Stanford Knowledge Systems Laboratory. ’

Ezawa, K. J., and Schuermann, T. 1995.
Fraud/uncollectible debt detection using a bayesian
network learning system. In UAI-95, 157-166.

Friedman, N., and Goldszmidt, M. 1996. Building
classifiers using bayesian networks. In AAAI-96.

Geiger, D. 1992. An entropy-based learning algorithm
of bayesian conditional trees. In UAI-92, 92-97.

Good, I. J. 1965. The Estimation of Probabilities: An
Essay on Modern Bayesian Methods. M.I.T. Press.

Heckerman, D.; Geiger, D.; and Chickering, D. 1995.
Learning bayesian networks: The combination of
knowledge and statistical data. Machine Learning
20:197-243.

Koller, D., and Sahami, M. 1996. Toward optimal
feature selection. In Proceedings of the Thirteenth Int.
Conference on Machine Learning.

Kononenko, I. 1991. Semi-naive bayesian classifier.
In Proceedings of the Sixth European Working Session
on Learning, 206-219. Pitman.

Murphy, P. M., and Aha, D. W. 1995.
UC1 repository of machine learning databases.
http://www.ics.uci.edu/lmlearn/MLRepository.html.

Pazzani, M. J. 1995. Searching for dependencies in
bayesian classifiers. In Proceedings of the Fifth Int.
Workshop on AI and Statistics.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan-
Kaufmann.

Reuters. 1995. Reuters document collection.
ftp://ciir-ftp.cs.umass.edu/pub/reutersl.

Shachter, R. D. 1986. Evaluating influence diagrams.
Operations Research 34(6):871-882.

338 Technology Spotlight

