

__

Left Corner Parsing

We will now look at examples of top-down and bottom-up processing which show what kind of information
we use to make decisions in these two different processing strategies, what kind of information we ignore
with these strategies, and how it can happen that we go wrong, because of that.

Going Wrong with Top-down Parsing

Assume that we have the following grammar fragment

S → NP VP
NP → Det N | PN
VP → IV
Det → the
N → robber
PN → Vincent
IV → died

and that we want to use it to top-down recognize the string vincent died. Proceeding in a top-down
manner, we would first expand S to NP VP. Next we would check what we can do with the NP and find
the rule NP→Det N. We would therefore expand NP to Det N. Then we either have to find a lexical rule to
relate vincent to the category Det, or we have to find a phrase structure rule to expand Det. Neither is
possible, so we would backtrack checking whether there are any alternative decisions somewhere.

So, when recognizing in a top-down manner, we totally ignore what the actual input string looks like. We
start from some non-terminal symbol and then use rules to rewrite that symbol. Only when we can't apply
any rules anymore, we check whether what we have produced matches with the input string.

Here is part of the trace that we will get when trying to recognize vincent died with a simple top-down
recognizer in Prolog. You can see how Prolog first tries to use the first rule to expand the noun phrase.
And only when Prolog realizes that Det leads into a dead-end does it try the next NP rule NP→Det N.
 Call: (7) recognize_topdown(s, [vincent, died], []) ?
 Call: (8) matches([np, vp], [vincent, died], []) ?
 Call: (9) recognize_topdown(np, [vincent, died], _G579) ?
 Call: (11) recognize_topdown(det, [vincent, died], _G585) ?
 Fail: (11) recognize_topdown(det, [vincent, died], _G585) ?
 Call: (11) recognize_topdown(pn, [vincent, died], _G582) ?
 Exit: (11) recognize_topdown(pn, [vincent, died], [died]) ?
 Exit: (9) recognize_topdown(np, [vincent, died], [died]) ?
 Call: (10) recognize_topdown(vp, [died], _G582) ?
 .
 .
 .

Going Wrong with Bottom-up Parsing

Top-down parsing starts with some goal category that it wants to recognize and ignores what the input
looks like. In bottom-up parsing, we essentially take the opposite approach: we start from the input string
and try to combine words to constituents and constituents to bigger constituents using the grammar rules
from right to left. In doing so, any consituents that can be built are built; no matter whether they fit into the
constituent that we are working on a the moment or not. No top-down information of the kind ``we are at
the moment trying to built a sentence'' or ``we are at the moment trying to built a noun phrase'' is taken
into account. Let's have a look at an example.

Say, we have the following grammar fragment:

CSE 6390E Computational Linguistics

2

S → NP VP
NP → Det N
VP → IV | TV NP
TV → plant
IV → died
Det → the
N → robber

Note, how plant is ambiguous in this grammar: it can be used as a common noun or as a transitive verb.
If we now try to bottom-up recognize the plant died, we would first find that the is a determiner, so that we
could rewrite our string to Det plant died. Then we would find that plant can be a transitive verb giving us
Det TV died. Det and TV cannot be combined by any rule. So, died would be rewritten next, yielding Det
TV IV and then Det TV VP. Here, it would finally become clear that we took a wrong decision somewhere:
nothing can be done anymore and we have to backtrack. Doing so, we would find that plant can also be a
noun, so that Det plant died could also be rewritten as Det N died, which will eventually lead us to
success.

9.1.3 Combining Top-down and Bottom-up Information

As the previous two examples have shown, using a pure top-down approach, we are missing some
important information provided by the words of the input string which would help us to guid our decisions.
However, similarly, using a pure bottom-up approach, we can sometimes end up in dead ends that could
have been avoided had we used some bits of top-down information about the category that we are trying
to build.

The key idea of left-corner parsing is to combine top-down processing with bottom-up processing in order
to avoid going wrong in the ways that we are prone to go wrong with pure top-down and pure bottom-up
techniques. Before we look at how this is done, you have to know what is the left corner of a rule. The left
corner of a rule is the first symbol on the right hand side. For example, NP is the left corner of the rule
S→NP VP, and IV is the left corner of the rule VP→IV. Similarly, we can say that Vincent is the left corner
of the lexical rule PN→Vincent.

A left-corner parser alternates steps of bottom-up processing with top-down predictions. The bottom-up
processing steps work as follows. Assuming that the parser has just recognized a noun phrase, it will in
the next step look for a rule that has an NP as its left corner. Let's say it finds S→NP VP. To be able to
use this rule, it has to recognize a VP as the next thing in the input string. This imposes the top-down
constraint that what follows in the input string has to be a verb phrase. The left-corner parser will continue
alternating bottom-up steps as described above and top-down steps until it has managed to recognize
this verb phrase, thereby completing the sentence.

A left-corner parser starts with a top-down prediction fixing the category that is to be recognized, like for
example S. Next, it takes a bottom-up step and then alternates bottom-up and top-down steps until it has
reached an S.

To illustrate how left-corner parsers work, let's go through an example. Assume that we again have the
following grammar:

S → NP VP
NP → Det N | PN
VP → IV
Det → the
N → robber
PN → Vincent
IV → died

Now, let's look at how a left-corner recognizer would proceed to recognize vincent died.

1.) Input: vincent died. Recognize an S. (Top-down prediction.)
2.) The category of the first word of the input is PN. (Bottom-up step using a lexical rule.)
3.) Select a rule that has PN at its left corner: NP→PN. (Bottom-up step using a phrase structure rule.)

CSE 6390E Computational Linguistics

3

4.) Select a rule that has NP at its left corner: S→NP VP. (Bottom-up step.)
5.) Match! The left hand side of the rule matches with S, the category we are trying to recognize.
6.) Input: died. Recognize a VP. (Top-down prediction.)
7.) The category of the first word of the input is IV. (Bottom-up step.)
8.) Select a rule that has IV at its left corner: VP→IV. (Bottom-up step.)
9.) Match! The left hand side of the rule matches with VP, the category we are trying to recognize.

Make sure that you see how the steps of bottom-up rule application alternate with top-down predictions in
this example. Also note that this example can be used to illustrate how top-down parsers can go wrong
and that, in contrast to the p-down parser, the left-corner parser does not have to backtrack with this
example.

 S

 NP VP

 PN IV

Vincent died

