CSCI 4152/6509
Natural Language Processing

CSCI 4152/6509, Perl Tutorial

Perl Tutorial

CSCI 4152/6509

Vlado Keselj

About Perl
e created in 1987 by Larry Wall
e interpreted language, with just-in-time semi-compilation
e provides effective string manipulation, brief if needed
e convenient for system tasks

e syntax (and semantics) similar to:
C, shell scripts, awk, sed, even Lisp, C++

CSCI 4152/6509, Perl Tutorial

Perl Strengths

e good prototyping language, expressive: It can express a lot in a few
lines of code.

e can be used incrementally: useful even if you learn a small part of it.
It becomes more useful when you know more; i.e., its learning curve
IS not steep.

e flexible; e.g, most tasks can be done in more than one way

e garbage collection: i.e., no worries about memory management
e free, open-source; portable, extensible

e powerful, string and data manipulation, regular expressions

e efficient, especially considering it is an interpreted language

e supports Object-Oriented style

CSCI 4152/6509, Perl Tutorial 3

Perl Weaknesses

e not as efficient as C/C++
e may not be very readable without prior knowledge
e OO features are an add-on, rather than built-in

e not a steep learning curve, but a long one
(which is not necessarily a weakness)

CSCI 4152/6509, Perl Tutorial

Hello world

Choose your favourite editor and edit hello.pl:

print "Hello world!\n";

Type “perl hello.pl”to run the program, which should produce:
Hello world!

You can execute the Perl code by directly interacting with the Perl
interpreter:

perl
print "Hello world!\n";
"D

(The last "D is actually Ctrl+D.)

This means that you can also do: perl < hello.pl

CSCI 4152/6509, Perl Tutorial 5

Another way to run a program

Let us edit again hello.pl into:

#!/usr/bin/perl
print "Hello world!\n";

Change permissions of the program and run it:

chmod u+x hello.pl
./hello.pl

Running ‘perl -w hello.pl’ may print useful warnings. The same
effect is achieved by running:

#!/usr/bin/perl -w
print "Hello world!\n";

CSCI 4152/6509, Perl Tutorial 6

File Names
e extension ‘.pl’ is common, but not mandatory
e extension ‘.pm’ is used for Perl modules
Finding Help
e man perl,man perlintro,...
e Web: perl.com, CPAN.org, perlmonks.org,...

e books: the “Camel” book:
“Learning Perl, 4th Edition” by Brian D. Foy; Tom Phoenix; Randal L.
Schwartz (2005)
Available on-line on Safari at Dalhousie
http://proquest.safaribooksonline.com/0596101058

CSCI 4152/6509, Perl Tutorial 7

http://proquest.safaribooksonline.com/0596101058

Syntactic Elements

e statements separated by semi-colon ‘;’
e White space does not matter except in strings

e line comments begin with ‘#’; e.g.
a comment until the end of line

e variable names start with $, @, or %:
Sa — a scalar variable
@a — an array variable
%a — an associative array (or hash)
However: $a[5] is 5th element of an array, and
Sa{5} Is avalue associated with key 5 in hash %a

e the starting special symbol is followed either by a name
(e.g., Svarname) or a non-letter symbol (e.g., $!)

e user-defined subroutines are usually prefixed wiht &:
&a — call the subroutine a (procedure, function)

CSCI 4152/6509, Perl Tutorial

Example Program 2

We can call this program prog2.pl:

#!/usr/bin/perl

print "What 1s your name? ";
Sname = <>;

chomp Sname;

print "Hello S$name!\n";

chomp removes the trailing newline from S$name if there is one.
However, changing the special variable $/ will change the behaviour
of chomp too0.

The declaration “use strict;” Is useful to force more strict
verification of the code. If it is used in the previous program, Perl will
complain about variable Sname not being declared, so you can declare
It:

CSCI 4152/6509, Perl Tutorial 9

Examples 3 and 4

#!/usr/bin/perl

use strict;

my Sname;

print "What 1s your name?
Sname = <>;

chomp S$name;

print "Hello Sname!\n";

or

#!/usr/bin/perl
use strict;

print "What i1s your name?
my Sname = <>;

chomp $name;

print "Hello Sname!\n";

CSCI 4152/6509, Perl Tutorial

10

Example 5: Copy standard input to standard output

#!/usr/bin/perl
while ($line = <>) {
print S$line;

}

Special variable $__is the default variable for many commands, including
print and expression while (<>), S0 another version of the program
would be:

#!/usr/bin/perl
while (<>) { print }

or even shorter

#!/usr/bin/perl -p

CSCI 4152/6509, Perl Tutorial 11

Variables

e NO need to declare them unless “use strict;”isin place
e use strict; is a good practice for larger projects
e variable type is not declared (it is inferred from context)

e the main variable types:

1. Scalars
— numbers (integers and floating-point)
— strings
— references (pointers)

2. Arrays of scalars

3. Hashes (associative arrays) of scalars

CSCI 4152/6509, Perl Tutorial

12

Single-Quoted String Literals

print "hello\n’;
print "It is 5 o\’clock!’; # '’ has to be escaped
print g(another way of ’"single—-quoting’);

#

print g< and another
print g{ and another
print g[and another
print g— and another
arbitrary character (e.g. not qg)-—;
print "A multi line
(embedded new—line characters)’;
print <<’EQOT’;
Ssome lines of text
and more S$a @b

string

EOT

CSCI 4152/6509, Perl Tutorial

produces ’"hello\n’

no need to escape this time
way >;

way }j
way |;
way with almost

13

Double-Quoted String Literals

print "Backslash combinations are interpreted in
double—quoted strings.\n";

print "newline after this\n";

Sa = "are’;

print "variables $a interpolated in double—quoted
strings\n";

produces "variables are interpolated" etc.

@a = ("arrays’, 'too’);

print "and @a\n";

produces "and arrays too" and a newline

print gg{Similarly to single—quoted, this 1s also
a double—-quoted string, (etc.)}};

CSCI 4152/6509, Perl Tutorial 14

Scalar Variables

e name starts with s followed by:

1. a letter and a sequence of letters, digits or underscores, or
2. a special character such as punctuation or digit

e contains a single scalar value such as a number, string, or reference
(a pointer)

e do not need to worry whether a number is actually a number or string
representation of a number

Sa = 5.5;
$b —_n $a n’.
print $a+$b;

(11)

CSCI 4152/6509, Perl Tutorial 15

Numerical Operators
e basic operations: + - x /
e transparent conversion between int and float

e additional operators:
* % (exponentiation), $ (modulo), ++ and —— (post/pre inc/decrement,
like in C/C++, Java)

e can be combined into assignment operators:

+= —= /: * = %: * =

CSCI 4152/6509, Perl Tutorial 16

String Operators
e . is concatenation; e.g., $a.S$b

e x IS string repetition operator; e.g.,
print "This sentence goes on"." and on" x 4;

produces:

This sentence goes on and on and on and on and on

e assignment operators:
= . = X:

e string find and extract functions: index (str, substr [, offset]),
and substr (str,offset[, len])

CSCI 4152/6509, Perl Tutorial 17

Comparison operators

Operation Numeric String
less than < 1t
less than or equal to <= le
greater than > gt
greater than or equal to >= ge
equal to == eq
not equal to I= ne
compare <=> cmp
Example:

print ">". (1==1)."<"; # produces: >1<
print ">". (1==0)."<"; # produces: ><

CSCI 4152/6509, Perl Tutorial

What is true and what is false — Beware

print '’ ?'true’ ;' false’; #false
print 1 ?'true’ ;' false’; #true
print 1’ ?'true’ ;" false’; #true
print O ?'true’ ;' false’; #false
print "0’ ?'true’ :’ false’; #false
print 7 0 ?'true’ :’ false’; #true
print 0.0 ?'true’ :’ false’; #false
print "0.0" ?’true’:’false’; #true

print 'true’ ?’'true’:’false’; #true
print ’'zero’ ?’'true’:’false’; #true

The false values are: 0,77, 70’, or undef
True is anything else.

CSCI 4152/6509, Perl Tutorial

19

Sa

— O

Qa

Qa

<=>and cmp

<=> $b and $a cmp S$b return the sign of $Sa - $b in a sense:

if Sa < S$b
if Sa
if Sa > S$b

= (123", 19", "1247");
da =
Qa =
da =
Qa =

sort
sort
sort
sort
= sort

or Sa 1t S$b,

== Sb or Sa eq S$b, and

or Sa gt $Sh.

Useful with the sort command

Qa;
{Sa<=>$Db}
{Sb<=>S5a}
{$a cmp S$b}
{$b cmp Sa}

CSCI 4152/6509, Perl Tutorial

Qa;
Qa;
Qa;
Qa;

print
print
print
print
print

"Qa\n";
"da\n";
"@a\n";
"@a\n";
"da\n";

H= = = =

123 124 19
19 123 124
124 123 19
123 124 19
19 124 123

20

Boolean Operators

Six operators: && and
|| or
! not

Difference between && and ‘and’ operators 1is

1in precedence, and similarly for others.

Range Operators

— creates a list 1in list context,
flip—flop otherwise
— same, except for flip-flop behaviour

@a = 1..10; print "@a\n"; # out: 1 2 3...

@a = -5 .. 5; print "@a\n"; # out?

Sa = 1; Sb = 5; @c = ($a .. Sb, -2 .. 2);
print "@c\n"; i

print map{$_.="\n"} (‘aa’..’zz');

CSCI 4152/6509, Perl Tutorial

21

Arrays

e an array is an ordered list of scalar values

e example

my @animals ("Camel", "llama"’ Howl") ;
my @numbers = (23, 42, 69);
my @mixed = ("camel", 42, 1.23);

print "animals are (@animals
that 1s: Sanimals[0] S$animals[l] Sanimals[2]\n";
print "There is a total of ", $#animals+1," animals\n";
print "There is a total of ",scalar (@animals),
" animals\n";

Sanimals[5] = ’"lion’;
print "animals are @animals\n";

CSCI 4152/6509, Perl Tutorial 22

Some Array Functions (Operators)

@a = (1,2,3); # Qa = (1, 2, 3)

push @Qa, 4; # Qa = (1, 2, 3, 4)

$b = pop @a; # Sb=4, Sa = (1, 2, 3)
Sb = shift Q@a; # Sb=1, Sa = (2, 3
unshift Qa, 5; # Qa = (5, 2, 3)

Ss = "This i1is a sentence.";

@a = split /[.1+/, Ss;

Ss = join ' <> ', Qa;

print $s, "\n";

print 'Print ', ’is ', ’'also a list operator’, "\n";
print STDERR "print can use a filehandle\n";

CSCI 4152/6509, Perl Tutorial 23

Hashes (Associative arrays)

e a structure, associates keys with values

e example
$p = ("one’ => ’'first’, "two’ => ’'second’);

Sp{’three’} = "third’;
sp{’ four’} = ’fourth’;
@a = keys %p; # or keys (%p
@b = values %p; # or values

), no order
%p), no order

CSCI 4152/6509, Perl Tutorial 24

Control Structures

e if-elsif-elseandunless

e while loop
e for loop

e foreach loop

CSCI 4152/6509, Perl Tutorial

25

If-elsif-else

1f (EXPRESSION) {
STATEMENTS;

} elsif # optional
STATEMENTS;

} elsif { # optional additional elsif’s
STATEMENTS;

} else {
STATEMENTS; # optional else
}

Other equivalent forms, e.qg.:

if (Sx > Sy) { Sa = $x }

Sa = $x if $x > $Sy;

$Sa = $x unless $x <= Sy;
unless (S$Sx <= Sy) { $a = S$x }

CSCI 4152/6509, Perl Tutorial

26

While Loop

while (EXPRESSION) {
STATEMENTS;

e last is used to break the loop (like break in C/C++/Java)
e next is used to start next iteration (like continue)
e redo is similar to next, except that the loop condition is not evaluated

e labels are used to break from non-innermost loop, e.g.:

L:
while (EXPRESSION) {
. while (E1) {
last L;

CSCI 4152/6509, Perl Tutorial 27

#!/usr/bin/perl

$1=0;
while (++351 < 5)
print " (Si)

next 1f Si==

print "S$i ";

} # output: (1)

$1=0;

while (++S1 < 5)
print " (Si)

redo 1f Si==
print "$i ";
} # output: (1)

CSCI 4152/6509, Perl Tutorial

{

4

’

(3)

{

"w.
4

14

(2)

next vs

++91;

4

++91;

3 (4)

. redo

28

For Loop

for (INIT_EXPR; COND_EXPR; LOOP_EXPR

STATEMENTS;
}

Example:

for (my $i=0; $i <= S$#a; ++Si)

CSCI 4152/6509, Perl Tutorial

{ print

)

{

"Sal[si],"

}

29

Foreach Loop

Examples:

da = (’'1lion’, '"zebra’, ’'giraffe’);
foreach S$Sa (@a) { print "$a is an animal\n" }

or use default variable
foreach (@a) { print "S$S_ is an animal\n" }

more examples
foreach my Sa (@a, "horse’) { print "Sa is animal\n"}

foreach (1..50) { print "S_, " }

for can be used instead of foreach\ as a synonym.

CSCI 4152/6509, Perl Tutorial 30

Basic 1/O

read STDIN and print, or from file specified
in the command line
while ($line = <>) { print $line }

or
while (<>) { print } # using default wvariable $_

Sline = <>; # reads one line
@lines = <>; # reads all lines,
(context-dependent behaviour)

print "a line\n"; # output, or

printf "$10s $10d $12.4f\n", $s, $n, Sfl;
formatted output

CSCI 4152/6509, Perl Tutorial 31

Subroutines

sub say_hi { print "Hello\n"; }
&say_hi(); # call
&say_hij; # call, another way since we have no params
say_hi; # works as well (no variable sign =
sub, i1.e., &)

sub add2 {
my $a = shift; my Sb = shift;
return $a + S$Sb;

}
print &add2(2,5); # produces 7

alternative definition

sub add2 { return $_[0] + S_[1] }

@_ 1s array of parameters

shift with no arguments takes @_ by default
(or QARGV outside of a subroutine)

CSCI 4152/6509, Perl Tutorial 32

Subroutines (2)

sub add {
my Sret = 0;
while (@Q_) { $ret += shift }
return Sret;

}
print &add(1l..10); # produces 55

CSCI 4152/6509, Perl Tutorial

33

Regular Expressions

A simple way to test a regular expression:

while (<>) {
print if /book/;
}

l.e., print lines that contain substring ‘book’

/chee[splecalrk]e/ would match: cheesecare, cheepecare,
cheesecake, cheepecake

option /i matches case variants; e.g., /book/i would match Book,
BOOK, bOoK, etc., as well

CSCI 4152/6509, Perl Tutorial 34

RegEXx: Character Class

/200[012345]/ match one of the chars

/200[0-91/ character range
/From[~:]/ match any character but
/["a-zA-Z]the[" a-zA-7]/ multiple ranges
/111/ to match]

/11-1/ to match] or -

/187 1/ to match $ or ~

[0-9ABCDEFa-f] to match one-digit hexadecimal number

(period) any character but new-line

\d any digit; i.e., same as [0-9]

\D any character but digit

\s any white-space character, including new-line
\S any character but white-space, i.e., printable
\w any word character (letter, digit, or underscore)
\W any non-word character

CSCI 4152/6509, Perl Tutorial 35

