
CSCI 4152/6509
Natural Language Processing

Perl Tutorial

CSCI 4152/6509

Vlado Kešelj

CSCI 4152/6509, Perl Tutorial 1



About Perl

• created in 1987 by Larry Wall

• interpreted language, with just-in-time semi-compilation

• provides effective string manipulation, brief if needed

• convenient for system tasks

• syntax (and semantics) similar to:
C, shell scripts, awk, sed, even Lisp, C++

CSCI 4152/6509, Perl Tutorial 2



Perl Strengths

• good prototyping language, expressive: It can express a lot in a few
lines of code.

• can be used incrementally: useful even if you learn a small part of it.
It becomes more useful when you know more; i.e., its learning curve
is not steep.

• flexible; e.g, most tasks can be done in more than one way

• garbage collection: i.e., no worries about memory management

• free, open-source; portable, extensible

• powerful, string and data manipulation, regular expressions

• efficient, especially considering it is an interpreted language

• supports Object-Oriented style

CSCI 4152/6509, Perl Tutorial 3



Perl Weaknesses

• not as efficient as C/C++

• may not be very readable without prior knowledge

• OO features are an add-on, rather than built-in

• not a steep learning curve, but a long one
(which is not necessarily a weakness)

CSCI 4152/6509, Perl Tutorial 4



Hello world
Choose your favourite editor and edit hello.pl:

print "Hello world!\n";

Type “perl hello.pl” to run the program, which should produce:

Hello world!

You can execute the Perl code by directly interacting with the Perl
interpreter:

perl
print "Hello world!\n";
ˆD

(The last ˆD is actually Ctrl+D.)

This means that you can also do: perl < hello.pl

CSCI 4152/6509, Perl Tutorial 5



Another way to run a program
Let us edit again hello.pl into:

#!/usr/bin/perl
print "Hello world!\n";

Change permissions of the program and run it:

chmod u+x hello.pl
./hello.pl

Running ‘perl -w hello.pl’ may print useful warnings. The same
effect is achieved by running:

#!/usr/bin/perl -w
print "Hello world!\n";

CSCI 4152/6509, Perl Tutorial 6



File Names

• extension ‘.pl’ is common, but not mandatory

• extension ‘.pm’ is used for Perl modules

Finding Help

• man perl, man perlintro, . . .

• Web: perl.com, CPAN.org, perlmonks.org, . . .

• books: the “Camel” book:
“Learning Perl, 4th Edition” by Brian D. Foy; Tom Phoenix; Randal L.
Schwartz (2005)
Available on-line on Safari at Dalhousie
http://proquest.safaribooksonline.com/0596101058

CSCI 4152/6509, Perl Tutorial 7

http://proquest.safaribooksonline.com/0596101058


Syntactic Elements

• statements separated by semi-colon ‘;’

• white space does not matter except in strings

• line comments begin with ‘#’; e.g.
# a comment until the end of line

• variable names start with $, @, or %:
$a — a scalar variable
@a — an array variable
%a — an associative array (or hash)
However: $a[5] is 5th element of an array, and
$a{5} is a value associated with key 5 in hash %a

• the starting special symbol is followed either by a name
(e.g., $varname) or a non-letter symbol (e.g., $!)

• user-defined subroutines are usually prefixed wiht &:
&a — call the subroutine a (procedure, function)

CSCI 4152/6509, Perl Tutorial 8



Example Program 2
We can call this program prog2.pl:

#!/usr/bin/perl

print "What is your name? ";
$name = <>;
chomp $name;
print "Hello $name!\n";

chomp removes the trailing newline from $name if there is one.
However, changing the special variable $/ will change the behaviour
of chomp too.

The declaration “use strict;” is useful to force more strict
verification of the code. If it is used in the previous program, Perl will
complain about variable $name not being declared, so you can declare
it:

CSCI 4152/6509, Perl Tutorial 9



Examples 3 and 4

#!/usr/bin/perl
use strict;
my $name;
print "What is your name? ";
$name = <>;
chomp $name;
print "Hello $name!\n";

or

#!/usr/bin/perl
use strict;

print "What is your name? ";
my $name = <>;
chomp $name;
print "Hello $name!\n";

CSCI 4152/6509, Perl Tutorial 10



Example 5: Copy standard input to standard output

#!/usr/bin/perl
while ($line = <>) {

print $line;
}

Special variable $_ is the default variable for many commands, including
print and expression while (<>), so another version of the program
would be:

#!/usr/bin/perl
while (<>) { print }

or even shorter

#!/usr/bin/perl -p

CSCI 4152/6509, Perl Tutorial 11



Variables

• no need to declare them unless “use strict;” is in place

• use strict; is a good practice for larger projects

• variable type is not declared (it is inferred from context)

• the main variable types:

1. Scalars
– numbers (integers and floating-point)
– strings
– references (pointers)

2. Arrays of scalars
3. Hashes (associative arrays) of scalars

CSCI 4152/6509, Perl Tutorial 12



Single-Quoted String Literals

print ’hello\n’; # produces ’hello\n’
print ’It is 5 o\’clock!’; # ’ has to be escaped
print q(another way of ’single-quoting’);

# no need to escape this time
print q< and another way >;
print q{ and another way };
print q[ and another way ];
print q- and another way with almost

arbitrary character (e.g. not q)-;
print ’A multi line

string (embedded new-line characters)’;
print <<’EOT’;

Some lines of text
and more $a @b

EOT

CSCI 4152/6509, Perl Tutorial 13



Double-Quoted String Literals

print "Backslash combinations are interpreted in
double-quoted strings.\n";

print "newline after this\n";
$a = ’are’;
print "variables $a interpolated in double-quoted

strings\n";
# produces "variables are interpolated" etc.
@a = (’arrays’, ’too’);
print "and @a\n";
# produces "and arrays too" and a newline

print qq{Similarly to single-quoted, this is also
a double-quoted string, (etc.)};

CSCI 4152/6509, Perl Tutorial 14



Scalar Variables

• name starts with $ followed by:

1. a letter and a sequence of letters, digits or underscores, or
2. a special character such as punctuation or digit

• contains a single scalar value such as a number, string, or reference
(a pointer)

• do not need to worry whether a number is actually a number or string
representation of a number

$a = 5.5;
$b = " $a ";
print $a+$b;

(11)

CSCI 4152/6509, Perl Tutorial 15



Numerical Operators

• basic operations: + - * /

• transparent conversion between int and float

• additional operators:
** (exponentiation), % (modulo), ++ and -- (post/pre inc/decrement,
like in C/C++, Java)

• can be combined into assignment operators:
+= -= /= *= %= **=

CSCI 4152/6509, Perl Tutorial 16



String Operators

• . is concatenation; e.g., $a.$b

• x is string repetition operator; e.g.,

print "This sentence goes on"." and on" x 4;

produces:

This sentence goes on and on and on and on and on

• assignment operators:
= .= x=

• string find and extract functions: index(str,substr[,offset]),
and substr(str,offset[,len])

CSCI 4152/6509, Perl Tutorial 17



Comparison operators

Operation Numeric String
--------------------------------------------
less than < lt
less than or equal to <= le
greater than > gt
greater than or equal to >= ge
equal to == eq
not equal to != ne
compare <=> cmp
--------------------------------------------

Example:

print ">".(1==1)."<"; # produces: >1<
print ">".(1==0)."<"; # produces: ><

CSCI 4152/6509, Perl Tutorial 18



What is true and what is false — Beware

print ’’ ?’true’:’false’; #false
print 1 ?’true’:’false’; #true
print ’1’ ?’true’:’false’; #true
print 0 ?’true’:’false’; #false
print ’0’ ?’true’:’false’; #false
print ’ 0’ ?’true’:’false’; #true
print 0.0 ?’true’:’false’; #false
print "0.0" ?’true’:’false’; #true
print ’true’ ?’true’:’false’; #true
print ’zero’ ?’true’:’false’; #true

The false values are: 0, ’’, ’0’, or undef
True is anything else.

CSCI 4152/6509, Perl Tutorial 19



<=> and cmp

$a <=> $b and $a cmp $b return the sign of $a - $b in a sense:

-1 if $a < $b or $a lt $b,
0 if $a == $b or $a eq $b, and
1 if $a > $b or $a gt $b.

Useful with the sort command

@a = (’123’, ’19’, ’124’);
@a = sort @a; print "@a\n"; # 123 124 19
@a = sort {$a<=>$b} @a; print "@a\n"; # 19 123 124
@a = sort {$b<=>$a} @a; print "@a\n"; # 124 123 19
@a = sort {$a cmp $b} @a; print "@a\n"; # 123 124 19
@a = sort {$b cmp $a} @a; print "@a\n"; # 19 124 123

CSCI 4152/6509, Perl Tutorial 20



Boolean Operators

Six operators: && and
|| or
! not

Difference between && and ‘and’ operators is
in precedence, and similarly for others.

Range Operators

.. - creates a list in list context,
flip-flop otherwise

... - same, except for flip-flop behaviour

@a = 1..10; print "@a\n"; # out: 1 2 3...
@a = -5 .. 5; print "@a\n"; # out?
$a = 1; $b = 5; @c = ($a .. $b, -2 .. 2);
print "@c\n"; # ?
print map{$_.="\n"} (’aa’..’zz’);

CSCI 4152/6509, Perl Tutorial 21



Arrays

• an array is an ordered list of scalar values

• example

my @animals = ("camel", "llama", "owl");
my @numbers = (23, 42, 69);
my @mixed = ("camel", 42, 1.23);

print "animals are @animals
that is: $animals[0] $animals[1] $animals[2]\n";
print "There is a total of ",$#animals+1," animals\n";
print "There is a total of ",scalar(@animals),

" animals\n";

$animals[5] = ’lion’;
print "animals are @animals\n";

CSCI 4152/6509, Perl Tutorial 22



Some Array Functions (Operators)

@a = (1,2,3); # @a = (1, 2, 3)
push @a, 4; # @a = (1, 2, 3, 4)
$b = pop @a; # $b=4, $a = (1, 2, 3)
$b = shift @a; # $b=1, $a = (2, 3)
unshift @a, 5; # @a = (5, 2, 3)

$s = "This is a sentence.";
@a = split /[ .]+/, $s;
$s = join ’ <> ’, @a;
print $s, "\n";

print ’Print ’, ’is ’, ’also a list operator’, "\n";
print STDERR "print can use a filehandle\n";

CSCI 4152/6509, Perl Tutorial 23



Hashes (Associative arrays)

• a structure, associates keys with values

• example

%p = (’one’ => ’first’, ’two’ => ’second’);
$p{’three’} = ’third’;
$p{’four’} = ’fourth’;
@a = keys %p; # or keys(%p), no order
@b = values %p; # or values(%p), no order

CSCI 4152/6509, Perl Tutorial 24



Control Structures

• if-elsif-else and unless

• while loop

• for loop

• foreach loop

CSCI 4152/6509, Perl Tutorial 25



If-elsif-else

if (EXPRESSION) {
STATEMENTS;

} elsif { # optional
STATEMENTS;

} elsif { # optional additional elsif’s
STATEMENTS;

} else {
STATEMENTS; # optional else

}

Other equivalent forms, e.g.:

if ($x > $y) { $a = $x }
$a = $x if $x > $y;
$a = $x unless $x <= $y;
unless ($x <= $y) { $a = $x }

CSCI 4152/6509, Perl Tutorial 26



While Loop
while (EXPRESSION) {
STATEMENTS;

}

• last is used to break the loop (like break in C/C++/Java)

• next is used to start next iteration (like continue)

• redo is similar to next, except that the loop condition is not evaluated

• labels are used to break from non-innermost loop, e.g.:

L:
while (EXPRESSION) {

... while (E1) { ...
last L;

} }

CSCI 4152/6509, Perl Tutorial 27



next vs. redo

#!/usr/bin/perl

$i=0;
while (++$i < 5) {

print "($i) "; ++$i;
next if $i==2;
print "$i ";

} # output: (1) (3) 4

$i=0;
while (++$i < 5) {

print "($i) "; ++$i;
redo if $i==2;
print "$i ";

} # output: (1) (2) 3 (4) 5

CSCI 4152/6509, Perl Tutorial 28



For Loop

for ( INIT_EXPR; COND_EXPR; LOOP_EXPR ) {
STATEMENTS;

}

Example:

for (my $i=0; $i <= $#a; ++$i) { print "$a[$i]," }

CSCI 4152/6509, Perl Tutorial 29



Foreach Loop
Examples:

@a = ( ’lion’, ’zebra’, ’giraffe’ );
foreach $a (@a) { print "$a is an animal\n" }

# or use default variable
foreach (@a) { print "$_ is an animal\n" }

# more examples
foreach my $a (@a, ’horse’) { print "$a is animal\n"}

foreach (1..50) { print "$_, " }

for can be used instead of foreach\ as a synonym.

CSCI 4152/6509, Perl Tutorial 30



Basic I/O

# read STDIN and print, or from file specified
# in the command line
while ($line = <>) { print $line }

# or
while (<>) { print } # using default variable $_

$line = <>; # reads one line
@lines = <>; # reads all lines,

# (context-dependent behaviour)

print "a line\n"; # output, or
printf "%10s %10d %12.4f\n", $s, $n, $fl;

# formatted output

CSCI 4152/6509, Perl Tutorial 31



Subroutines
sub say_hi { print "Hello\n"; }
&say_hi(); # call
&say_hi; # call, another way since we have no params
say_hi; # works as well (no variable sign =

# sub, i.e., &)

sub add2 {
my $a = shift; my $b = shift;
return $a + $b;

}
print &add2(2,5); # produces 7

# alternative definition
sub add2 { return $_[0] + $_[1] }
# @_ is array of parameters
# shift with no arguments takes @_ by default
# (or @ARGV outside of a subroutine)

CSCI 4152/6509, Perl Tutorial 32



Subroutines (2)

sub add {
my $ret = 0;
while (@_) { $ret += shift }
return $ret;

}
print &add(1..10); # produces 55

CSCI 4152/6509, Perl Tutorial 33



Regular Expressions
A simple way to test a regular expression:

while (<>) {
print if /book/;

}

i.e., print lines that contain substring ‘book’

/chee[sp]eca[rk]e/ would match: cheesecare, cheepecare,
cheesecake, cheepecake

option /i matches case variants; e.g., /book/i would match Book,
BOOK, bOoK, etc., as well

CSCI 4152/6509, Perl Tutorial 34



RegEx: Character Class

/200[012345]/ match one of the chars
/200[0-9]/ character range
/From[ˆ:]/ match any character but
/[ˆa-zA-Z]the[ˆa-zA-Z]/ multiple ranges
/[]]/ to match ]
/[]-]/ to match ] or -
/[$ˆ]/ to match $ or ˆ
[0-9ABCDEFa-f] to match one-digit hexadecimal number

. (period) any character but new-line
\d any digit; i.e., same as [0-9]
\D any character but digit
\s any white-space character, including new-line
\S any character but white-space, i.e., printable
\w any word character (letter, digit, or underscore)
\W any non-word character

CSCI 4152/6509, Perl Tutorial 35


