Prolog Programming

A First Course

Paul Brna

January 24, 2001



Abstract

The course for which these notes are designed is intended for undergraduate
students who have some programming experience and may even have written a
few programs in Prolog. They are not assumed to have had any formal course
in either propositional or predicate logic.

At the end of the course, the students should have enough familiarity with
Prolog to be able to pursue any undergraduate course which makes use of
Prolog.

This is a rather ambitious undertaking for a course of only twelve lectures so the
lectures are supplemented with exercises and small practical projects wherever
possible.

The Prolog implementation used is SICStus Prolog which is closely modelled
on Quintus Prolog (SICS is the Swedish Institute of Computer Science). The
reference manual should also be available for consultation [SICStus, 1988].

(©Paul Brna 1988



Contents

1 Introduction

1.1 Declarative vs Procedural Programming . . . . . . .. ... ...
1.2 What Kind of Logic? . . . . . . . .. .. ... .. ... ...
1.3 A Warning . . . . . ...
1.4 ARequest . . . . . . ..

2 Knowledge Representation

2.1 Propositional Calculus . . . . . . ... ... ... L.
2.2 First Order Predicate Calculus . . .. ... ... ... ......
23 WeTurnto Prolog . . .. ... ... ... .. ... .. .....
24 Prolog Constants . . . . ... ... ... ... ...
2.5 Goalsand Clauses . . . . ... ... ... .. ... ... .....
2.6 Multiple Clauses . . . . . . . . . .. .
27 Rules. . . . . .
2.8 Semantics . . . . . . ...
2.9 The Logical Variable . . . . ... ... ... .. ... .......
2.10 Rules and Conjunctions . . . . . ... ... ... ... ......
2.11 Rules and Disjunctions . . . . . . . . . ... ... .. ...
2.12 Both Disjunctions and Conjunctions . . . . ... ... . ... ..
2.13 What You Should Be Able ToDo . . . . .. ... ... ......

3 Prolog’s Search Strategy

3.1 Queries and Disjunctions . . . . ... ... ... ... ..
3.2 A Simple Conjunction . . . . .. ... ... ... ... ...
3.3 Conjunctions and Disjunctions . . . . ... ... ... ......
3.4 What You Should Be Able ToDo . . . ... ... .. .......

4 Unification, Recursion and Lists

4.1 Unification . . . . . . . e e
4.2 Recursion . . . . . . . . v i i e e e e e e e
4.3 Lists . . . . . e e e e e

4.4 What You Should Be Able ToDo . . . . ... ... ........



ii

The Box Model of Execution

51 TheBox Model . . . . . ... . ... .. ... .
5.2 The Flow of Control . . . . ... ... ... .. .. ........
5.3 An Example using the Byrd Box Model . . . .. ... ......
5.4 An Example using an AND/OR Proof Tree . .. ... ......
5.5 What You Should Be Able ToDo . . . ... ... .........

Programming Techniques and List Processing

6.1 The ‘Reversibility’ of Prolog Programs . . . ... ... ... ..
6.1.1 Evaluation in Prolog . . .. ... ... ... .. .....

6.2 Calling Patterns . . . . . ... ... ... oo

6.3 List Processing . . . . . .. ... ... ... oo
6.3.1 Program Patterns . . .. ... .. ... .. ........
6.3.2 Reconstructing Lists . . . . . . ... ... ...

6.4 Proof Trees . . . . . . . .

6.5 What You Should Be Able ToDo . . . ... ... ... ......

Control and Negation

7.1 Some Useful Predicates for Control . . . . . . ... ... .. ...

7.2 The Problem of Negation . . ... ... ... ...........
7.2.1 Negation as Failure . . . . . . . ... ... ...
7.2.2 Using Negation in Case Selection . . . . . . .. ... ...

7.3 Some General Program Schemata . . . . . . .. ... ... ....

7.4 What You Should Be Able ToDo . . . . .. ... ... .. ....

Parsing in Prolog

8.1 Simple English Syntax . . . . .. ... ... ... . ........
8.2 TheParse Tree . . . . . . . . . . ..
8.3 First Attempt at Parsing . . . . ... ... ... ... ... ..
8.4 A Second Approach . . .. ... ... L oL
8.5 Prolog Grammar Rules . . . . . ... ... ... .........
8.6 To Use the Grammar Rules . . . . . ... ... .. ........
8.7 How to Extract a Parse Tree . . . .. ... .. ... ... ....
8.8 Adding Arbitrary Prolog Goals . . . ... ... ... ......
8.9 What You Should Be Able ToDo . . . ... ... .........

Modifying the Search Space

9.1 A Special Control Predicate . . . . .. ... ... .. .......
9.1.1 Commit . . . . . . ... e
9.1.2 Make Determinate . . . . ... ... ... ... .. ...,
9.1.3 Fail Goal Now . . ... . ... ... .. ... ...,

34
34
35
36
37
38

53
53
o4
5%)
26
26
59
61
63

66
66
67
68
69
70
77

78
78
79
80
81
82
83
83
84
84



iii

9.2 Changing the Program . . . . . . ... ... ... ......... 91
921 DoNotDolt!. .. .. .. ... .. .. ... ..., 91
9.2.2 Sometimes You have To! . . . . . ... ... ... ... .. 93

9.3 What You Should Be Able ToDo . . . . ... ... ........ 94

10 Prolog Syntax 96

10.1 Constants . . . . . . . . .. L 96

10.2 Variables . . . . . ... 97

10.3 Compound Terms . . . . . . . . . ... ... ..o 97

10.4 (Compound) Terms as Trees . . . . . . . ... ... ... ..... 98

10.5 Compound Terms and Unification . . ... ... ... ... ... 98

10.6 The Occurs Check . . . . . . .. ... ... .. ... ..., 99

10.7 Lists Are Terms Too . . . . . . . . . . .. ... ... ... .... 99

10.8 How To Glue Two Lists Together . . . . . . ... ... ... ... 101

10.9 Rulesas Terms . . . . . . . . . . ... 102

10.10What You Should Be Able ToDo . . . . . .. .. ... ... ... 104

11 Operators 111

11.1 The Three Forms . . . . . . . . . . . . ... . .. ... .... 111
11.1.1 Infix . . .. o 111
11.1.2 Prefix . . . . .. . 112
11.1.3 Postfix . . . . . . . . . 112

11.2 Precedence . . . . . . . . . . .. 112

11.3 Associativity Notation . . . . . . .. . ... ... ... .. .... 115
11.3.1 Infix Operators . . . . . . . . . . ... ... ... .... 115
11.3.2 The Prefix Case . . .. ... ... ... ... ...... 115
11.3.3 Prefix Operators . . . . . .. ... ... ... ... .... 116
11.3.4 Postfix Operators . . . . . . . . . ... ... ... 116

11.4 How to Find Operator Definitions . . . . .. .. ... ... ... 116

11.5 How to Change Operator Definitions . . . . . .. . ... ... .. 116

11.6 A More Complex Example . . . . ... ... ... ... .. .... 118

11.7 What You Should Be Able ToDo . . . . . . ... ... ... ... 119

12 Advanced Features 120

12.1 Powerful Features . . . . . . . . . ... ... ... oo, 120
12.1.1 Powerful Features —Typing . . . . . . . . . .. ... ... 120
12.1.2 Powerful Features —Splitting Up Clauses . . . . . .. .. 121
12.1.3 Powerful Features —Comparisons of Terms . . . . . . . . 126
12.1.4 Powerful Features —Finding All Solutions . . . . . . . .. 126

12.1.5 Powerful Features —Find Out about Known Terms . . . 128



iv

12.2 Open Lists and Difference Lists . . . . . . .. ... .. ... ...
12.3 Prolog Layout . . ... .. ... ... .. ... ...
12.3.1 Comments . . . . . . . . . oL e
12.4 Prolog Style . . . . . . .. L
12.4.1 Side Effect Programming . . . ... ... ... ... ...
12.5 Prolog and Logic Programming . .. ... ... ... .. ....
12.5.1 Prolog and Resolution . . .. ... ... ... ......
12.5.2 Prolog and Parallelism . . .. ... ... ... ......
12.5.3 Prolog and Execution Strategies . . . . . ... ... ...
12.5.4 Prolog and Functional Programming . . ... ... ...
12.5.5 Other Logic Programming Languages . . ... ... ...
12.6 What You Should Be Able ToDo . . . . . ... ... ... ....

A Short Prolog Bibliography
Detalils of the SICStus Prolog Tracer

Solutions and Comments on Exercises for Chapter 2

C.1 Exercise 2.1 . . . . . . . e
C.2 Execise 2.2 . . . . . .
C.3 Exercise 2.3 . . . . . .
C.4 Exercise 2.4 . . . . . .
C.b Exercise 2.5 . . . . . L
C.6 Exercise 2.6 . . . . . . . . ..o
C.7 Exercise 2.7 . . . . . . . e

Solutions and Comments on Exercises for Chapter 3
D.1 Exercise 3.1 . . . . . . . . . .
D.2 Exercise 3.2 . . . . . ...

Solutions and Comments on Exercises for Chapter 4

E.1 Exercise 4.1 . . . . . . . . . ..
E.2 Exercise 4.2 . . . . . . ..
E.3 Exercise 4.3 . . . . . ..

Solutions and Comments on Exercises for Chapter 6

F.1 Exercise 6.1 . . . . . . . . . . e e e

Solutions and Comments on Exercises for Chapter 8

G.1 Exercise 8.1 . . . . . . . . e

Solutions and Comments on Exercises for Chapter 9

H.1 Exercise 9.1 . . . . . . . . . . . e

140

143

146
146
147
148
148
149
149
150

152
152
153

157
157
157
159

162
162

171
171

174



Solutions and Comments on Exercises for Chapter 11 179

I.1 Exercise 11.1 . . . . . . . . . e 179

Solutions and Comments on Exercises for Chapter 12 180

J.1 Exercise 12.1 . . . . . . . .. 180



List of Figures

3.1
3.2

5.1
5.2
9.3
5.4
5.5
5.6

6.1
6.2

8.1

9.1
9.2
9.3
9.4

A Failed Match . . . ... ... o 18
A Successful Match . . . . .. ... oo 20
The Byrd Box Model Hlustrated . . . . ... ... ... ..... 34
Nlustrating Simple Flow of Control . . . . . . .. ... ... ... 36
Program Example with Byrd Box Representation . . . . . . . .. 37
The AND/OR Tree for the Goal a(X,Y) . ............ 38
The Development of the AND/OR Proof Tree . . . . . ... ... 39
Yuppies on the Move . . . . . . ... ... oo, 52
The Proof Tree for triple([1,2],Y) . . . . . . .. ... ... ... 62
The Proof Tree for triple([1,2],[],Y) ... ... ... ... ... 63
A Parse Tree . . . . . . o L 79
The Effect of cut on the AND/OR Tree . . . .. ... ...... 88
The First Solution to the Goal sum(2,Ans) . . ......... 90
Resatisfying the Goal sum(2,Ans) . . . . . ... ... ...... 91
The Effect of the cut on the Goal sum(2,Ans) . . .. ... ... 92



Preface

A Warning

These notes are under development. Much will eventually change. Please help
to make these notes more useful by letting the author know of any errors or
missing information. Help future generations of AI2 students!

The Intended Audience

The course for which these notes are designed is intended for undergraduate
students who have some programming experience and may even have written a
few programs in Prolog. They are not assumed to have had any formal course
in either propositional or predicate logic.

The Objective

At the end of the course, the students should have enough familiarity with
Prolog to be able to pursue any undergraduate course which makes use of
Prolog.

The original function was to provide students studying Artificial Intelligence
(AI) with an intensive introduction to Prolog so, inevitably, there is a slight
bias towards Al.

The Aims

At the end of the course the students should be:

e familiar with the basic syntax of the language

e able to give a declarative reading for many Prolog programs
e able to give a corresponding procedural reading

e able to apply the fundamental programming techniques

e familiar with the idea of program as data

e able to use the facilities provided by a standard trace package to debug
programs

e familiar with the fundamental ideas of the predicate calculus

e familiar with the fundamental ideas specific to how Prolog works



viii
Course Structure

This is a rather ambitious undertaking for a course of only twelve lectures so the
lectures are supplemented with exercises and small practical projects wherever
possible.

Acknowledgements

These notes are based on a previous version used with the students of the AI2
course in Prolog during the session 198587 and 1988-89 at the Department of
Artificial Intelligence, Edinburgh University. My thanks for the feedback that
they supplied.



Chapter 1

Introduction

Prolog is PROgramming in LOGic

A few points must be cleared up before we begin to explore the main aspects
of Prolog.

These notes are supplemented with exercises and suggestions for simple practi-
cals. It is assumed that you will do most of this supplementary work either in
your own time, for tutorials or during practical sessions.

Each chapter will start with a simple outline of its content and finish with a
brief description of what you should know upon completion of the chapter and
its exercises.

Important points will be and some technical and practical details which
are not immediately essential to the exposition will be

written in a smaller font.

1.1 Declarative vs Procedural Programming

Procedural programming requires that the programmer tell the computer what
to do. That is, how to get the output for the range of required inputs. The
programmer must know an appropriate algorithm.

Declarative programming requires a more descriptive style. The programmer
must know what relationships hold between various entities.

Pure' Prolog allows a program to be read either declaratively or procedurally.
This dual semantics is attractive.

1.2 What Kind of Logic?

Prolog is based on First Order Predicate Logic —sometimes abbreviated to
FOPL.

!Prolog, like LISP, has a pure subset of features. The implication is that some features of
both languages are regarded as impure —these are often provided for efficiency or for useful,
but strictly unnecessary features. The impure features of Prolog damage the pleasing equality
between the declarative and procedural readings of Prolog programs.



2 Prolog Programming

First order predicate logic implies the existence of a set of predicate symbols
along with a set of connectives.

First order predicate logic implies that there is no means provided for “talking
about” the predicates themselves.

Prolog is based on FOPL but uses a restricted version of the clausal form.
Clausal form is a particular way of writing the propositions of FOPL. The
restriction is known as Horn clause form.

Prolog is a so-called logic programming language. Strictly, it is not the only
one but most such languages are its descendents.

We will spend a little time outlining the basic ideas underlying both proposi-
tional and predicate logic. It is not the intention to use Prolog as a vehicle to
teach logic but some appreciation of the issues is invaluable.

1.3 A Warning

Prolog is known to be a difficult language to master. It does not have the
familiar control primitives used by languages like RATFOR, ALGOL and PAS-
CAL so the system does not give too much help to the programmer to employ
structured programming concepts.

Also, many programmers have become used to strongly typed languages. Pro-
log is very weakly typed indeed. This gives the programmer great power to
experiment but carries the obvious responsibility to be careful.

Another major difference is the treatment of variables —special attention should
be given to understanding variables in Prolog.

Prolog provides a search strategy for free —there is a cost. The programmer
has to develop a methodology to handle the unexpected consequences of a faulty
program. In particular, pay careful attention to the issue of backtracking.

It is usual to assume that telling people how they can go wrong is an encour-
agement to do exactly that —go wrong. The approach taken here is to make
the known difficulties explicit.

1.4 A Request

These notes are slowly being improved. Many further exercises need to be
added along with more example programs and improvements to the text.

If you have any comments that will help in the development of these notes then
please send your comments to:

Paul Brna

Department of Artificial Intelligence
University of Edinburgh

80 South Bridge

Edinburgh EH1 1HN



Chapter 2

Knowledge Representation

We take a very brief and informal look at both the propositional
calculus and first order predicate logic.

We then restrict our attention to a form of predicate logic which
translates directly into Prolog.

This requires that we introduce a simple vocabulary that de-
scribes the syntax of Prolog.

Here, we concentrate on an informal description of the funda-
mental units which are:

clause, rule, fact,

goal, subgoal,

logical variable, constant, atom,
functor, argument, arity.

An explanation as to how statements can be represented in
Prolog form is given.

How do we represent what we know? The simplest analysis requires that we
distinguish between knowledge how —procedural knowledge such as how to drive
a car— and knowledge that —declarative knowledge such as knowing the speed
limit for a car on a motorway.

Many schemes for representing knowledge have been advanced —including full
first order predicate logic. The strong argument for classical (first order predi-
cate) logic is that it has a well understood theoretical foundation.

2.1 Propositional Calculus

The propositional calculus is based on statements which have truth values (true
or false).

The calculus provides a means of determining the truth values associated with
statements formed from “atomic” statements. An example:

If p stands for “fred is rich” and q for “fred is tall” then we may form state-
ments such as:



4 Prolog Programming

Symbolic Statement | Translation

pVq porq

PAQ p and q

P=q p logically implies q

P& q p is logically equivalent to g
-p not p

Note that V, A, = and < are all binary connectives. They are sometimes
referred to, respectively, as the symbols for disjunction, conjunction, implication
and equivalence. Also, — is unary and is the symbol for negation.

If propositional logic is to provide us with the means to assess the truth value
of compound statements from the truth values of the ‘building blocks’ then we
need some rules for how to do this.

For example, the calculus states that pVq is true if either p is true or q is true
(or both are true). Similar rules apply for all the ways in which the building
blocks can be combined.

A Problem

If p stands for “all dogs are smelly” and p is true then we would like to be
able to prove that “my dog fido is smelly”.

We need to be able to get at the structure and meaning of statements. This is
where (first order!) predicate logic is useful.

2.2 First Order Predicate Calculus

The predicate calculus includes a wider range of entities. It permits the de-
scription of relations and the use of variables. It also requires an understanding
of quantification.

The language of predicate calculus requires:

Variables

Constants —these include the logical constants

Symbol | Meaning

Vv or

A and

- not

= logically implies
& logically equivalent
v for all

3 there exists

The last two logical constants are additions to the logical connectives of
propositional calculus —they are known as quantifiers. The non-logical
constants include both the ‘names’ of entities that are related and the
‘names’ of the relations. For example, the constant dog might be a rela-
tion and the constant fido an entity.

Do not worry about the term first order for now. Much later on, it will become relevant.



Prolog Programming )

Predicate —these relate a number of entities. This number is usually greater
than one. A predicate with one argument is often used to express a
property e.g. sun(hot) may represent the statement that “the sun has
the property of being hot”.

If there are no arguments then we can regard the ‘predicate’ as standing

for a statement a la the propositional calculus.

Formulze —these are constructed from predicates and formulze?. The logical
constants are used to create new formulae/ from old ones. Here are some

examples:

Formula(e) New Formula
dog(fido) - dog(fido)
dog(fido) and old(fido) | dog(fido)V old(fido)
dog(fido) and old(fido) | dog(fido)A old(fido)
dog(fido) and old(fido) | dog(fido)=- old(fido)
dog(fido) and old(fido) | dog(fido)< old(fido)
dog(X) VX.dog(X)

dog(X) IX.dog(X)

Note that the word “and” used in the left hand column is used to suggest
that we have more than one formula for combination —and not necessarily
a conjunction.

In the last two examples, “dog(X)” contains a variable which is said to
be free while the “X” in “VX.dog(X)” is bound.

Sentence —a formula with no free variables is a sentence.

Two informal examples to illustrate quantification follow:

VX.(man(X)=mortal(X)) All men are mortal
3X.elephant(X) There is at least one elephant

The former is an example of universal quantification and the latter of existential
quantification.

We can now represent the problem we initially raised:

VX.(dog(X)=-smelly(X))Adog(fido)=-smelly(fido)

To verify that this is correct requires that we have some additional machinery
which we will not discuss here.

2.3 We Turn to Prolog

Prolog provides for the representation of a subset of first order predicate cal-
culus. The restrictions on what can be done will become clearer later. We will
now explain how we can write logical statements in Prolog.

?Note that this is a recursive definition.



6 Prolog Programming

If “the capital of france is paris” then we can represent this in predicate calculus

form as®:

france has_capital paris

We have a binary relationship (two things are related) written in infix form.
That is, the relationship is written between the two things related.

The relationship (or predicate) has been given the name “has_capital” —hence
we say that the predicate name is “has_capital”.

And in Prolog form by such as:

has_capital(france,paris).

where we write a prefiz form and say that the relationship takes two arguments.
Prefix because the relationship is indicated before the two related things.

Note that, in Prolog, if the name of an object starts with a lower case letter
then we refer to a specific object. Also, there must be no space between the
predicate name and the left bracket “(”. The whole thing also ends in a “.” as

the last character on the line.

The exact rule for the termination of a clause is that a clause must end

with a “.” followed by white space where white space can be any of
{space,tab,newline,end_of file}. It is safest to simply put “.” followed
by newline.

Also note that relations do not need to hold between exactly two objects. For
example,

meets(fred,jim,bridge)

might be read as
fred meets jim by the bridge

Here, three objects are related so it makes little sense to think of the relation
meets as binary —it is ternary.

If we can relate two objects or three then it is reasonable to relate n where
n > 2. Is there any significance to a relationship that relates one or even zero
objects? A statement like

jim is tall

might be represented either as

3The failure to capitalise “france” and “paris” is quite deliberate. In Prolog, named,
specific objects (i.e. the atoms) usually start with a lower case letter.



Prolog Programming 7
tall(jim)

or

jim(tall)

It is, perhaps, preferable to see tallness as being a property which is possessed
by jim.
A ‘relation’ that has no arguments can be seen as a single proposition. Thus

the binary relation “france has_capital paris” above might be rewritten as the
statement “france_has_capital_paris” —a relation with no arguments.

2.4 Prolog Constants

If we have
loves(jane,jim).

then jane and jim refer to specific objects. Both jane and jim are constants.
In particular, in DEC-10 Prolog terminology, both are atoms. Also, “loves”
happens to be an atom too because it refers to a specific relationship. Generally
speaking, if a string of characters starts with a lower case letter, the DEC-10
family of Prologs assume that the entity is an atom.

There are constants other than atoms —including integers and real numbers.

A constant is an atom or a number. A number is an integer or a real
number?. The rules for an atom are quite complicated:

quoted item ’anything but the single quote character’

word lower case letter followed by any letter, digit or _ (underscore)
symbol any number of {+, -, *, /,\, ©, <, >,=,", 7,5, ., 7, Q, #, §, &}
special item any of { [|, {},;, !, %}

So the following are all atoms:
likes_chocolate, fooX23, ++*++, ::=, "What Ho!’

By the way, you can include a single quote within a quoted atom —just
duplicate the single quote. This gives the quoted atom with a single quote
as:

229

A practical warning: remember to pair off your (single) quote signs when
inputing a quoted atom or Prolog may keep on swallowing your input
looking for that elusive single quote character. This is one of the most
common syntactic errors for beginners.

While we are on the subject, another common error is to assume that a
double quote (") behaves like a single quote —i.e. that the term "Hello"
is an atom just like >Hello’. This is not so. When you do find out what
sensible things can be done with the double quote then remember to pair
them off.

“Referred to as a float in the SICStus Prolog manual [SICStus, 1988].



8 Prolog Programming

Because Prolog is modelled on a subset of first order predicate logic, all pred-
icate names must be constants —but not numbers. In particular,

No predicate may be a wvariable

That is, we cannot have X (jane,jim) as representing the fact that jane and
jim are related in some unknown way.

2.5 Goals and Clauses

We distinguish between a Prolog goal and Prolog clause. A clause is the

syntactic entity expressing a relationship as required by Prolog —note that we

will regard the ‘.’ as terminating a clause (this is not strictly correct).

loves(jane,jim) is a goal
loves(jane,jim). is a unit clause

The adjectives unit and non-unit distinguish two kinds of clause —intuitively,
facts and rules respectively.

Exercise 2.1 Here is the first opportunity to practice the representation of
some statement in Prolog form.

1. bill likes ice-cream
. bill is tall

. jane hits immy with the cricket bat

2

3

4. john travels to london by train
5. bill takes jane some edam cheese
6

. freddy lives at 16 throgmorton street in london

The failure to capitalise “freddy”, “london” etc. is a reminder that the version
of Prolog that we are using requires that constants should not start with an
upper case letter.

Note that there may be several ways of representing each of these statements.

2.6 Multiple Clauses

A predicate may be defined by a set of clauses with the same predicate name
and the same number of arguments.

We will therefore informally describe the way in which this is handled through
an example. The logical statement (in first order form)

squared(1,1)Asquared(2,4) Asquared(3,9)

is to be represented as three distinct Prolog clauses.



Prolog Programming 9

squared(1,1).
squared(2,4).
squared(3,9).

Note that this way of turning a conjunctive statement into Prolog is one of
the fundamental restrictions previously mentioned. There are more to follow.

All the above clauses are unit clauses —this is not a necessary requirement. See
section 2.12 for an example with both unit and non-unit clauses.

We now introduce a graphical representation which will be used in a number
of different ways. The idea we use here is to represent a program (in this case,
consisting of a set of unit clauses) as a tree.

T

squared(1,1) squared(2,4) squared(3,9)

This tree is an example of an OR tree.

It might have been expected that we would call this an AND tree but, when
we are trying to determine whether a statement such as squared(1,1) is true
then we might use either the first clause or the second or the third and so on.

Exercise 2.2 Represent each of these statements as a set of Prolog clauses.

1. bill only eats chocolate, bananas or cheese.
2. the square root of 16 is 4 or -4.

3. wales, ireland and scotland are all countries.

2.7 Rules

The format is:

divisible_by_two:-
even.

This is a non-unit clause.
In general, a clause consists of two parts: the head and the body’.

The head is divisible_by_two and the body is even —even is sometimes re-
ferred to as a subgoal.

Note that the symbol “:-” is read as if. An informal reading of the clause is
“divisible_by_two is true if even is true” which is equivalent to “even =
divisible_by_two”.

Any number of subgoals may be in the body of the rule.

5These two body parts are ‘joined’ by the neck. There is an analogous concept in the
Prolog literature.



10 Prolog Programming

No more than one goal is allowed in the head ‘

This is another way in which Prolog is a restriction of full first order predicate
calculus. For example, we cannot translate rich(fred) = happy(fred) Apowerful(fred)
directly into the Prolog version happy (fred),powerful(fred) :- rich(fred).

See section 2.10 for an example of a clause with more than one subgoal in the
body. A fact is effectively a rule with no subgoals.

You may have noticed that, even if it is held that “even” is a relation, it does
not seem to relate anything to anything else.

The rule is not as much use as it might be because it does not reveal the more
interesting relationship that

A number is divisible by two if it is even
We can express this with the help of the logical variable. Here is the improved

rule:

divisible_by_two(X):-
even(X).

This is also a non-unit clause. The named logical variable is X. This Prolog
clause is equivalent to the predicate calculus statement V X. (even(X) =
divisible_by_two(X)).

2.8 Semantics

Here is an informal version of the procedural semantics for the example above:

If we can find a value of X that satisfies the goal even(X) then we
have also found a number that satisfies the goal divisible_by_two(X).

The declarative semantics.

If we can prove that X is “even” then we have proved that X is
“divisible_by_two”.

Note that there is an implicit universal quantification here. That is, for
all objects those that are even are also divisible by two.

VX.(even(X)= divisible_by_two(X))

Also note that the head goal is found on the right of the standard logical
implication symbol. It is a common error to reverse the implication.

Two final examples of a single rule. The first:

all scots people are british



Prolog Programming 11

can be turned into:

british(Person):-
scottish(Person).

Note that Person is another logical variable. Now for the final example:

if you go from one country to another they you are a tourist

turns into:

tourist(P):-
move(P,Countryl,Country2).

where move(P,A,B) has the informal meaning that a person P has moved
from country A to country B.

There is a problem here. We really need to specify that Countryl and Coun-
try2 are legitimate and distinct countries®.

Exercise 2.3 Represent these statements as single non-unit clauses (rules):

1. all animals eat custard
2. everyone loves bergman’s films
3. jim likes fred’s possessions

4. if someone needs a bike then they may borrow jane’s

2.9 The Logical Variable

In the DEC-10 Prolog family, if an object is referred to by a name starting
with a capital letter then the object has the status of a logical variable. In
the above rule there are two references to X. All this means is that the two
references are to the same object —whatever that object is.

The scope rule for Prolog is that two uses of an identical name for a logical
variable only refer to the same object if the uses are within a single clause.
Therefore in

happy (X):-

healthy(X).
wise(X):-

old(X).

This could be enforced by the move/3 relation (predicate) but this would produce an
unnaturally specific version of moving. The real solution is to provide some predicate such as
not_same/2 which has the meaning that not_same(P1,P2) precisely when P1 is not the
same as P2.



12 Prolog Programming

the two references to X in the first clause do not refer to the same object as the
references to X in the second clause. By the way, this example is a sort that is
discussed in section 2.11.

Do not assume that the word logical is redundant. It is used to distinguish
between the nature of the variable as used in predicate calculus and the vari-
able used in imperative languages like BASIC, FORTRAN, ALGOL and so on.
In those languages, a variable name indicates a storage location which may
‘contain’ different values at different moments in the execution of the program.

The logical variable cannot be overwritten with a new value

Although this needs some further comments, it is probably better to start with
this statement and qualify it later.

For example, in Pascal:
Xi=1; X:= 25

results in the assignment of 2 to X. In Prolog, once a logical variable has
a value, then it cannot be assigned a different one. The logical statement

X=1AX=2

cannot be true as X cannot be both ‘2’ and ‘1’ simultaneously. An attempt
to make a logical variable take a new value will fail.

2.10 Rules and Conjunctions
A man is happy if he is rich and famous

might translate to:

happy(Person):-
man(Person),
rich(Person),
famous(Person).

The ¢, indicates the conjunction and is roughly equivalent to the A of predicate
calculus. Therefore, read ¢, as ‘and’’. The whole of the above is one (non-unit)
single clause.

It has three subgoals in its body —these subgoals are ‘conjoined’.

In this single clause, the logical variable Person refers to the same object
throughout.

By the way, we might have chosen any name for the logical variable other than
Person. It is common practice to name a logical variable in some way that
reminds you of what kind of entity is being handled.

We now describe this clause graphically. In this case, we are going to represent
conjunctions using an AND tree. Here is an AND tree that represents the
above.

"It’s meaning is more accurately captured by the procedural ‘and then’.



Prolog Programming 13

et

man(Person) rich(Person) famous(Person)

The way in which we discriminate between an OR tree and an AND tree is the
use of a horizontal bar to link the subgoals. We need this distinction because we
are going to represent the structure of a program using a combined AND/OR
tree.

Exercise 2.4 A few more exercises. Each of these statements should be turned
into a rule (non-unit clause) with at least two subgoals —even though some
statements are not immediately recognisable as such:

1. you are liable to be fined if your car is untazed
2. two people live in the same house if they have the same address

3. two people are siblings if they have the same parents

2.11 Rules and Disjunctions
Someone is happy if they are healthy, wealthy or wise.

translates to:

happy(Person):-

healthy (Person).
happy (Person):-

wealthy (Person).
happy (Person):-

wise(Person).

Note how we have had to rewrite the original informal statement into something
like:

Someone is happy if they are healthy OR
Someone is happy if they are wealthy OR
Someone is happy if they are wise

We have also assumed that each clause is (implicitly) universally quantified.
i.e. the first one above represents VX.(healthy(X)=-happy(X)).

The predicate name “happy’ is known as a functor.
The functor happy has one argument.

We describe a predicate with name “predname” with arity “n” as predname/n.
It has one argument —we say its arity is 1.

The predicate happy/1 is defined by three clauses.



14 Prolog Programming

Exercise 2.5 Fach of these statements should be turned into several rules:

1. you are british if you are welsh, english, scottish or northern irish

2. you are eligible for social security payments if you earn less than £ 28 per
week or you are an old age pensioner

3. those who play football, rugger or hockey are sportspeople

2.12 Both Disjunctions and Conjunctions
We combine both disjunctions and conjunctions together. Consider:

happy(Person):-

healthy (Person),woman(Person).
happy(Person):-

wealthy (Person),woman(Person).
happy(Person):-

wise(Person),woman(Person).

This can be informally interpreted as meaning that

A woman is happy if she is healthy, wealthy or wise

We now combine the OR tree representation together with an AND tree repre-
sentation to form an AND/OR tree that shows the structure of the definition

of happy/1.

happy (P)

o =

healthy(P) woman(P) wealthy(P) woman(P)  wise(P)  woman(P)

Note that the logical variable in the diagram has been renamed to P. There is
no significance in this renaming.

2.13 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to represent any simple fact in legal Prolog.
You should be able to split up a disjunctive expression into a
set of Prolog clauses.

You should be able to express a simple conjunctive expression
as a single clause.

You should be able to represent most rules in legal Prolog.

There is no perfect solution to the problem of representing knowledge. You may
generate representations that differ wildly from someone else’s answers. To find
out which answer is best and in what context will require some deeper thought.



Prolog Programming 15

Exercise 2.6 Here is a small set of problems that require you to convert propo-
sitions into Prolog clauses. Make sure you explain the meaning of your repre-
sentation:

~

a=b
aV b= c
aNb=c

aN(bVec)=d

-aV b

Exercise 2.7 A simple collection of problems. Represent each statement as a
single Prolog clause:

1. Billy studies AI2

The population of France is 50 million
Ttaly is a rich country

Jane is tall

2 is a prime number

S & o e

The Welsh people are British

=

Someone wrote Hamlet

S

All humans are mortal
9. All rich people pay tazes
10. Bill takes his umbrella if it rains
11. If you are naughty then you will not have any supper

12. Firebrigade employees are men over siz feet tall



Chapter 3

Prolog’s Search Strategy

So far we have concentrated on describing a fact or rule.

Now we have to discover how to make Prolog work for us.
Here, we informally introduce Prolog’s search strategy.

This requires introducing the ideas of Prolog’s top level, how
to query Prolog, how Prolog copes with searching through a
number of clauses, matching, unification, resolution, binding,
backtracking and unbinding.

Search is a major issue. There are many ways to search for the solution to
a problem and it is necessary to learn suitable algorithms that are efficient.
Prolog provides a single method of search for free. This method is known as
depth first search.

You should find that Prolog enables the programmer to implement other search
methods quite easily.

Prolog’s basic search strategy is now going to be outlined. To do this we need
to consider something about the Prolog system.

Prolog is an interactive system. The interactions between the programmer
and the Prolog system can be thought of as a conversation. When the Prolog
system is entered we are at top level. The system is waiting for us to initiate a
‘conversation’.

3.1 Queries and Disjunctions

Informally, a query is a goal which is submitted to Prolog in order to determine
whether this goal is true or false.

As, at top level, Prolog normally expects queries it prints the prompt:

'
and expects you to type in one or more goals. We tell the Prolog system that
we have finished a query —or any clause— by typing “.” followed by typing
the key normally labelled “RETURN”.

A very common syntax error for beginners is to press RETURN before “.”. This
is not a problem —just type in the missing “.” followed by another RETURN.

We look at the case where we only want to solve one goal. Perhaps we would
like to determine whether or not



Prolog Programming 17

woman (jane)
In this case we would type this in and see (what is actually typed is emboldened):
7- woman(jane).

Now ?- woman(jane). is also a clause. Essentially, a clause with an empty
head.

We now have to find out “if jane is a woman”. To do this we must search
through the facts and rules known by Prolog to see if we can find out whether
this is so.

Note that we make the distinction between facts and rules —mnot Prolog. For

example, Prolog does not search through the facts before the rules. Here are

some facts assumed to be known?:

Program Database
woman (jean).
man(fred).
woman(jane).
woman(joan).
woman(pat).

In order to solve this goal Prolog is confronted with a search problem which is
trivial in this case. How should Prolog search through the set of (disjunctive)
clauses to find that it is the case that “jane is a woman”?

Such a question is irrelevant at the level of predicate calculus. We just do not
want to know how things are done. It is sufficient that Prolog can find a
solution. Nevertheless, Prolog is not pure first order predicate calculus so we
think it important that you face up to this difference fairly early on.

The answer is simple. Prolog searches through the set of clauses in the same
way that we read (in the west). That is, from top to bottom. First, Prolog
examines

woman (jean).
and finds that
woman (jane).

does not match. See figure 3.1 for the format we use to illustrate the failure to
match.

! At some point we had to input these facts into the system. This is usually done by creating
a file containing the facts and rules needed and issuing a command that Prolog is to consult
the file(s). Use the command

consult(filename).

where filename is the name of your file. A command is very like a query. A query is written
something like ?- woman(X). The result (on the screen) is X= something followed by yes
or the word no (if there is no such X). A command is written something like :- woman(X).
The result is that the system will not print the binding for X (if there is one) (or the word
yes) or will print the symbol ? if the query failed. The reason for the distinction between a
query and a command will be explained later.



18 Prolog Programming

We introduce the term resolution table. We use this term to represent the
process involved in matching the current goal with the head goal of a clause
in the program database, finding whatever substitutions are implied by a
successful match, and replacing the current goal with the relevant subgoals
with any substitutions applied.

We illuminate this using a ‘window’ onto the resolution process (the res-
olution table). If the match fails then no substitutions will apply and no
new subgoals will replace the current goal.

The term substitution is connected with the concept of associating a vari-
able with some other Prolog object. This is important because we are
often interested in the objects with which a variable has been associated
in order to show that a query can be satisfied.

Resolution Table
woman (jean). (program clause)
woman (jane). (current goal)
O (indicates failure)
{} (no substitutions)

Figure 3.1: A Failed Match

This failure is fairly obvious to us! Also, it is obvious that the next clause
man(fred). doesn’t match either —because the query refers to a different
relation (predicate) than man(fred). From now on we will never consider
matching clauses whose predicate names (and arities) differ.

Prolog then comes to look at the third clause and it finds what we want. All
we see (for the whole of our activity) is:

?- woman(jane).

yes

Now think about how the search space? might appear using the AND/OR tree
representation. The tree might look like:

2This term is used informally. The basic idea is that a program has an initial structure
which can be represented as a tree. The nodes of the tree are goals and the arcs represent
the rules used to invoke a particular goal or set of goals. A computation can be regarded very
roughly as a path through this tree (really, a subtree).



Prolog Programming 19

woman(jane)
woman(jean) man (fred) woman(jane) woman(joan) woman(pat)

We see that the search would zig zag across the page from left to right —
stopping when we find the solution.

Note that we will normally omit facts from the representation of this ‘search
space’. In this case we would have a very uninteresting representation.

3.2 A Simple Conjunction

Now to look at a goal which requires Prolog to solve two subgoals. Here is our
set of facts and one rule.

Program Database

woman (jean).

man (fred).

wealthy (fred).

happy(Person):-
woman(Person),
wealthy(Person).

We shall ask whether “jean is happy”. We get this terminal interaction:
?- happy(jean).

no

Now why is this the case? We said that we would not bother with clauses with
differing predicate names. Prolog therefore has only one choice —to try using
the single rule. It has to match:

happy (jean)
against
happy (Person)

We call this matching process unification. What happens here is that the logical
variable Person gets bound to the atom jean. You could paraphrase “bound”
as “is temporarily identified with”. See figure 3.2 for what happens in more
detail.

In this case the match produces a substitution, Person—jean, and two
subgoals replace the current goal. The substitution of Person by jean is
known as a unifier and often written Person/jean. The process of replacing
a single goal by one or more subgoals —with whatever substitutions are
applicable— is part of the resolution process.



20 Prolog Programming

To solve our problem, Prolog must set up two subgoals. But we must make
sure that, since Person is a logical variable, that everywhere in the rule that
Person occurs we will replace Person by jean.

We now have something equivalent to:

happy (jean):-
woman (jean),
wealthy (jean).
Resolution Table
happy(Person):- woman(Person), wealthy(Person)

happy(jean).

woman(jean), wealthy(jean).
(new subgoals)

Person=jean

Figure 3.2: A Successful Match

So the two subgoals are:

woman (jean)
wealthy (jean)

Here we come to our next problem. In which order should Prolog try to solve
these subgoals? Of course, in predicate logic, there should be no need to worry
about the order. It makes no difference —therefore we should not need to know
how Prolog does the searching.

Prolog is not quite first order logic yet. So we will eventually need to know
what goes on. The answer is that the standard way to choose the subgoal to
work on first is again based on the way we read (in the west)! We try to solve
the subgoal woman (jean) and then the subgoal wealthy(jean).

There is only one possible match for woman(jean): our subgoal is successful.
However, we are not finished until we can find out if wealthy (jean).

There is a possible match but we cannot unify
wealthy (fred)
with

wealthy (jean)



Prolog Programming 21

So Prolog cannot solve our top level goal —and reports this back to us. Things
would be much more complicated if there were any other possible matches. Now
to look at the (non-standard) AND/OR tree representation of the search space.
Here it is:

happy (Person)

/A\

woman(Person) wealthy (Person)

woman (jean) wealthy (fred) {man(fred)}

Note that it becomes very clear that knowing that “fred is a man”
is not going to be of any use. That is why man(fred) is in braces.
From now, we will exclude such from our ‘search space’.

We can now see that the way Prolog searches the tree for AND choices is to
zig zag from left to right across the page! This is a bit like how it processes
the OR choices except that Prolog must satisfy all the AND choices at a node
before going on.

Zig zagging from left to right is not the whole story for this goal. Once
we reach wealthy (Person) with Person/jean and it fails we move back
(backtracking) to the goal woman(Person) and break the binding for
Person (because this is where we made the binding Person/jean). We
now start going from left to right again (if you like, forwardtracking).

3.3 Conjunctions and Disjunctions

We are now ready for the whole thing: let us go back to the set of rules as
found in section 2.12 and some basic facts.

Program Database

woman (jean).

woman (jane).

woman (joan).

woman (pat).

wise(jean).

wealthy (jane).

wealthy (jim).

healthy (jim).

healthy(jane).

healthy(jean).

happy (P):-
healthy (P),
woman(P).

happy(P):-
wealthy(P),
woman(P).

happy(P):-
wise(P),
woman(P).

and consider the solution of the goal



22 Prolog Programming

happy (jean)

Here is the standard AND/OR tree representation of the search space again:

happy (P)

o T

healthy(P) woman(P) wealthy(P) woman(P)  wise(P)  woman(P)

and the goal succeeds.

Note that
1. Both the subgoal healthy(jean) and woman(jean) have to
succeed for the whole goal to succeed.

2. We then return to the top level.

Now consider the top level goal of

happy (joan)

The resolution process generates the subgoals healthy (joan) and woman (joan)
from the first clause for happy/1. In all, Prolog tries three times to match
healthy (joan) as there are three clauses for healthy /1. After failing healthy (joan),
however, Prolog does not try to solve woman(joan) —there is no point in
doing so.

There is another way of trying to prove happy(joan) using the second clause of
happy/1. The resolution process again generates subgoals —wealthy (joan)
and woman (joan)— and wealthy(joan) fails. A third attempt is made but
this founders as wise(joan) fails. Now back to top level to report the complete
failure to satisfy the goal.

Now consider

happy (P)

as the top level goal.

happy (P)

o

healthy(P) woman(P) wealthy(P) woman(P)  wise(P)  woman(P)

Much more complicated. First, healthy(P) succeeds binding P to jim (P /jim)
but when the conjunctive goal woman (jim) is attempted it fails. Prolog now
backtracks®. Tt reverses along the path through the tree until it can find a place
where there was an alternative solution.

3See chapter 5 for more details.



Prolog Programming

Of course, Prolog remembers to unbind any variables exactly at the places in

the tree where they were bound.

In the example we are using we again try to resolve the goal healthy(P) —
succeeding with P bound to jane. Now the conjunction can be satisfied as
we have woman(jane). Return to top level with P bound to jane to report

success. What follows is what appears on the screen:

?- happy(P).

P=jane
yes

Prolog offers the facility to redo a goal —whenever the top level goal
has succeeded and there is a variable binding. Just type “;” followed
by RETURN —*” can be read as or. If possible, Prolog finds another
solution. If this is repeated until there are no more solutions then we get

the sequence of solutions:

jane
jean
jane
jean

It is worth trying to verify this.

Basically, trying to follow the behaviour of Prolog around the text of the
program can be very messy. Seeing how Prolog might execute the search based
on moving around the AND/OR tree is much more coherent but it requires some

effort before getting the benefit.

3.4 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to load in a Prolog program.
You should be able to issue a legal Prolog query.

You should be able to generate successive solutions to a goal
(provided that any exist).

You should be able to apply a depth-first search strategy to
simulate the Prolog execution of a goal in relation to a simple
program.

You should have an idea about the way in which Prolog uses
matching.

You should be aware of the effects of backtracking when a goal
fails.

Exercise 3.1 Here is the first opportunity to try to follow the execution of some
Prolog query. For each of these problems, the aim is to follow the execution for
a number of different queries. FEach query gives rise to a sequence of subgoals

which either fail outright or succeed —possibly binding some variables.

The answers should use a standard format which is illustrated.



24 Prolog Programming

Program Database
a(X):-
b(X,Y),
c(Y).
a(X):-
c(X).
b(1,2)
b(2,2)
b(3,3)
b(3,4)
c(2).
c(5).

Use the following format for your answer:

Subgoals Comment Result
a(5) uses 1st clause new subgoals
b(5,Y) tries 1st clause | fails

b(5,Y) tries 2nd clause | fails

b(5,Y) tries 3rd clause | fails

a(5) using 1st clause | fails

a(5) uses 2nd clause | new subgoal
c(5) tries 1st clause | fails

c(5) tries 2nd clause | succeeds
a(b) using 2nd clause | succeeds

Note that, if a variable is bound, then indicate with a phrase such as with
Y=2.

Repeat for the following goals:
1. a(1)
2. a(2)
3. a(3)
4. a(4)

Exercise 3.2 As in the previous exercise, for the new program:

Program Database
a(X,Y):-
b(X,Y).
a(X,)Y):-
¢(X.2),
a(Z,Y)
b(1,2).
b(2,3).
c(1,2).
c(1,4).
c(2,4).
c(3,4).
1. a(1,X)
2. a(2,X)

3. a(3,X)



Prolog Programming

4- a(X,4)
5. a(1,3)

25



Chapter 4

Unification, Recursion and
Lists

We describe the matching process known as Unification that
has already been met.

We review the basic idea of recursion as a programming tech-
nique.

We apply these ideas to list processing.

4.1 Unification

Unification is the name given to the way Prolog does its matching. We will
not do more than sketch the basic ideas here. Basically, an attempt can be
made to unify any pair of valid Prolog entities or terms.

Unification is more than simple matching. A naive view of the matching process
might be represented by the question “can the target object be made to fit one
of the source objects”. The implicit assumption is that the source is not affected
—only the target is coerced to make it look like some source object.

Unification implies mutual coercion. There is an attempt to alter both the
target and the current source object to make them look the same.

Consider how we might match the term book(waverley,X) against some clause
for which book(Y, scott) is the head. The naive approach might be that
X/scott is the correct substitution —or even that the matching cannot be done.
Unification provides the substitutions X/scott and Y/waverley. With these
substitutions both terms look like book(waverley,scott).

‘ Unification is a two way matching process ‘

The substitution X/scott and Y/waverley is known as a unifier —to be
precise, the most general unifier. If we unify X with Y then one unifier
might be the substitution X/1 and Y/I but this is not the most general
unifier.

Consider the infix predicate =/2.

Certain ‘built-in’ Prolog predicates are provided that can be written in
a special infix or prefix form (there are no postfix ones provided —that is
not because they could not be!) For example, 1=2 is written as =(1,2)
in standard Prolog form.



Prolog Programming 27

Prolog tries to unify both the arguments of this predicate. Here are some
possible unifications:

X=fred succeeds

jane=fred fails because you can’t match two distinct atoms

Y=fred, X=Y succeeds with X=fred, Y=fred

X=happy(jim) succeeds

X=Y succeeds —later, if X gets bound then so will Y and vice versa

It is worth making a distinction here between the textual name of a logical
variable and its run-time name. Consider a query likes(jim,X). Suppose
there is one clause: likes(X,fred) —this has the reading that “everyone
likes fred” and mentions a variable with the textual name of X. The query
also mentions a specific variable by the textual name of X. By the scope
rule for variables, we know that these two variables, although textually
the same, are really different. So now consider whether the head of the
clause likes(X,fred) unifies with the current goal likes(jim,X).

We might then reason like this: the task is to decide whether or not
likes(jim,X)=likes(X,fred) succeeds. If this is so then, matching the
first arguments, we get X=jim. Then we try to match the second ar-
guments. Now can X=fred? If X=jim then the answer is no. How is
this? The answer we expect (logically) is that “jim likes fred”. We really
ought to distinguish every variable mentioned from each other according
to the scope rules. This means that the query is better thought of as, say,
likes(jim,X; and the clause is then likes(X5,fred). In the literature the
process of making sure that variables with the same textual name but in
different scopes are really different is known as standardisation apart!

Exercise 4.1 Here are some problems for which unification sometimes succeeds
and sometimes fails. Decide which is the case and, if the unification succeeds,
write down the substitutions made.

1. 24-1=3

2. f(X,a)=f(a,X)

3. fred=fred

4. likes(jane,X)=likes(X,jim)
5. £(X,Y)=f(P,P)

4.2 Recursion

Recursion is a technique that must be learned as programming in Prolog de-
pends heavily upon it.

We have already met a recursive definition in section 2.2. Here are some more:

One of my ancestors is one of my parents or one of their ancestors.

A string of characters is a single character or a single character
followed by a string of characters.

A paragraph is a sentence or a sentence appended to a paragraph.

To decouple a train, uncouple the first carriage and then decouple
the rest of the train.



28 Prolog Programming

An example recursive program:

talks_about(A,B):-
knows(A,B).
talks_about(P,R):-
knows(P,Q),
talks_about(Q,R).

Roughly translated:

You talk about someone either if you know them or you know some-
one who talks about them

If you look at the AND/OR tree of the search space you can see that

e There is a subtree which is the same shape as the whole tree reflecting
the single recursive call to talks_about/2.

e The solution of a given problem depends on being able to stop recursing
at some point. Because the leftmost path down the tree is not infinite in
length it is reasonable to hope for a solution.

talks_about(X,Y)

P

knows(X,Y) knows(X,Z) talks_about(Z,Y)

e

knows(Z,Y)  knows(Z,Z1)  talks_about(Z1,Y)

In searching the tree with a number of facts along with the clauses for talks_about /1:

Program Database

talks_about(A,B):-

knows(A,B).
talks_about(P,R):-
knows(P,Q),
talks_about(Q,R).
knows(bill,jane).
knows(jane,pat).
knows(jane,fred).
knows(fred,bill).

using the goal

talks_about(X,Y)

If we ask for repeated solutions to this goal, we get, in the order shown:



Prolog Programming 29

X= bill Y= jane
X=jane Y= pat
X=jane Y= fred
X=fred Y= bhill
X= bill Y= pat
and so on

The search strategy implies that Prolog keep on trying to satisfy the subgoal
knows(X,Y) until there are no more solutions to this. Prolog then finds that,
in the second clause for talks_about/2, it can satisfy the talks_about(X,Y)
goal by first finding a third party who X knows. It satisfies knows(X,Z)
with X=Dbill, Z=jane and then recurses looking for a solution to the goal
talks_about(jane,Z). It finds the solution by matching against the second
knows/2 clause.

The above AND/OR tree was formed by taking the top level goal and, for each
clause with the same predicate name and arity, creating an OR choice leading to
subgoals constructed from the bodies of the matched clauses. For each subgoal
in a conjunction of subgoals we create an AND choice.

Note that we have picked up certain relationships holding between the (logical)
variables but we have had to do some renaming to distinguish between attempts
to solve subgoals of the form talks_about(A,B) recursively.

4.3 Lists

Lists, for now, can be regarded as special Prolog structures that can be used
to represent an ordered sequence of Prolog terms. For example, here are some
legal lists:

ice_cream, coffee, chocolate] a list with three elements (all atoms)

a, b, c, ¢, d, e a list with six elements (all atoms)

] a list with no elements in it (it is an atom)
dog(fido), cat(rufus), goldfish(jimmy)] a list with three elements (all Prolog terms)
happy (fred),[ice_cream,chocolate],[1,[2],3]]a list with three elements!

— e —

The last example is a little difficult to decipher: the first element is happy (fred),
the second is [ice_cream,chocolate], a list, and the third is [1,[2],3], another
list.

Note that the “,” used in the construction of a list is just an argument separator
as in the term foo(a,b). Also note that, because order is preserved, the list
[a,b,c] is not the same as [a,c,b].

How to construct/deconstruct a list

Given an arbitrary list, we need ways of adding to it and taking it apart!.
The basic approach provides a simple way of splitting a list into two bits: the
first element (if there is one!) and the rest of the list. The corresponding way of
joining two bits to form a list requires taking an element and a list and inserting
the element at the front of the list.

1We also need ways of accessing an arbitrary element, but this can wait




30 Prolog Programming

List Destruction: first, we show how to remove the first element from a list.

X]Y] = [f,r,e,d]

will result in

X=f

—the first element of the list is known as the HEAD of the list.

Y=[r,e,d]

—the list formed by deleting the head is the TAIL of the list. This list has
been reduced in length and can be further destructed or constructed.

List Construction: the construction of a list is the reverse: take a variable
bound to any old list —say, X=[r, e, d] and add the element, say, b at the
front with:

Result_Wanted = [b|X]

Bigger Chunks: it is possible to add (or take away) bigger chunks onto
(from) the front of a list than one element at a time. The list notation allows
for this. Suppose you want to stick the elements a, b and ¢ onto the front of
the list X to make a new list Y. then this can be done with Y=[a,b,c|X].

Conversely, suppose you want to take three elements off the front of a list X in
such a way that the remaining list, Y, is available for use. This can be done
with X=[A,B,C|Y]

A limitation of this approach is that there is no direct way of evading
specifying how many elements to attach/rip off. Using the list notation,
there is no way of saying “rip off N elements of this list X and call the
remainder Y”. This has to be done by writing a program and since this is
very straightforward, this limitation is not a severe one —but, see later.

The Empty List

Simply written

[]

This list ([ ]) has no elements in it: it cannot therefore be destructed. An
attempt to do this will fail.

The empty list ([ ]) is an atom.



Prolog Programming 31

Some Possible Matches

We now illustrate how two lists unify and in what circumstances two lists fail

to unify.
1. [b,a,d]=[d,a,b] fails —as the order matters
. [X]=[b,a,d] fails —the two lists are of different lengths
3.  [X|Y]=[he,is,a,cat] succeeds with
X=he, Y=][is,a,cat]
4.  [X,Y|Z]=[a,b,c,d] succeeds with
X=a, Y=b, Z=[c,d]
5. [X|Y]=[] fails —the empty list
can’t be deconstructed
6. [X|Y]=[[a,[b,c]],d] succeeds with
X=[a,[b,c]], Y=[d]
7. [X]Y]=[a] succeeds with X=a], Y=[]

Exercise 4.2 Here are some more problems for which unification sometimes
succeeds and sometimes fails. Decide which is the case and, if the unification
succeeds, write down the substitutions made.

1. [a,b|X]=[A,B,c]
2. [a,b]=[b,a]

3. [a|[b,c]]=[a,b,c]

4. [a,[b,c]]=[a,b,c]

5. [a,X]=[X,b]

6. [alll=IX]

7. [a,b,X,c]|=[A,B,Y]
$. [HT]=[[a,bl,[c,d]]

9. [[X],Y]=[a,b]

A Recursive Program Using Lists

We make use of a built-in predicate called write/1 to write out all the elements
of a list in order. Note that the argument of write/1 must be a legal Prolog
term.

write/1 is a side-effecting predicate. It captures the logical relation of
always being true but it also produces output which has no part to play
in the logical interpretation. It is therefore hard to produce a declarative
reading for this predicate despite its utility from the procedural point of
view. There are a fair number of other predicates which suffer from this
problem including consult/1 and reconsult/1.

To write out a list of terms, write out the first element and then write out the
remainder (the tail).



32

Prolog Programming

print_a_list([]).
print_a_list([H|T]):-
write(H),
print_a_list(T).

Note that this can be improved by printing a space between elements of the list.
This requires you to add the subgoal write(’ ’) into the body of the second
clause and before the recursive call to print_a_list /1.

This will write the elements out on a single line. If you wanted to write each
element on a different line then you would need the built-in predicate nl/0.

The second clause of print_a_list /1 roughly captures the meaning above.
Then what does the first clause achieve? Without the first clause, print_a_list /1
would produce the required output and then fail because it would have

to handle the empty list ([]) which cannot be deconstructed. Although
print_a list /1 is a side-effecting predicate, the natural (procedural) read-

ing is that it succeeds once it has printed the list of terms. The first clause
handles the case of the empty list so that the predicate will always succeed

if it is given a list of terms to print. Quite reasonably, it will fail if given

a non-list.

4.4 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to determine whether or not two Prolog
terms unify.

You should be able to identify programs that are recursive.
You should be able to build and take apart list structures.
You should be able to write simple list processing programs
using recursion.

Exercise 4.3 For each of these problems, the aim is to define a predicate using
one or two clauses. Each of the problems is a list processing problem.

1. Write a predicate print_every_second/1 to print every other element in

a list, beginning at the second element —i.e. the 2nd, 4th, 6th elements
etc. It should always succeed provided it is given a list as its argument.

Write a predicate deconsonant /1 to print any element of a list that isn’t
a consonant (i.e. we want to print out the vowels {a,e,i,o,u}). It should
always succeed provided it is given a list as its argument (we assume that
the input list only contains vowels and consonants).

Write a predicate head/2 which takes a list as its first argument and
returns the head of the list as its second argument. It should fail if there
18 no first element.

Write a predicate tail/2 which takes a list as its first argument and re-
turns the tail of the list as its second arqgument. It should fail if there is
no first element.



Prolog Programming 33

5. Write a predicate vowels/2 which takes a list as its first argument and
returns a list (as its second argument) which consists of every element of
the input list which is a vowel (we assume that the input list only contains
vowels and consonants).

6. Write a predicate find_every_second/2 which takes a list as its first
argument and returns o list (as its second argument) which consists of
every other element of the input list starting at the second element.

You should note that we have turned the side-effecting predicates of the
first two problems above into predicates which do not make use of side-
effects and can now be given a declarative reading.



Chapter 5

The Box Model of Execution

We describe the Byrd box model of Prolog execution.

We illustrate backtracking in relation to the Byrd box model of
execution and then in relation to the AND/OR execution and
proof trees.

5.1 The Box Model

As this model is a model of Prolog execution, we can think in terms of proce-
dures rather than predicates.

We represent each call to a procedure by a box. Note that, as a procedure may
be executed thousands of times in a program, we need to distinguish between
all these different invocations. In the diagram in figure 5.1 a box represents
the invocation of a single procedure and which is therefore associated with a
specific goal. The top level query is parent(X,Y), X=f.

We regard each box as having four ports: they are named the Call, Exit, Fail
and Redo ports. The labelled arrows indicate the control flow in and out of a
box via the ports. The Call port for an invocation of a procedure represents

Call Exit  Call Exit
parent(a,b).
parent(c,d).

Fail Redo Fail Redo

Figure 5.1: The Byrd Box Model Illustrated

the first time the solution of the associated goal is sought. Control then ‘flows’
into the box through the Call port.

We then seek a clause with a head that unifies with the goal. Then, we seek
solutions to all the subgoals in the body of the successful clause.

If the unification fails for all clauses (or there are no clauses at all) then control
would pass out of the Fail port. There are also other ways to reach the Fail
port.



Prolog Programming 35

Control reaches the Exit port if the procedure succeeds. This can only occur if
the initial goal has been unified with the head of one of the procedure’s clauses
and all of its subgoals have been satisfied.

The Redo port can only be reached if the procedure call has been successful
and some subsequent goal has failed. This is when Prolog is backtracking to
find some alternative way of solving some top-level goal.

Basically, backtracking is the way Prolog attempts to find another solution for
each procedure that has contributed to the execution up to the point where
some procedure fails. This is done back from the failing procedure to the first
procedure that can contribute an alternative solution —hence, backtracking.

When backtracking is taking place, control passes through the Redo port.
We then, with the clause which was used when the procedure was previously
successful, backtrack further back through the subgoals that were previously
satisfied. We can reach the Exit port again if either one of these subgoals
succeeds a different way —and this leads to all the subgoals in the body of the
clause succeeding— or, failing that, another clause can be used successfully.
Otherwise, we reach the Fail port. Note that, for this to work out, the system
has to remember the clause last used for each successful predicate.

The system can throw this information away only if it can convince itself
that we will never revisit a procedure that succeeds. We can always force
this to happen by using the cut (!/0) (which is explained in chapter 9)
—but this is a last resort as most implementations of Prolog can do some
sensible storage management. An understanding of this mechanism can
help you avoid the use of cut.

We reach the Fail port

e When we cannot find any clauses such that their heads match with the
goal

e If on the original invocation, we can find no solution for the procedure

e On backtracking, we enter the box via the Redo port but no further
solution can be found

5.2 The Flow of Control

We illustrate the above with a textual representation of the simple program
found in figure 5.1 using the Byrd box model. The flow of control is found in
figure 5.2. The indentation is used here only to suggest an intermediate stage
in the mapping from the visual representation of the boxes into their textual
sequence.

Many Prolog trace packages that use this box model do no indenting
at all and those that use indentation use it to represent the ‘depth’ of
processing. This depth is equivalent to the number of arcs needed to go
from the root of the AND/OR execution tree to the current node.

Below, we have a snapshot of how the execution takes place —“taken” at the
moment when Prolog backtracks to find another solution to the goal par-
ent(X,Y). We show the backtracking for the same program using an AND/OR
execution tree.



36 Prolog Programming

Call: parent(X,Y)

Exit: parent(a,b)
Call: a=f
Fail: a=f

Now backtracking

Redo: parent(X,Y)

Exit: parent(c,d)
Call: c=f
Fail: c=f

Now backtracking
Redo: parent(X,Y)
Fail: parent(X,Y)

Figure 5.2: Illustrating Simple Flow of Control

parent(X,Y), X=f

parent(X,Y) X =f

parent(a,b) parent(c,d)

5.3 An Example using the Byrd Box Model

We use a simple program with no obvious natural interpretation to contrast
the Byrd box model with the AND/OR execution tree. See figure 5.3 for the
program and for a graphical representation of the program’s structure using
the Byrd box model. Figure 5.4 shows the same program’s structure as an
AND/OR tree.

We consider how the goal a(X,Y) is solved.



Prolog Programming

Program Database XY
a(X,Y):- ,
b(X,Y), B(X,Y] [c(YD]
c(Y). aACGYY (Y]
b(X,Y):- d(1.3) 3)
d(X,Y), e e
e(Y). 4
bOCY) - - v
f(X).
c(4). ) 1
d(1,3).
d(2,4).
e(3). o
f(4).

Figure 5.3: Program Example with Byrd Box Representation

Call: a(X,Y)

Call:  b(X,Y)
Call:  d(X,Y)
Exit: d(1,3)
Call: e(3)
Exit: e(3)

Exit: b(1,3)

Call: c(3)

Fail: c(3)

Now backtracking

Redo: b(X,Y)
Redo: e(3)
Fail: e(3)
Redo: d(X,Y)
Exit: d(2,4)
Call: e(4)
Fail: e(4)

Now backtracking

Call:  f(X)
Exit: f(4)

Exit: b(4,Y)

Call: c(Y)

Exit: c(4)

Exit: a(4,4)

5.4 An Example using an AND/OR Proof Tree

We now use the same example program to show how the proof tree grows. We
choose a proof tree because we can delete any parts of the tree which do not
contribute to the final solution (which is not the case for the execution tree).

The search space as an AND/OR tree is shown in figure 5.4. We now develop
the AND/OR proof tree for the same goal. We show ten stages in order in
figure 5.5. The order of the stages is indicated by the number marked in the
top left hand corner.

The various variable bindings —both those made and unmade— have not been
represented on this diagram.



38 Prolog Programming

d(X,Y) e(Y) f(X)

Figure 5.4: The AND/OR Tree for the Goal a(X,Y)

5.5 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to describe the execution of simple programs
in terms of the Byrd box model.

You should be able to follow backtracking programs in terms
of the Byrd box model.

You should also be construct the AND/OR execution and proof
trees for programs that backtrack.

Exercise 5.1 We use the same two programs as found at the end of chapter 3.
For each of these problems, the aim is to predict the execution first using the
development of the AND/OR proof tree and then using the Byrd box model for
each of the different queries.



Prolog Programming

39

| 2] 3]
a(X,Y) a(X,Y) a(X,Y)
b(X,Y) b(X,Y) b(X,Y)
axy) AXY) oY)
[T (57 (6]
/a()& a(X,Y) a(X,Y)
b(X,Y) c(Y) b(X,Y) b(X,Y)
/\ -
dXY)  e(Y) dXY) oY) AdxXY)
i) B o7
/a(X,Y) a(X,Y) a(X,Y)
b(X,Y) b(X,Y) b(X,Y)
d(&) axy) £(X)
—
i
/a()&
b(X,Y) c(Y)
\f(o

Note that < indicates the start of backtracking.

Figure 5.5: The Development of the AND/OR Proof Tree

1. Predict the execution behaviour —developing the AND/OR proof tree and
then using the Byrd box model— for the following goals:

Program Database
a(X):-
b(X,Y),
1 c(Y).
(a) a(1) a(X) -
(b) a(2) c(X).
b(1,2
(c) a(3) b1
(d) a(4) b(3,3)
b(3,4)
c(2).
c(5).

2. As in the previous exercise, for the new program:



40

(a) a(1,X)
(b) a(2,X)
(¢) a(3,X)
(d) a(X,4)
(¢) a(1,3)

Prolog Programming

Program Database

a(X,)Y):-
b(X,Y).
a(X,Y):-

—~
N =
W N
~ ~—

ORISR

o o0 o o o o
NN N N

»t
= s N




Interlude: Practical Matters

We describe some matters relating to the practical use of Pro-
log.

We show how to invoke Prolog and also how to exit.

We describe how to load programs as files

We show how to develop a program and avoid some common
errors.

We outline the Input/Output features provided by Prolog.
We then illustrate the use of the debugger and provide some
information about the debugging process.

Exiting and Leaving Prolog

The Prolog system you will be using is known as SICStus Prolog and you
are using it within the UNIX environment (DYNIX(R) V3.0.17.9) provided on
a Sequent computer. All that follows is intended for this context only.

Prolog is entered with the command:
unix prompt: prolog!

The most reliable way to exit Prolog is with the command:
| 7- halt.

Note that the prompt is really | ?- for this Prolog. For simplicity, we have
assumed this is ?- in the main body of the notes.

In passing, there is a small problem associated with pressing the Return
key before typing the ‘.”. This is what happens:

| 7- halt

Prolog is still waiting for the ‘.”. All you have to do is type in the ‘.’ and
then press Return.

This is guaranteed to work but the other ways can fail depending on circum-
stances. Here are two other ways of exiting Prolog from the top level.

!This is supposed to produce a banner a variant on
SICStus 0.6 #11: Tue Jul 3 15:40:37 BST 1990
If the system produces some other system, contact the course organiser.



42 Interlude

| 7- "D
| 7- end_of file.

Note that ~D is the keyboard character obtained by holding down the Control
key, pressing the Shift key and then the d key. This character is the default
character to signal that the end of a file has been encountered. It can be
changed.

The reason why these last two ways are not general depends on one of
the sophisticated features of the Prolog system: viz., that the command
break initiates a new incarnation of the Prolog interpreter. Repeated
breaks will generate further levels. The command halt exits Prolog
from any level while the above two commands only exit one level at a time
and only exit Prolog if at top level.

Loading Files

A program should normally be considered as a sequence of files. Consequently,
it is usually necessary for Prolog to read in one or more files at the beginning
of a session.

The standard command is
| 7- consult(filename).

where “filename” is some legal unix filename. Because some legal unix file-
names contain characters that Prolog may find syntactically illegal it is often
necessary to ‘protect’ the filename using single quotes. Here are some arbitrary
examples:

| 7- consult(foo).
| 7- consult(’/u/ai/s2/ai2/aifoo/program?’).
| 7- consult(’foo.pl’).

It is also possible to consult a set of files as in:

| 7- consult([foo,baz,’foobaz.pl’]).

There is a shorthand for the command consult which can be confusing.
The abbreviation overloads the symbols associated with list notation. The
command consult(foo) can be abbreviated to [foo] and the command
consult([foo,baz]) can be rewritten [foo,baz]. There is quite a subtle
syntax error that can cause difficulties when the file you want to read in
needs to be protected with single quotes. Consider:

| 7- [foo.pl].

Prolog is still waiting for the closing single quote. All you have to do
is type in the closing single quote and then the ]. and press Return.
Prolog will produce an error message because you have asked to load a
very strangely named file.

Another error is to use double quotes instead of single quotes.



Draft of January 24, 2001 43

| 7- ["foo.pl"].

{ERROR: absolute._file_name(102,_45) - invalid file spec}

This weird error will not be explained here —just note that double quotes
have a special interpretation in Prolog which results in the above com-
mand being interpreted as the desire to consult three files: 102, 111 and
111. Can you guess the meaning of double quotes?

Each syntactically correct clause that is found on reading the file will be loaded.
On encountering a syntactically incorrect clause then an error message will
be printed. We now illustrate some common syntax errors together with the
error messages generated. You will notice that the error messages can be quite
obscure.

foo (X). % space between functor and left bracket

* bracket follows expression **
foo
* here **

(X).

fooX). % missing left bracket

* operator expected after expression **
fooX
* here **

foo(X. % missing right bracket

* . or ) expected in arguments **

foo ( X

* here **

foo(X Y). % missing argument separator

* variable follows expression **
foo (X

* here **

foo([a,b). % missing right square bracket

* | or ] expected in list **
foo([a,b

* here **



44 Interlude

foo(a) % missing ‘.’
foo(b).

* atom follows expression **

foo (a)
* here **

foo (b)) .

foo(a), % used *,” for ‘.
foo(b).

{ERROR: (,)/2 - attempt to redefine built_in predicate}

This latter error message is caused because the input is equivalent the the logical
statement foo(a) A foo(b) which is not in Horn clause form and therefore not
legal Prolog. Here is another related error:

foo;- baz. % ; instead of :
{ERROR: (;)/2 - attempt to redefine built_in predicate}

We suggest that, if you have made a syntax error and pressed Return (so
you cannot delete the error) then type in ‘.’ followed by Return. This will
probably generate a syntax error and you can try again. Of course, there are
situations for which this will not work: you cannot use this method to get out
of the problem with:

| 7- [’foo.pl].

or the equivalent problem with double quotes.

Now SICStus does one nice thing: consult(foo) will first try to find a file “foo.pl”. If
it does not find one, it will look for “foo”.

Interactive Program Development

We want to be able to develop a program interactively. This suggests that
we will edit our program using one of the editors provided (such as vi, ex,
gnu emacs or microemacs), enter Prolog, load our program, find a bug, exit
Prolog and repeat.

This is clumsy, so we describe two methods that should aid interactive pro-
gram development. In both cases, however, we must be aware of a problem in
connection with consult/1.

A Problem with consult/1

Consider the query:



Draft of January 24, 2001 45

| 7- consult([fool,fo02]).

where both fool and foo2 contain clauses for, say, baz/1. We get the following:

The procedure baz/2 is being redefined.
Old file: /u/user5/ai/staff/paulb/fool.pl
New file;/u/user5/ai/staff/paulb/foo2.pl
Do you really want to redefine it? (y, n, p, or 7) ?

Therefore, as far as is possible, avoid splitting your predicate definitions between
files.

The command reconsult(foo) is equivalent to consult(foo). The com-
mand reconsult(foo) can be rewritten as [-foo] and the command re-
consult([fool,fo02]) can be rewritten as [-fool,-foo2].

Some Prolog systems distinguish these commands. For these systems,
the command consult([fool,foo2]) has the consequence of loading the
syntactically correct clauses found both in fool and in foo2 —if they share
the definition of baz/2 then both parts of the definition will be loaded.

Finally, if you really have to distribute your predicate definitions between
files with a command like consult([fool,fo02]) then there must be a
declaration that the predicate is a multifile predicate before SICStus en-
counters the first clause. So, if baz/2 is shared between files, we need to
place

:- multifile baz/2.

before the first clause for baz/2.

Even though mostly you won’t need to do this, there are occasions when
it does make sense to distribute a predicate across several files.

Two Variations on Program Development

The first variation depends on whether or not you are using a unix shell that
allows for job suspension. This can be checked by getting into Prolog and
issuing the character ~Z which is the usual default for suspending a job. You
then find yourself at the unix level where you can edit your file in the normal
way. When you have finished editing, get back into Prolog with the command:

unix prompt: fg

which stands for bringing a suspended job into the foreground. Now you are
back in Prolog and you have to reload your program using consult/12.

The second, more satisfactory variation depends on defining a predicate which
can be used to edit a file without explicitly leaving Prolog. This can be done
because there is a built-in predicate shell /1 which takes as its argument a unix
command as a list of the ASCII codes associated with the characters forming
the command. Here is a simple program that, if loaded, can be used to edit a
file and automatically reconsult it after the edit is finished.

2In SICStus anyway —if you are using a Prolog system that distinguishes between con-
sult/1 and reconsult/1 then you must use reconsult/1 or you can get into trouble.



46 Interlude

Program Database

edit(File):-
editor(Editor),
name(Editor,EditorList),
name(File, FileList),
append(EditorList,[32|FileList],CommandList),
name(Command,CommandList),
unix(shell(Command)),
reconsult(File).

editor(emacs).
append([],L,L).

append([H|L1],L2,[H|L3]):-
append(L1,L2,L3).

Now you have to remember to load this each time you enter Prolog. One way
this can be done is by having a file called prolog.ini in your home directory.
This file will then be automatically consulted each time you enter Prolog. Put
the above program in such a file and try it out. Note also that you can change
the editor of your choice by redefining editor/1. The predicate append/3 is
very useful: it ‘glues’ two lists together —e.g. the goal append([a,b],[c,d],X)
results in X=[a,b,c,d]. It is so useful that you will probably want it around
all the time.

Avoiding Various Kinds of Trouble

There is a problem connected with a missing predicate definition. In SICStus
Prolog, the default behaviour is to place you into the tracer. This is roughly
what happens:

{Warning: The predicate foo/1 is undefined}
1 1 Fail: foo(_22) ?

Sometimes, however, we simply want to assume that if a call is made to a missing
predicate then this is equivalent to not being able to solve the goal and the call therefore
fails. This is connected with the closed world assumption which is outlined in chapter 7.

One way in which this can be controlled is to declare that the predicate, say foo/1 is
dynamic with the declaration:

?- dynamic foo/1.

This has the effect that, if there are no clauses for a dynamic predicate then the program
will quietly fail.

A ‘missing’ predicate can be caused in a number of ways which will now be
listed.

e A file that should have been loaded has not been loaded
e A subgoal has been misspelled —e.g. a call to f00 instead of to foo.

e The name of a predicate has been misspelled in all the clauses of the
definition. —e.g. the call is to foo but every definition is for fooO.

e A subgoal has the wrong number of arguments —e.g. there is a call
foo(1) when the definition for foo has two arguments.



Draft of January 24, 2001 47

e The definition for a predicate consistently has the wrong number of argu-
ments.

e Finally, you just may have really forgotten to define some predicate.

One way of dealing with all of these —even if it is hard to locate the cause— is
to set a system flag to regard every call to an undefined predicate as some sort
of error and to invoke the tracer. This is exactly what SICStus does. If you are
using some other Prolog system that does not have this default behaviour, it
may allow for you to use the following (perhapse even in your prolog.ini file):

?- unknown(X,trace).

The call unknown(X,trace) will change the behaviour from whatever the
current setting is to ‘trace’ (the only other behaviour is ‘fail’). To find the
current setting without changing it you can use the query unknown(X,X)
(SICSTUS can be reset to quietly fail with the command unknown(X,fail)).

Another problem can be caused by misspelling variables. For example, the
definition:

mammal(Animal):-

dog(Aminal).

probably features a misspelled variable. However, SICStus version 0.6 does
not report such a definition. Some other Prolog systems, such as Edinburgh
Prolog, provide something akin to:

Warning: singleton variable Animal in procedure mammal/1
Warning: singleton variable Aminal in procedure mammal/1

A singleton variable occurs in a clause if a variable is mentioned once and once
only. Such a variable can never contribute a binding to the final result of the
computation. Even though there are occasions when this does not matter, a
singleton variable is an indication that there might be a misspelling.

Consider the clause member(X,[X|Y]). This has a legitimate singleton
variable, Y. If you need to mention a singleton variable, then you can use
the anonymous variable. This is a special symbol for a variable for which
you don’t want to know any binding made. It is written as an underscore
(-). Consequently, the above clause becomes member(X,[X]]).

This is fair enough and there will be no warning given when the clause
is read in. It is, however, good practice to give meaningful names to
variables —as much for program maintenance as for any other reason.
The way round this can be achieved with a variable that begins with
an underscore (-). For example, the above clause could be rewritten as
member(X,[X]|_Tail]). The anonymous variable is also described in sec-
tion 10.2.



48 Interlude

Input/Output Facilities

We now mention, in passing, some of the I/O facilities built into Prolog. We
have already met a way of inputting multiple clauses via consult/1 (and re-
consult/1). We have already met predicates that produce output —write/1
and nl/0— in chapter 4. Much more information can be found in chapter 10.10.

For now, we will not show how to output to a file —see chapter 10.10 for the
details. In passing, we mention that a single Prolog term can be read in using
read/1. Input using this predicate must be terminated by the standard ‘.’
followed by white space.

Here are some low level I/O predicates:

get0(X) unifies X with next non blank printable character
(in ASCII code) from current input stream

get(X) unifies X with next character (in ASCII) from
current input stream

put(X) puts a character on to the current output stream.

X must be bound to a legal ASCII code

Note that they do not have a declarative reading. They fit poorly into the
theoretical structure underlying Prolog —but other languages suffer from this
problem (e.g. ML).

The Debugging Issue

Once we have loaded our syntactically correct program and tried it out we may
realise that things aren’t the way we want. We may come to realise that we did
not (informally) specify the problem correctly or that we must have coded the
specification wrongly.

We may come to realise that we have an error in our code through executing
some query which produces an unexpected result. We regard such evidence
as a symptom description. The kinds of symptom description that may result
include:

e (apparent) non-termination
e unexpected Prolog error message(s)
e unexpected failure (or unexpected success)

e wrong binding of one of the variables in the original query

There is also the possibility of unexpected side-effects (or an unexpected
failure to produce a side-effect).

Different strategies exist for pinning down the cause(s) of these symptoms. We
will not give a complete account here —just sketch in ways in which the tracer
can be used.

The idea of using the tracer is to unpack the program’s response to the query
which produced a symptom description. This is done by examining the pro-
gram’s behaviour in the hope that we can track down subcomponents which



Draft of January 24, 2001 49

‘misbehave’. Hence we search for a program misbehaviour description. Once
this has been found we then need to track the fault to an error in the code and
generate a program code error description. Finally, underlying the error in the
code may be a number of misunderstandings about the way Prolog executes
a program, the generality of the code written and so on. Tracking this down
would produce a misconception description.

The Tracer Outlined

The description of the tracer’s features that follows is intentionally brief. A
more complete account can be found in appendix B. Note that the tracer uses
the Byrd box model.

Full tracing only applies to non-compiled (i.e. interpreted) code but some
limited tracing can be done for compiled code. The behaviour is similar to the
treatment of system predicates.

Activating the Tracer

First, we outline the facilities for altering the behaviour of the system with
regard to the tracer.

spy (predicate_name) Mark any clause with the given predicate_name as “spyable”.
Does not work for built-in predicates.

debug If a spied predicate is encountered, switch on the tracer.
nodebug Remove all spypoints. The tracer will therefore not be invoked.
nospy (predicate_name) Undo the effect of spy —i.e. remove the spy point.

debugging Shows which predicates are marked for spying plus some other
information.

trace Switches on the tracer.

notrace Switches the tracer off. Does not remove spypoints.

Note that both spy/1 and nospy/1 can also take a list of predicates for their
argument. The predicates can also be specified as, for example, foo/1. This al-
lows for the distinction between (distinct) definitions for two or more predicates
all with different arities.

There is also the concept of leashing. The tracer provides for the possibility
of various decisions to be made by the user at each of the four ports. There is
also a facility for stopping interactions at the ports. This is done via leash /1.
This predicate can take one of five arguments: full, tight, half, loose and off.

Argument Consequence

full Call, Exit, Redo and Fail interactive
tight Call, Redo and Fail interactive

half Call and Redo interactive

loose Call interactive

The default is full.



50 Interlude

The system is set up to default to full leashing: to change this, You can
set your system up using the prolog.ini file by putting a line such as ?-
leash([call,exit]). in it.

Note that the ports of spy-points are always leashed (and cannot be un-
leashed).

Interacting with the Tracer

Now we outline the actions that the user can take at one of the interactive
ports. In all, there are about 22 different actions that can be taken. We will
describe a useful subset of 6 commands.

creep This is the single stepping command. Use Return to creep. The tracer
will move on to the next port. If this is interactive then the user is queried
—otherwise, the tracer prints out the results for the port and moves on.

skip This moves from the Call or Redo ports to the Exit or Fail ports. If
one of the subgoals has a spypoint then the tracer will ignore it.

leap Go from the current port to the next port of a spied predicate.

retry Go from the current Fail or Exit port back to the Redo or Call port
of the current goal —i.e. replay the execution over again.

unify This provides for the user giving a solution to the goal from the terminal
rather than executing the goal. This is available at the Call port. This
is of use in running programs which are incomplete (providing a form of
“stub” for a predicate that has not yet been written). Enter a term that
should unify with the current goal.

(re)set subterm This provides the facility to examine a subterm of a complex
term. This provides a means for focussing on the part of the datastructure
which is of interest. Consider the display at the Call port.

1 1 Call:ifoo(a(l,baz),[q,w,e,r,t])?
By selecting the set subterm option with ~ 1 we would see
1 1 Call:" 1 a(1,baz)?
Then we can further select with = 2 :
1 1 Call:" 2 baz?
To go back to the parent of a term requires the reset subterm command
(%)-
Debugging

We now sketch a simple strategy for using the tracer which copes with several
of the symptoms described above. First, we handle (apparent) non-termination.



Draft of January 24, 2001 51

There may be several reasons why a program appears not to terminate.
These include factors outside of Prolog —e.g. the system is down, the
terminal screen is frozen and the keyboard is dead. Another factor might
be a ‘bug’ in the Prolog system itself. We have four more possibilities:
some built-in predicate may not have terminated (e.g. you are trying
to satisfy a read/1 goal but not terminated input properly), you may
accidently be writing to a file instead of to the terminal, the program
might just be extremely inefficient or, finally, the program is never going
to terminate —real non-termination— but it is hard to be sure of this!

During the execution of the goal:

~C Raise an interrupt

t Return Switch on tracing

~C If no trace output, raise another interrupt
Return or ... creep (or some other choice)

If the trace reveals a sequence of repeated, identical subgoals then this suggests
that the program will not terminate.

Now, we look at a top-down way of debugging a program for terminating pro-
grams. The idea is to examine a goal by looking at each of its subgoals in turn
until an error is detected. The subgoal containing the error is then explored in
the same way. The basic schema is to

trace,goal. Turn on the tracer and issue the goal

S skip over each subgoal

r If an incorrect result is detected, redo the last subgoal
Return creep

repeat ... Repeat the process for the new set of subgoals

All we suggest is that you examine whether or not a goal succeeds (or fails)
when it should, whether or not it binds (or does not bind) those variables which
you expect, and whether the bindings are the ones you intended.

We illustrate with a simple program found in figure 5.6. If the predicate
for_yuppies/1 is taken to mean “a country is suitable for yuppies to live
in if it is near Austria and wealthy” then we might intend that the query
for_yuppies(austria) should succeed —but it does not. We make sure that
leash(full) (the default), turn on the tracer with trace and then issue the goal
for_yuppies(austria). Using the box model, we should get (in a simpler form
than that produced by most tracers):

Call: for_yuppies(austria) 7 creep

Call: near_austria(austria) ? skip

Fail: near_austria(austria) 7 retry

Call: near_austria(austria) 7 creep

Call: country (austria) ? skip

Exit: country(austria) 7 creep

Call: neighbouring(austria,austria) ? skip
Fail: neighbouring(austria,austria) ?

At this point we know that there is no clause for neighbouring(austria,austria)
and we can change the program.



592 Interlude

Program Database

for_yuppies(X):-
near_austria(X),

rich(X).
near_austria(X):-
country(X),
neighbouring(X,austria).
country(austria).
country (switzerland).
country(england).
country(france).

country(west_germany).
neighbouring(switzerland,austria).
neighbouring(west_germany,austria).
neighbouring(leichtenstein,austria).
neighbouring(czechoslovakia,austria).

rich(X):-
average_income(X,Y),
loadsamoney(Y).
average_income(austria,10000).
average_income(switzerland,20000).
average_income(czechoslovakia,5000).
loadsamoney (X):-
X>8000.

Figure 5.6: Yuppies on the Move

Note that this is what the Byrd box model predicts, what SICSTUS does but not what
Edinburgh Prolog produces. Consequently this strategy, although eminently sensible,
will not work well for Edinburgh Prolog.



Chapter 6

Programming Techniques and
List Processing

We introduce the idea of calling patterns —the ways in which
a predicate may be used.

We then present some standard schemata for list processing.
We then apply these ideas to the construction of a simple-
minded dialogue handler.

6.1 The ‘Reversibility’ of Prolog Programs

Consider the program:

Program Database
square(1,1)
square(2,4)
square(3,9)
square(4,16).
(
(

square(5,25).
square(6,36).

This has the reading that the second argument is the square of the first argu-
ment. There are four kinds of query: we can ask what is the square of a specific
number, what number has a specific square and what entities are related by
the square relation. We can also ask whether two specific numbers are in the
relation to each other of one being the square of the other. The queries would
look like this:

square(2,X).
square(X,5).
square(X,Y).
square(2,3).

NN N

Unlike many other programming languages, we do not need different procedures
to calculate each of these results. This is a consequence of the declarative read-
ing of Prolog. Sometimes we say that the program for square/2 is reversible.

This is a very desirable property for programs. For example, if we could write a
program to determine that a given string of words was a legitimate sentence then



54 Interlude

we could use the same program to generate arbitrary grammatical sentences.
Unfortunately, it not always possible to give a declarative reading to a Prolog
program.

6.1.1 Evaluation in Prolog

Unlike many programming languages, Prolog does not automatically evaluate
‘expressions’. For example, in Pascal,

Y :=2+41;

the term 2 4 1 is automatically evaluated and Y is assigned the value 3. Here
is an attempt to do ‘the same thing’ in Prolog using =/2:

Y=2+1

with the consequence that the term 241 is unevaluated and the term Y is
unified with the term 241 with the result that Y is bound to 2+1.

Similar problems arise in relation to LISP. LISP will generally seek to
evaluate expressions. For example, in

(foo (+ 1 2) 3)

LISP evaluates the term (s-expression) (foo (4 1 2) 3) by evaluating (+
1 2) to 3 and then evaluating (foo 3 3). A naive attempt to construct a
similar expression in Prolog might look like:

foo(1+2,3)

but Prolog does not try to evaluate the term 1+2.

Of course, there are times when evaluation is exactly what is wanted. Some-
times, particularly with arithmetic expressions, we want to evaluate them. A
special predicate is/2 is provided. This predicate can be used as in:

Yis2 + 1.

In this case, the term 2+1 is evaluated to 3 and Y is unified with this term
resulting in Y being bound to 3.

We can use is/2 to implement a successor relation:

successor(X,Y):-
Yis X 4+ 1.

where it is intended that successor/2 takes the first argument as input and
outputs the second argument which is to be the next largest integer.

In the above, note that X + 1 is intended to be evaluated.

This means that you must use the stated calling pattern as to try to solve the
goal successor(X,7) will lead to trying to evaluate X + 1 with X unbound.
This cannot be done. The result is an error message and the goal fails.



Draft of January 24, 2001 55

Consider the query
7- 3 is X+1.
This results in a failure and an error message.
*** Frror: uninstantiated variable in arithmetic expression:
Yet the logical statement that we might associate with the query is
3 X 3 is_one_more_than X

This requires that we can search for the integer that, when added to 1 gives
3. Quite reasonable, but the arithmetic evaluator used is non-reversible.
So the evaluation of arithmetic expressions is a one-way process.

Therefore is/2 must always be called with its second argument as an arithmetic
expression which has any variables already bound. So successor/2 is not
‘reversible’. For these queries,

1. successor(3,X).
2. successor(X,4).
3. successor(X,Y).

4. successor(3,5).

The 1st and 4th goals result in correct results (success and failure respectively)
while the 2nd and 3rd goals produce error messages and fail.

6.2 Calling Patterns

For any given predicate with arity greater than 0, each argument may be in-
tended to have one of three calling patterns:

e Input —indicated with a +
e Qutput —indicated with a -

e Indeterminate —indicated with a 7 (+ or -)
For example, successor/2 above requires a calling pattern of

1st argument must be +
2nd argument can be + or - and is therefore ?

We write this as
mode successor(+,7).

The notation used here is consistent with the mode declarations found in many
Prolog libraries. For a further example, the mode declaration of is/2 is mode
is(?,4).

Because of the discrepancy between the declarative and the procedural aspects
of Prolog we often need to think carefully about the intended usage of a predi-
cate. It is good practice to comment your code to indicate a predicate’s intended
usage.



56 Interlude

6.3 List Processing

Many programs will be easiest to write if lists are used as the basic data struc-
ture. Therefore, we will need to process lists in a number of different ways. We
are going to look at four different kinds of task and then loosely describe the
schemata which can be utilised.

6.3.1 Program Patterns

One way in which experienced Prolog programmers differ from beginners is
that they have picked up a wide variety of implementation techniques from
their previous programming experience and are able to bring this to bear on
new problems. Here, we consider four schemata for handling a large number
of list processing tasks. This not intended to cover all possible list processing
programs. Rather, the intention is to give some guidance about how to think
about the problem of constructing a program.

Test for Existence

We want to determine that some collection of objects has at least one object
with a desired property. For example, that a list of terms has at least one term
which is also a list. Here is the general schema:

list_ezistence_test(Info,[Head|Tail]):-
element_has_property(Info,Head).

list_ezistence_test(Info,[Head|Tail]):-
list_ezistence_test(Info,Tail).

The expression Info stands for a specific number of arguments (including zero)
that carry information needed for the determination that a single element has
the desired property. The arguments represented by Info are parameters while
the remaining argument is the recursion argument. The functors in italics are
in 7talics to indicate that these can be replaced by ‘real’ functors.

We outline two examples. The first has 0 parameters. We test whether a list
contains lists using nested_list /1—e.g. we want the goal nested_list([a,[b],c])
to succeed.

nested_list([Head|Tail]):-
sublist(Head).

nested_list([Head|Tail]):-
nested_list(Tail).

sublist([]).

sublist([Head|Tail]).

Note that, for any non-empty list, a goal involving nested_list /1 can be
matched using either the first or the second clause. This produces the
possibility that, if the goal is redone then it may once again succeed (if
there is more than one occurrence of a sublist). This may not be what is
wanted. You can test this with the query:



Draft of January 24, 2001 57

?- nested_list([a,[b],c,[],[d],e]) ,write(y),fail.

which produces the output yyyno because the first subgoal succeeds, the
second writes y and the third fails (fail/0 always fails!). Then backtrack-
ing occurs to write/1 which fails.

We then backtrack into nested_list/1 which can be resatisfied. Basically,
the first success had terminated with the subgoal sublist([b]) succeeding
for the goal nested_list([[b],c,[],[d],e]). We can resatisfy this goal using
the second clause which then sets up the goal nested_list([c,[],[d],e])
which will eventually succeed. This will result in another y being written
and, after a while, another attempt to resatisfy nested_list/1 etc.

The point is that you are safe when no goal can be satisfied via different
clauses. We could repair the above using an extralogical feature which is
described in chapter 9 (the cut).

The program for member /2 fits into this pattern when used with mode mem-

ber(+,+).

member (Element,[Element|Tail]).
member(Element,[Head|Tail]):-
member(Element, Tail).

where there is one parameter —wiz the first argument.

In case you are wondering where the element_has_property item has
gone then we can rewrite member/2 to the logically equivalent:

member (Element,[Head|Tail]):-
Element = Head.
member(Element,[Head|Tail]):-
member(Element, Tail).

Now we can see how this definition fits the above schema.

Test All Elements

In this situation we require that the elements of a list all satisfy some property.
Here is the general schema:

test_all_have_property(Info,|]).

test_all_have_property(Info,[Head|Tail]):-
element_has_property(Info,Head),
test_all_have_property(Info,Tail).

Again, the expression Info stands for a specific number of parameters that
carry information needed for the determination that an individual element has
the desired property. The remaining argument is the recursion argument. We
illustrate with a predicate digits/1 for testing that a list of elements consists
of digits only. We assume that we have mode all_digits(+).



58 Interlude

all_digits([]).

all_digits([Head|Tail]):-
member(Head,[0,1,2,3,4,5,6,7,8,9]),
all_digits(Tail).

plus definition of member/2.

This predicate has a declarative reading that a list has the property of consisting
of digits if the first element is a digit and the tail of the list has the property of
consisting of digits.

Note that we can make this fit the schema better if the term [0,1,2,3,4,5,6,7,8,9]
is passed in as a parameter.

Return a Result —Having Processed One Element

Now we turn to the idea that we can return a result. This requires an extra
argument to be carried around —termed the result argument. We will now
outline two further schemata that can be seen as developments of the two
above. The first is intended to work through a list until an element satisfies
some condition whereupon we stop and return some result. The schema is:

return_after_event(Info,[H|T],Result):-
property(Info,H),
result(Info,H, T Result).

return_after_event(Info,[Head|Tail],Ans):-
return_after_event(Info,Tail,Ans).

We will illustrate this with a predicate everything_after_a/2 that takes a list
and returns that part of the list after any occurrence of the element a. We
assume that the mode is mode everything after_a(4,-).

everything after_a([Head|Tail],Result):-
Head = a,
Result = Tail.
everything_after_a([Head|Tail],Ans):-
everything_after_a(Tail,Ans).

Again, there are no parameters. There is one input (also the recursion argu-
ment) and one output argument (also the result argument).

The first clause can be rewritten to:

everything_after_a([a| Tail], Tail).

Again, there is the same problem with this program as with the test for
existence schema. The goal everything_after_a([d,a,s,a,f],X) will suc-
ceed with X=[s,a,f]. On redoing, the goal can be resatisfied with X=[f].
This suggest that we have to be very careful about the meaning of this
predicate.



Draft of January 24, 2001 59

Return a Result —Having Processed All Elements

We now deal with a very common task: taking a list of elements and trans-
forming each element into a new element (this can be seen as a mapping). The
schema for this is:

process_all(Info,[],[]).

process_all(Info,[H1|T1],[H2|T2]):-
process_one(Info,H1,H2),
process_all(Info,T1,T2).

where process_one/1 takes Info and H1 as input and outputs H2

The reading for this is that the result of transforming all the elements in the
empty list is the empty list otherwise, transform the head of the list and then
transform the rest of the list.

The second clause can be rewritten to:

process_all(Info,[H1|T1],Ans):-
process_one(Info,H1,H2),
process_all(Info,T1,T2),
Ans = [H2|T2].

Understanding the way in which this program works is quite difficult.

An example program is one that takes a list of integers and ‘triples’ each of
them. The goal triple([1,12,7],X would result in X=[3,36,21]. We assume
the mode of mode triple(+,-).

triple([],])-
triple([H1|T1],[H2|T2]):-
H2 is 3*HI,
triple(T1,T2).

This has the reading that the two arguments lie in the relation that the head
of the second argument is 3 times that of the head of the first argument and
the tails lie in the same relation. The declarative reading is easier to construct
than exploring the way in which a goal is executed.

6.3.2 Reconstructing Lists

We now elaborate on a feature of the schema for return a result —having pro-
cessed all elements. Looking at the structure of the head of the 2nd clause for
triple/2, we see that the recursive call is structurally simpler than the head
of the clause —wiz triple(T1,T2) is ‘simpler’ than triple([H1|T1],[H2|T2]).
The input variable for the recursive call, a list, is structurally smaller and so is
the output variable.

Many students try to write triple/2 as:



60 Interlude

triple([],])-

triple([H1|T1],T2):-
H2 is 3*H1,
triple(T1,[H2|T2)).

This does not work at all. Looking at the trace output, it is tempting to think
the program is nearly right. Consider this trace output from SICStus Prolog
for the goal triple([1,2],X).

1 Call: triple([1,2],-95) ?
2 Call: _229 is 3*1 7

2 Exit: 3 is 3*1 7

2 Call: triple([2],[3|-95]) ?
3 Call: _520 is 3*2 7

3 Exit: 6 is 3*%2 ?

3 Call: triple([],[6,3]-95]) ?
3 Fail: triple([],[6,3]-95]) ?
3 Redo: 6 is 3*2 ?

3 Fail: _520 is 3*2 ?

2 Fail: triple([2],[3|-95]) ?
2 Redo: 3 is 3*1 ?

2 Fail: 229 is 3*1 ?

| Fail: triple([1,2],.95) ?

NN W & OO R s WD N

At one point, we have a term triple([],[6,3|-95]) which, if only it succeeded,
might provide the result we want (even though it seems to be back to front).
The first observation is that, since its first argument is [] it can only match
the first clause for triple and this has a second argument of [| —so, this call
must fail. The second observation is that each recursive call is called with an
increasingly complex second argument —but, when the call is over, there is no
way in which this complex argument can be passed back to the original query.
For example, we start by trying to show that

triple([1,2],X) is true if triple([2],[3|X]) is true

Even if triple([2],[3|X]) were true, that only means that triple([1,2],X) is
true —where has the 3 gone?

We now describe the original schema for return o result —having processed all
elements and an alternative way.

Building Structure in the Clause Head

This is the same as the previous return a result —having processed all elements.
The following version of predicate triple/2 is described as building structure
in the clause head:

triple([],[])-
triple((H1|T1],[H2|T2]):-
H2 is 3*HI,
triple(T1,T2).



Draft of January 24, 2001 61

We can see this if we think of the output argument as a structure which is to
be constructed out of two parts: a bit we can calculate easily (H2) and another
bit which requires a recursive call to determine its structure (T2). The term
[H2|T2] just shows how the result is constructed out of these bits.

Building Structure in the Clause Body

Now we produce a variant which achieves a similar (but not identical) effect.
We introduce a new kind of variable: the accumulator. Consider the example:

triple([],Y,Y).

triple([H1|T1],X,Y):-
H2 is 3*HI,
triple(T1,[H2|X]Y).

We still have the first argument as the recursion argument but now the third
argument is the result argument and the second argument is the accumulator.
Now, we can see that the recursive call reverse(T,[H|X],Y) is simpler in the
first argument than the head reverse([H|T],X,Y) and more complex in the
second argument (the accumulator).

Note that the third argument is unchanged. If this is so, how can it take a value
at all? Well, the recursion stops once we reach a call with its first argument as
the empty list. This means that we will need to unify the goal with the head of
the first clause. This will result in the second argument (the accumulator) being
unified with the third argument (the result) which, at this point, is an unbound
variable. We establish that this up-to-now unchanged variable is bound to the
term in the accumulator. Following back along the path of recursive calls, we
see that (more or less) the result we want is returned.

The goal triple([1,2,3],[],X) will result in X=[9,6,3]. Note two things: the
expected order is reversed and that the accumulator has to be initialised in the
original call. Sometimes, however, the order is not too important.

Here is the schema:

process_all(Info,[],Acc,Acc).

process_all(Info,[H1|T1],Acc,Ans):-
process_one(Info,H1,H2),
process_all(Info,T1,[H2|Acc],Ans).

where process_one/1 takes Info and H1 as input and outputs H2

6.4 Proof Trees

For an illustration of the difference between building structure in the clause head
and building structure in the clause body, we construct an AND/OR proof tree
for the goal triple([1,2],Y) using the code described previously for the building
structure in the clause head case in figure 6.1 and, in figure 6.2, an AND/OR
proof tree for the goal triple([1,2],[],Y) for the case of building structure in
the clause body.



62 Interlude

The method used to rename the variables is to use an superscript to indicate
different instances of a variable.

There is a slight cheat because the different instances of Y have not been
distinguished. Really, there should be a succession of instances —Y?!,Y?
and so on. They are, however, all established as equivalent (via unifica-
tion).

You will notice that they are extremely similar in shape. The difference lies in
the order of the construction of the variable bindings. Note that, in figure 6.1,
the binding for Y is achieved after computing T2' and the binding for T2! is
achieved after computing T22 which is done through the clause triple([],[])-
In the other case, in figure 6.2, the binding for Y is achieved through the clause
triple([],L,L).

The main point is that one computation leaves incomplete structure around
(which is eventually completed) while the other does not do so.

triple([1,2], H21|T2 =[3,6])
=[H1! \T1
H11—1
11_
is 3*H11 triple(T1* T2 T2!= Hg?\m? (=[6])
[H12|T1%]=
H21:3 H12_2
T12=
o H2? is 3*H12 triple(T12 T22
H22=6 ‘ /22
m| triple(]]
O

Figure 6.1: The Proof Tree for triple([1,2],Y)



Draft of January 24, 2001

63

H2'=3

Acc?= H22|Acc

a triple([],Acc?,Y)

Y=Acc?(=[6,3])

triple([1,2],[],Y) [H11T11]=[1,2]
Hil=1
Til= [2}
Acc = [H12|T12)=
21 is 3*H1! triple(T11,[H2! Acc
53 b | H12 2
T12=
Acc?= Hzl\Acc =[H21]=[3])
o is 3*H12 triple(T12,[H22|Acc?],
H22=6 T22=

~[6.,3))

Figure 6.2: The Proof Tree for triple([1,2],[],Y)

6.5 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be aware of some standard techniques for processing
lists and be able to identify programs that use these techniques.

Exercise 6.1 We will now work on the four basic list schemata that we have

suggested:
1. The Schema test for existence
2. The Schema test all elements
3. The Schema return a result —having processed one element
4. The Schema return a result —having processed all elements
1. The Schema test for existence

(a) Define a predicate an_integer/1 which checks to see if a list has at

least one integer in it. Use the built-in predicate integer/1.

?- an_integer([a,fred,5,X]).
yes

(b) Define a predicate has_embedded_lists/1 which checks to see if a
list is an element which is itself a list. Assume that the input list
contains no variables and that the empty list is not a member of this

input list.
?- has_embedded_lists([a,[b],c,d,e]).

yes



64

Interlude

2. The Schema test all elements

(a) Define a predicate all_integers/1 that succeeds if and only if the
(one) argument contains a list of integers.

?- all_integers([1,fred,23]).
no

efine a predicate no_consonants/1 which checks to see if a list o

b) D dicat ts/1 which checks t if a list
lower-case alphabetic characters has no consonants in it. Make up
your own predicate to check whether an atom is a consonant.

?- no_consonants(|[a,e,i,t]).
no
?- no_consonants([a,e,e,if).
yes

3. The Schema return a result —having processed one element

(a) Write a predicate nth/3 which takes two inputs: the first a positive
integer and the second a list. The output (initially, an uninstantiated
variable) will be the element that occurs at the nth position in the list.
So

?- nth(3,[this,is,[an,embedded,list]],X).
X=[an,embedded,list]

(b) Define a predicate next/3 which again takes two inputs: a possible
member of a list and the list. The output should be the element of
the list that immediately follows the named list element (if it exists
—if not, the predicate should fail).

?- next(a,[b,r,a,m,b,lef,X).
X=m

(¢c) define del_1st/3 which takes a possible element of a list and a list as
inputs and “returns” the list with the first occurence of the named
element removed. (If the named element is not in the list then the
predicate is to fail)

?- del_1st(a,[b,a,n,a,n,a],X).
X=[b,n,a,n,a]

This one can also be solved using an accumulator with the help of
append/3.

4. The Schema return a result —having processed all elements All these can
be done in two ways. One uses the idea of building structure in the clause
head and the other building structure in the clause body.

Remember that the latter requires one more argument than the former —
the accumulator. As this usually needs initialising it is customary to do
this by such as:



Draft of January 24, 2001 65

foo(a,X):-
foo(a,[],X).

Do each problem both ways.

(a) Define nple/3 to take two inputs —an integer and a list of integers.
The result is to be a list of integers formed by multiplying each integer
in the list by the input integer.

?- nple(5,[1,2,3],X).
X=[5,10,15]

(b) Define del_all/3 which takes a possible element of a list and a list as
inputs and returns the list with all occurences of the named element
removed. (If the named element is not in the list then the result is,
of course, the whole list with no deletions)

?- del_all(a,[b,a,n,a,n,a],X).
X=[b,n,n/

(¢) Define sum/2 to take a list of integers as input and return the output
as their sum. This one s slightly unusual with regard to the base case.

?- sum([1,32,3],X).
X=36



Chapter 7

Control and Negation

We introduce a number of facilities for controlling the execution
of Prolog.

We outline the problem of trying to represent logical negation
and one solution.

We introduce some more programming techniques.

7.1 Some Useful Predicates for Control

true/0

Always succeeds.

father(jim,fred).

is logically equivalent to
father(jim,fred):-

true.

That is, any unit clause is equivalent to a non-unit clause with a single subgoal
true in the body.

fail/0
Always fails.

lives_forever(X):-
fail.

is intended to mean that any attempt to solve the goal lives_forever(X) will
fail.



Draft of January 24, 2001 67

repeat/0
If it is asked to Redo then it will keep on succeeding.

test:-
repeat,
write(hello),
fail.

The goal test produces the output:
hellohellohellohellohellohellohellohellohello...
repeat /0 behaves as if it were defined in Prolog as:

repeat.
repeat:-
repeat.

call/1

The goal call(X) will call the interpreter as if the system were given the goal
X. Therefore X must be bound to a legal Prolog goal.

?7- call(write(hello)).

hello
yes

To handle a query which has multiple goals then:
?- call((write(hello),nl)).

hello
yes

Note that we cannot write call(write(hello),nl) as this would be taken to
be a usage of call/2 with the first argument write(hello) and the second
argument nl) —and most systems do not have a call/2.

Note that call/1 is unusual in that its argument must be a legitimate Prolog
goal. Also note that call(X) will be legal if and only if X is bound to a legal
goal.

7.2 The Problem of Negation

To maintain the connection with predicate logic, we would like to be able to
represent the negation of a statement. This, however, proves to be problematic.

Consider



68 Interlude

man(jim).
man(fred).

7- man(bert).

no

To say that man(bert) is not true we have to assume that we known all that
there is to know about man/1. The alternative is to say the the no indicates
don’t know and this is not a possible truth value!

Turning to Prolog, If we try to solve a goal for which there is no clause (as
in the case above) then we assume that we have provided Prolog with all
the necessary data to solve the problem. This is known as the Closed World
Assumption.

This enables us to stick to the desirable property that a goal can have only two
outcomes.

\+/1

This strangely named predicate is Prolog’s equivalent to the not (often written
as — which stands for negation) of predicate logic. It is not named not/1
because we it turns out that we cannot easily implement classical negation in
Prolog.

The predicate \+/1 takes a Prolog goal as its argument. For example:

7- \+( man(jim) ).

will succeed if man(jim) fails and will fail if man(jim) succeeds.

7.2.1 Negation as Failure

Negation as failure is the term used to describe how we use the closed world as-
sumption to implement a form of negation in Prolog. We now give an example
which uses a rule to define women in terms of them not being men. Logically,
V x € people ( = man(x) = woman(x)).

man (jim).
man(fred).
woman(X):-

\+( man(X) ).
?- woman(jim).
no
The strategy is: to solve the goal woman(jim) try solving man(jim). This

succeeds —therefore woman(jim) fails. Similarly, woman(jane) succeeds.
But there is a problem. Consider:



Draft of January 24, 2001 69

?7- woman(X).

It succeeds if man(X) fails —but man(X) succeeds with X bound to jim. So
woman(X) fails and, because it fails, X cannot be bound to anything.

We can read ?- woman(X) as a query “is there a woman?” and this
query failed. Yet we know that woman(jane) succeeds. Therefore, this
form of negation is not at all like logical negation.

The problem can be highlighted using predicate logic. The query woman (X)
is interpreted as

3 x = man(x)

which, logically, is equivalent to
-V x man(x)

Now Prolog solves this goal in a manner roughly equivalent to
— 3 x man(x)

The only time we get something like the desired result if there is no exis-
tentially quantified variable in the goal. That is, whenever \+/1 is used
then make sure that its argument is bound at the time it is called.

Also, note that \+(\+(man(X))) is not identical to man(X) since the former
will succeed with X unbound while the latter will succeed with X bound, in the
first instance, to jim.

This is the basis of a well known Prolog programming ‘trick’ —i.e. it is a
technique which is frowned upon by purists. The idea is to test whether, for
example, two terms will unify without the effect of binding any variables.
The goal \+(\+(X=2)) will succeed without binding X to 2. The meaning
is roughly X would unify with 2.

7.2.2 Using Negation in Case Selection

We can use \+/1 to define relations more carefully than previously. To illus-
trate, consider

parity(X,odd):-
odd(X).
parity(X,even).

together with the set of facts defining odd /1.

The goal parity(7,X) is intended to succeed using the first clause. Suppose
that some later goal fails forcing backtracking to take place in such a way that
we try to redo parity(7,X). This goal unifies with the rest of the second clause!
This is not desirable behaviour. We can fix this using \+/1.

parity(X,odd):-
odd(X).
parity(X,even):-
\+(odd(X)).



70 Interlude

Thus \+/1 provides extra expressivity as we do not need a set of facts to define
even/1.

If we go back to a previous example found in section 6.3.1 then we can
now resolve the problem about how to deal with unwanted backtracking
in programs like:

nested_list([Head|Tail]):-
sublist(Head).

nested_list([Head|Tail]):-
nested_list(Tail).

sublist([]).

sublist ([Head|Tail]).

The problem is caused by the fact that a goal like nested list([a,[b],c,[d]])
will succeed once and then, on redoing, will succeed once more. This hap-
pens because the goal unifies with the heads of both clauses —i.e. with
nested_list([Head|Tail]) (the heads are the same). We can now stop
this with the aid of \+/1:

nested_list([Head|Tail]):-
sublist(Head).

nested_list([Head|Tail]):-
\+(sublist(Head)),
nested_list(Tail).

sublist([]).

sublist([Head|Tail]).

Note that this is at the price of often solving the identical subgoal twice
—the repeated goal is sublist(Head). Note also that there is never more
than one solution for sublist(X).

Finally, we can define \+/1 using call/1 and the cut (!/0:

\+(X):-
call(X),
!

foil,
\+(X).

This is a definition which essentially states that “if X, interpreted as a
goal, succeeds then \+(X) fails. If the goal X fails, then \+(X) succeeds.
To see this is the case, you have to know the effect of the cut — fail
combination ((!,fail). See later on in this chapter for more details of this.

7.3 Some General Program Schemata

We have already introduced some list processing schemata. Now we discuss
some further, very general, program schemata.

Generate — Test

One of the most common techniques in Prolog is to use the backtracking in
first generating a possible solution, then testing the possible solution to see if it
is acceptable. If not, backtracking takes place so that another possible solution
can be generated.



Draft of January 24, 2001 71

generate_and_test(Info,X):-

generate(Info,X),
test(Info,X),

In the above schema, the ellipsis (...) indicates a number of subgoals (0 or
more).

We can distinguish two kinds of generator: a finite generator and an infinite
generator. We will illustrate with two different versions of a non-negative integer
generator which we will call int/1 —we cannot name this integer/1 since
this is already defined (as a built-in predicate) and it only works with mode
integer(+) and we want int/1 to work with mode int(-).

Finite and Infinite Generators

We define a predicate integer_with_two_digit_square/1 to produce a posi-
tive integer that has a square which is greater than or equal to 10 and less than
100.

integer_with_two_digit_square(X):-
int(X),
test_square(X).

test_square(X):-
Y is X*X,
Y >= 10,
Y < 100.

Here is the definition of int/1 which is a finite generator —because there are
only a finite number of unit clauses (containing no variables) used to define
int/1.

The goal integer_with_two_digit_square(X) eventually fails because the gen-
erator runs out of potential solutions. Now we define a version of int/1 which
is an infinite generator (verifying this is left as an ‘exercise for the reader’!).

int(1).

int(N):-
int(N1),
Nis N1 +1.



72 Interlude

On backtracking, this will generate a new solution for integer_with_two_digit_square(X)
until we test 10. From then on, we will keep generating with int/1 and failing

with test_square/1. We are trapped in a generate—test cycle with no way

out.

The usual way out is to ensure that once we have found the solution we
want then we commit ourselves to that solution and forbid backtracking
from ever seeking another solution. Again, the usual solution is to place a
cut (1/0) after the test. This results in:

integer_with_two_digit_square(X):-
int(X),
test_square(X),!.

and the example demonstrates the (usually necessary) fix to stop a pro-
gram using the generate — test schema from overgenerating. However, our
solution now provides for only one solution to be generated!

Test — Process

Now we look at another fundamental schema. The idea with test — process is
to guarantee that some inputs will only be ‘processed’ if the input passes a test.

test_process(Info,X,Y):-
test(Info,X),
process(Info, X,Y).

where we assume that the Info is 0 or more arguments which are all input argu-
ments, the last but one argument is an input argument and the last argument
is a output argument. Although this gives a very procedural view it is often
possible to give a declarative reading.

We usually want to make sure that

1. test does not have alternative ways of confirming that the generated
element is ok

2. process does not have alternative ways of ‘processing’ the input

In short, we often want only one way of finding an output.

We have already met a program that satisfies this schema —one for parity/2
(which is slightly rewritten here).

parity(X,Y):-
odd(X),
Y=odd.
parity(X,Y).
\+(0dd(X)),
Y=even.

plus set of facts defining odd /1



Draft of January 24, 2001 73

This example illustrates that if the input argument is an integer then we see
two cases: either the integer is even or it is odd. There is no third case. Nor
can any integer be both even and odd.

As in the above example, the usage of test — process is closely coupled with
the idea of writing all the clauses for a predicate in this form —each clause is
designed to handle one ‘class’ of input. The whole scheme falls down if we do
not design the ‘classes’ of input to be disjoint —i.e. no input falls into more
than one category. We also require that each input falls in at least one category
—to summarise, each input falls in one and only one class.

We can show a previous example which does not properly use the test — process
schema (for good reasons). Modifying the code using this schema results in a
different and useful program.

member (Element,[Element|Tail]).
member(Element,[Head|Tail]):-
member(Element, Tail).

Now member/2 can be used as a generator if the first argument is a variable
and its second argument is a list —as in the goal member(X,[a,b,c,d,e,f]. The
first solution for X is the first element of the list [a,b,c,d,e,f]. On redoing, we
get, in succession, X bound to the different elements in the list.

We now rewrite using the test — process schema. We also rename the predicate
to the standard name of memberchk/2 (this is its usual name in libraries of
Prolog code).

memberchk(Element,[Head|Tail]):-
Element = Head.

memberchk(Element,[Head|Tail]):-
\+(Element = Head),
memberchk(Element, Tail).

This will no longer generate alternative solutions on backtracking for the goal
memberchk(X,[a,b,c,d,e,f]) (because there are no alternative ways of resat-
isfying it). If the mode of use is mode memberchk(+,+) then the meaning
is that we check that the first argument is an element of the list (which is the
second argument).

Failure-Driven Loop

We now introduce an extremely procedural programming technique for simu-
lating a kind of iteration. The idea is deliberately generate a term and then
fail. This suggests the useless schema

failure_driven_loop(Info):-
generate(Info,Term),
fail.

failure_driven_loop(Info).



74 Interlude

Provided that the gemerator eventually fails any version of this schema will
always succeed —i.e. it will be equivalent to true.

We now use side effecting predicates to do something useful with the generated
term.

A side-effecting predicate is one that is (often) logically equivalent to true but
also does something else that is non-logical. For example, write/1 and nl/0
have the side-effect of writing material onto the terminal screen (usually). Also,
consult/1 and reconsult/1 have the side-effect of changing the program. The
predicate read/1 has the side-effect of destructively reading input from the
terminal (or whatever).

To illustrate the problem: if we query Prolog with the goal (write(hello),fail)
then write/1 will be used to write hello on (we assume) the terminal screen
and the call to fail/0 will fail. Now, logically, we have a statement with the
truth value of false —so we have proved that the goal cannot succeed and
therefore there should be no message (hello) on the screen.

Here is another example: if we try the goal (read(X),fail) then read/1 will
be used to read some input from the user (we assume) and the call to fail/0
will fail. Again, we have a statement with the truth value of false —so the
input should still be available for consideration. Yet we taken input from the
keyboard (or somewhere) and we do not put that input back so that it can be
reconsidered. The input has been consumed.

We can see that any predicate succeeds generating an effect that cannot be
undone on backtracking must be a side-effecting predicate.

The complete failure-driven loop schema can be taken as:

failure_driven_loop(Info):-
generate(Info,Term),
side_effect(Term),
fail.

failure_driven_loop(Info).

This can be elaborated by having several side-effecting predicates, replacing the
fail/0 with some other predicate that fails and so on.

We illustrate with a simple example. We will use int/1 as a finite generator
and then print out the valid arguments for this relation on the screen.

print_int:-
int(X),
write(X),nl,
fail.
print_int.

This programming technique can be very useful. In the early days, it was
overused because it was space-efficient.



Draft of January 24, 2001 75

Some Practical Problems

We now come to some needs that cannot easily be satisfied and still retain a
clean declarative reading. We look at three problems that are interconnected.

Commit

We have outlined the use of test — process to do case analysis but it was
necessary to have one clause for each case. If we have a goal which can be
satisfied via two different clauses then, on redoing, the same goal may generate
a different solution.

In reality, this situation can arise quite often —i.e. the tests we do on the input
do not divide the input into non-overlapping classes. Essentially, we have two
problems. We often want to make sure that only one clause is legitimate —once
it has been determined that the input passes some test. We think of this as
a statement of commitment to the solution(s) derived through ‘processing’ the
input.

test_process(Info,X,Y):-
test(Info,X),

commit,
process(Info,XY).

When we backtrack and try to find another way of satisfying some program
that makes use of the test — process schema then we first try to find another
way of satisfying the process part. If that fails, then we try to resatisfy the test
part. We do not want this to happen.

Then, assuming that we cannot resatisfy the test part, we try to resatisfy the
goal making use of this program by trying different clauses.

Therefore there are two senses in which we may want to be ‘committed’: we
want to commit to using a single clause and we want to commit to the result
of a test —we do not want to run the risk that the test can be successful (with
the same input) twice.

Satisfy Once Only

Sometimes, we would like a way of stopping Prolog looking for other solutions.
That is, we want some predicate to have only one solution (if it has one at all).
This is the requirement that the predicate be determinate.

Naturally, predicates which do not have this property are indeterminate. This
is a desirable property sometimes —e.g. the generate — test schema makes
use of the gemerator being indeterminate. On the other hand, it can cause
major problems when a program has many predicates which are unintentionally
indeterminate. Our aim is to make sure that those predicates which should be
determinate actually are determinate.

We have already met an example of a predicate (memberchk/2) that might
have been written with this situation in mind. We recall that member/2
used with mode member(-,4+) behaves as a generator. Perhaps it is worth
pointing out that member /2 with mode member(+,4) is also, under certain



76 Interlude

circumstances, resatisfiable —precisely when there are repetitions of the sought
element in the list which constitutes the second argument.

Of course, if we are dealing with lists—as—sets, we should have arranged it so
that the second argument does not have repeated elements. Anyway, it is very
desirable to have a determinate version of member /2 available.

memberchk(X,[X|Y]):-
make_determinate.

memberchk(X,[Y|Z]):-
memberchk(X,Z).

Note this isn’t quite what we had before. Previously, we arranged for mem-
berchk/2 to be determinate with the help of \+/1. Stating our requirement
as above, we seem to be going outside of logic in order to tell the Prolog inter-
preter that, once we have found the element sought, we never want to consider
this predicate as resatisfiable.

Fail Goal Now

We often search for the solution to a goal using several clauses for some pred-
icate. For example, we might have a social security calculation which tries to
assign how much money to give a claimant. Here is a fragment of program:

calculate_benefit(Claim_Number,Nationality,Age,Other_Details):-
Nationality = british,
calculate_british_entitlement(Age,Other_Details).

calculate_benefit(Claim_Number,Nationality,Age,Other_Details):-
Nationality = martian,
give_up.

calculate_benefit(Claim_Number,Nationality,Age,Other_Details):-
Nationality = french,
calculate_french_entitlement (Age,Other_Details).

If we reach the situation where we realise that the whole search is doomed
then we may want to say something informally like ‘stop this line of approach
to the solution and any other corresponding line’. In the above, if we find
we are trying to assign benefit to a martian then we make the decision that
calculate_benefit /4 should fail and therefore that there is no point in trying
to use any remaining clauses to find a solution.

In practice, we need to make use of this kind of action. Again, we are potentially
asking Prolog to behave abnormally.

In fact, in all these situations, we are asking Prolog to behave in a non-standard
way. Whatever the complications, it is hard top make do without ways to:

o Commit
o Make Determinate

o Fail Goal Now



Draft of January 24, 2001

7.4 What You Should Be Able To Do

You should be able to make use of the ‘predicates’ true/0,
fail/0, repeat/0 and call/1.

You should be able to describe the difference between the open
and closed world assumptions.

You should be able to describe the difference between classical
negation and negation as failure.

You should be able to distinguish side-effecting from non side-
effecting predicates.

You should be able to use Prolog negation to achieve the
effect of case selection.

You should be able to use the techniques of generate — test,
test — process and failure-driven loop. You should also be
aware of the needs for the techniques commit — process,
satisfy—only—once and fail-goal-now.

77



Chapter 8

Parsing in Prolog

We introduce the facilities that Prolog provides for parsing.
This is done through the idea of a parse tree as applied to a
simple model for the construction of English sentences.

Three ways of parsing Prolog are described: the first illustrates
the ideas, the second is more efficient and the third provides
an easy way of coding a parser via Grammar Rules.

We then explain how to extract the parse tree and show how
to extend a parser using arbitrary Prolog code.

Later on in the course, you will be involved in trying to face up to the problem
of parsing ordinary english language sentences. For this lecture, we shall also be
interested in parsing sentences but we will look at the very simplest examples.

First, what do we want the parser to do? We would like to know that a sentence
is correct according to the (recognised) laws of english grammar.

The ball runs fast

is syntactically correct while

The man goes pub

”

is not as the verb “go” (usually) does not take a direct object.

Secondly, we may want to build up some structure which describes the sentence
—so0 it would be worth returning, as a result of the parse, an expression which
represents the syntactic structure of the successfully parsed sentence.

Of course, we are not going to try to extract the meaning of the sentence so
we will not consider attempting to build any semantic structures.

8.1 Simple English Syntax

The components of this simple syntax will be such categories as sentences,
nouns, verbs etc. Here is a (top down) description:



Draft of January 24, 2001
Unit: sentence
Constructed from:

Unit: noun phrase
Constructed from:

Unit: verb phrase
Constructed from:

Unit: determiner
Examples:

Unit: noun
Examples:

Unit verb:
Examples:

8.2 The Parse Tree

79

noun phrase followed by a verb phrase

proper noun or determiner followed by a noun

verb or verb followed by noun phrase

a, the

man, cake

ate

Figure 8.1 shows the parse tree for the sentence:

the man ate the cake

with some common abbreviations in brackets. We must remember that many

sentence
(s)
nounphrase verbphrase
(np) (vp)
determiner noun orb nounphrase
(det) v (np)

b man + determiner noun

the ate (det)
the cake

Figure 8.1: A Parse Tree

sentences are ambiguous —i.e. they result in different parse trees.



80 Interlude

8.3 First Attempt at Parsing

We assume that we will parse sentences converted to list format. That
is, the sentence “the man ate the cake” will be represented by the list
[the,man,ate,the,cake].

We use append/3 to glue two lists together. The idea is that append/3
returns the result of gluing takes input as lists in the first and second argument
positions and returns the result in the third position.

sentence(S):-
append(NP,VP,S),
noun_phrase(NP),
verb_phrase(VP).

noun_phrase(NP):-
append(Det,Noun,NP),
determiner(Det),
noun(Noun).

verb_phrase(VP):-
append(Verb,NP,VP),
verb(Verb),
noun_phrase(NP).

determiner([a]).
determiner([the]).
noun([man]).
noun([cake]).
verb([ate]).

Here is what happens to the query:

?- sentence([the,man,ate,the cake]).

append/3 succeeds with NP=[], VP=[the,man,ate,the,cake]
noun_phrase/1 fails

append/3 succeeds with NP=[the], VP=[man,ate,the,cake]
noun_phrase/1 fails

append /3 succeeds with NP=[the,man], VP=[ate,the,cake]
noun_phrase/1 succeeds

verb_phrase/1 succeeds

This is all very well but the process of parsing with this method is heavily non
deterministic.

Also, it suffers from not being a very flexible way of expressing some situations.
For example, the problem of adjectives:

the quick fox



Draft of January 24, 2001 81

is also a noun phrase.

We might try to parse this kind of noun phrase with the extra clause:

noun_phrase(NP):-
append(Det,Bit,NP),
determiner(Det),
append(Adj,Noun,Bit),
adjective(Adj),
noun(Noun).

A little ungainly.

8.4 A Second Approach

We now try an approach which is less non-deterministic. We will start by
looking at:

sentence(In,Out)

The idea is that sentence/2 takes in a list of words as input, finds a legal
sentence and returns a result consisting of the input list minus all the words
that formed the legal sentence.

We can define it:

sentence(S,S0):-
noun_phrase(S,S1),
verb_phrase(S1,50).

Here is a rough semantics for sentence/2.

A sentence can be found at the front of a list of words if there is a
noun phrase at the front of the list and a verb phrase immediately
following.

This declarative reading should help to bridge the gap between what we want
to be a sentence and the procedure for finding a sentence.

Here is the rest of the parser:

noun_phrase(NP,NP0):-
determiner(NP,NP1),
noun(NP1,NPO).
verb_phrase(VP,VP0):-
verb(VP,VP1),
noun_phrase(VP1,VPO0).
determiner([a|Rest],Rest).
determiner([the|Rest],Rest).
noun([man|Rest],Rest).
noun([cake|Rest],Rest).
verb([ate|Rest],Rest).



82

As you can see, there is a remarkable sameness about each rule which, once you
see what is going on, is fairly tedious to type in every time. So we turn to a

facility that is built in to Prolog.

8.5 Prolog Grammar Rules

Prolog, as a convenience, will do most of the tedious work for you. What

follows, is the way you can take advantage of Prolog.

This is how we can define the simple grammar which is accepted ‘as is’ by

Prolog.
sentence ->
noun_phrase -->
verb_phrase -—=>
determiner -=>
determiner -->
noun -=>
noun -—>
verb -->

noun_phrase, verb_phrase.
determiner, noun.
verb, noun_phrase.

It is very easy to extend if we want to include adjectives.

noun_phrase  -->
adjectives -—>
adjectives -—=>
adjective -—>

This formulation is sometimes known as a Definite Clause Grammar (DCG).

We might later think about the ordering of these rules and whether they really
capture the way we use adjectives in general conversation but not now.

Essentially, the Prolog Grammar Rule formulation is syntactic sugaring. This

determiner, adjectives, noun.
adjective.

adjective, adjectives.
[young].

means that Prolog enables you to write in:

sentence -—>

and Prolog turns this into:

sentence(S,S0):-

noun_phrase, verb_phrase.

noun_phrase(S,S1),
verb_phrase(S1,S0).

and

adjective -—>

nto

[young].



Draft of January 24, 2001 83

adjective(A,A0):-
'C’(A,young,A0).

where C’/3 is a built in Prolog Predicate which is defined as if:

'C’([H|T],H,T).

8.6 To Use the Grammar Rules

Set a goal of the form

sentence([the,man,ate,a,cake],[])

and not as

sentence.

or

sentence([the,man,ate,a,cake|)

8.7 How to Extract a Parse Tree

We can add an extra argument which can be used to return a result.

sentence([[np,NP],[vp,VP]]) -—> noun_phrase(NP), verb_phrase(VP).
noun_phrase([[det,Det],[noun,Noun]]) --> determiner(Det), noun(Noun).
determiner(the) -=> [the].

and so on

What we have done above is declare predicates sentence/3, noun_phrase/3,
verb_phrase/3, determiner/3 and so on. The explicit argument is the first
and the two others are added when the clause is read in by Prolog. Basically,
Prolog expands a grammar rule with n arguments into a corresponding clause
with n+2 arguments.

So what structure is returned from solving the goal:

sentence(Structure,[the,man,ate,a,cake],[])

The result is:

[[np,[[det,the],[noun,manl]]],[vp,]...

Not too easy to read!



84 Interlude

We can improve on this representation if we are allowed to use Prolog
terms as arguments. For example, in foo(happy(fred),12) the term
happy(fred) is one of the arguments of foo/2. Such a term is known
as a compound term. We discuss this at greater length in chapter 10.

With the help of compound terms, we could tidy up our representation of
sentence structure to something akin to:

sentence([np([det(the),noun(man)]),vp(]...

8.8 Adding Arbitrary Prolog Goals

Grammar rules are simply expanded to Prolog goals. We can also insert arbi-
trary Prolog subgoals on the right hand side of a grammar rule but we must
tell Prolog that we do not want them expanded. This is done with the help
of braces —i.e. { }. For example, here is a grammar rule which parses a single
character input as an ASCII code and succeeds if the character represents a
digit. It also returns the digit found.

digit(D) -->
[X],
{ X >=148,
X =< 57,
D is X-48 }.

The grammar rule looks for a character at the head of a list of input characters
and succeeds if the Prolog subgoals

{ X >=48,

X =< 57,
D is X-48 }.

succeed. Note that we assume we are working with ASCII codes for the char-
acters and that the ASCII code for “0” is 48 and for “9” is 57. Also note the
strange way of signifying “equal to or less than” as “=<”.

8.9 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to write a simple parser for a small subset
of English.

You should be able to use Prolog's grammar rules to define
the grammar of a simple language.

You should be able to describe how Prolog rewrites the gram-
mar rules into ‘standard’ Prolog.

You should be able to use the grammar rules to extract a parse
tree.

Exercise 8.1 Here is a Definite Clause Grammar:



Draft of January 24, 2001 85
s -—> np,uvp.
np -—> det,noun.
np -—> det,adjs,noun.
up -—=> verb,np.
det -—> [a].
det -=> [the].
adjs -—> ady.
adjs -—=> adyj,adjs.
adj -—> [clever].
noun -=> [boy].
noun -—> [sweet].
verb -=> [buys].

. Give some examples of sentences that this grammar could parse.

. Modify this DCG so that the parse returns information about the structure

of the sentence.

. Suppose that the DCG is given a sentence to parse containing a misspelled
word -say “boy”. Modify the DCG so that the information about the struc-
ture of the sentence will include some information about any unrecognised

component.

. Suppose now that the DCG is given a sentence to parse missing a word
or two. Modify the DCG so that it will identify the missing component.

The last two parts of this exercise are hard —it is essentially the problem of
robust parsing. We try to do the best we can to identify gaps, misspellings and
redundant information.



Chapter 9

Modifying the Search Space

We describe solutions to various problems of control raised in
chapter 7.

We detail other useful Prolog built-in predicates that are non-
logical.

9.1 A Special Control Predicate

We now present a solution to the practical problems posed in chapter 7 about
how to control Prolog’s search strategy. We summarised these issues as ones
of:

e Commit
e Make Determinate

e Fail Goal Now

In each of these cases the solution is to make use of a built-in predicate which
always succeeds —but with a very unpleasant side-effect. This notorious pred-
icate is known as the cut and written !/0.

The reason why cut (!/0) is so unpleasant are that it effects Prolog’s search
tree. Consequently, by adding a cut, the program’s meaning may change rad-
ically. We sometimes say that a cut that does this is a red cut. On the other
hand, the placing of a cut may not change the intended meaning but simply
junk a part of the search tree where it is known that there is no legal solution.
Such a cut is termed a green cut. The Art of Prolog by Sterling and Shapiro
has a nice section on the cut [Sterling & Shapiro, 1986].

We now go over how to solve the three control problems.

9.1.1 Commit

Assume we want to make Social Security payments. That is, pay(X,Y) means
“pay the sum X to Y”. Assume that we also have this code fragment.

pay(X,Y):
british(X),
entitled(X,Details,Y).



Draft of January 24, 2001 87

pay(X,Y):-
european(X),
entitled(X,Details,Y).

In each clause, the first subgoal in the body is acting as a test in a program
using the test — process schema. We also assume that, for some reason, we have
not been able to apply the disjoint (and exhaustive) case analysis technique.

Consequently, if we have successfully checked that a person is British and, for
some reason, the subgoal entitled(X,Details,Y) fails (or some later computa-
tion forces backtracking back to redo the call to pay/2 that we are considering)
then there may be no point in

e checking if they are “european” (assuming that there are no regulations
under which British people can qualify for payment as being European
when they fail to qualify as British citizens).

e checking to see if there is more than one entry for the person in some
database accessed by british/1.

In the immediate situation, we want to be committed to telling Prolog not to
redo the british/1 subgoal and not to consider other clauses for pay/2 that
might contribute an alternative.

The truth is, of course, that we may want these two consequences whether or
not entitled/3 fails.

If this is so, then we insert a cut as shown below and highlighted by a .

pay(X,Y):-
british(X),
entitled(X,Details,Y).
pay(X,Y):-

european(X),

1

entitled(X,Details,Y).

We want to be committed to the choice for the pay/2 predicate. We can see
the use of !/0 as a guard that has two effects.

e On backtracking through the list of subgoals: a cut can be thought of
as indicating that all attempts to redo a subgoal to the left of the cut
results in the subgoal immediately failing. We sometimes say that any
unifications taking place prior to the cut have been frozen and cannot be
remade.

e On backtracking into the predicate once the call had exited: if one of
the clauses defining the predicate had previously contained a cut that
had been executed then no other clauses for that predicate may be used
to resatisfy the goal being redone. We sometimes say that, once a cut is
executed, later clauses have been chopped out of the search space.



88 Interlude

Note that, with the cut in the position it is above, it is still possible that
entitled/3 could be resatisfied. We have to guarantee that we have made
entitled/3 determinate before we can guarantee that pay/2 is determinate.
We have to do some more on this issue.

Also note that the effect of cut (!/0) prunes the search space only until the
parent goal of the cut fails. If we leave the Fail port of pay/2 and some
previous goal leads to another call to pay/2 then the cut (!/0) has no effect
until it is executed.

We also have to remember that cut (!/0) has two distinct effects: backtracking
cannot redo any subgoals to the left of the cut and clauses in the program
database for the same predicate that are textually after the current clause are
unreachable. See figure 9.1 for a graphic representation of these effects on a
rather artificial program.

a(X):-  b(X),c(X).
b(1).

b(4).

c(X)=  d(X),Le(X).
c(X)-  f(X).
dX)-  g(X).
d(X):-  h(X).
e(3).

(4).

g(2).

h(1).

W

£(X)

Figure 9.1: The Effect of cut on the AND/OR Tree

9.1.2 Make Determinate

We now go onto the key problem of making our programs determinate. That
is, if they succeed, then they succeed precisely once unless we really want them
to generate alternative solutions. Many programmers find taming backtracking
to be a major problem.



Draft of January 24, 2001 89

Consider the problem raised by this program:

sum(1,1).

sum(N,Ans):-
NewN is N-1,
sum(NewN,Ansl),
Ans is Ans1+4N.

together with the goal

?7- sum(2,X).

The meaning of sum/2 is that, for the first argument N (a positive integer),
there is some integer, the second argument, which is the sum of the first N
positive integers.

We know that, for the mode sum(+,-), there is only one such result. There-
fore, if we try to redo a goal such as sum(2,Ans) it should fail. We could test
that this is so with:

?- sum(2,Ans),write(Ans),nl,fail.
We would like the result:

3

no

Alas, here is the result using Edinburgh Prolog.
(a very very long wait)

We have a runaway recursion. Figure 9.2 shows the execution tree for the goal
sum(2,Ans). Now look at the goal:

?7- sum(2,X),fail.

and the resulting fragment of the execution tree which is shown in figure 9.3.
Prolog goes into a non terminating computation. We want to make sure that,
having found a solution, Prolog never looks for another solution via Redoing
the goal. Figure 9.4 shows the consequence when the cut (!/0) is used.

sum(1,1):-

1.

NewN is N-1,
sum(NewN,Ansl),
Ans is Ans1+N.

sum(N,Ans):-



90 Interlude

sum(2,Ans!)

sum(1,1) NewN! is 2-1 sum(NewN! Ans1!)  Ans! is Ans1!+42

Ans'=3
O

NewN'!=1

]

sum(1,1)

Ansl'=1

Figure 9.2: The First Solution to the Goal sum(2,Ans)

9.1.3 Fail Goal Now

We are trying to solve the problem that arises when we realise, in the middle
of satisfying subgoals for some goal, that the goal will never succeed —even if
we try other clauses which have heads that unify with the goal.

Here is a way of defining woman/1 in terms of man/1 where we base the idea
that, in trying to establish that someone is a “woman”, we prove that they are
actually a “man” and there is therefore no point in trying to find some other
proof that this person is a woman.

woman(X):-
man(X),
fail.
woman(X).

Putting it a slightly different way, to solve for woman(jim) we try man(jim).
If that succeeds then we want to abandon the attempt to prove woman (jim)
without trying any other clauses for woman/1.

Note that the use of the cut (!/0) stops any attempt to resatisfy man/1 once
backtracking is forced through fail/1 failing. Note also that the second clause
for woman /1 will not be used after the cut—fail combination has been met.

We call this use of cut in conjunction with fail/0 the cut—fail technique.

The above code for woman/1 is a special case of Prolog’s implementation of



Draft of January 24, 2001 91

sum(2,Ans!)

sum(1,1) NewN! is 2-1 sum(NewN! Ans1!)  Ans! is Ans1!42

Ans! #3
]

NewN'!=1
| | m}

sum(1,1) NewN?2 is N2-1 sum(NewN?2 Ans1?) Ans1! is Ans12+NewN?!

Ans1! #£1 NewN2=0

]

Figure 9.3: Resatisfying the Goal sum(2,Ans)

negation as failure. Here is a possible definition of \+/1 using cut (!/0) and
call/1.

\+(Goal):-
call(Goal),
!
fail.
\+(Goal).

9.2 Changing the Program

The use of cut (!/0) changes the search space while the program is running.
We now introduce a family of predicates that can be used to change the search
space during program execution. We do this with the strongest request:

‘ Never use these predicates unless you really have to do so

9.2.1 Do Not Do It!

The Prolog database is the set of clauses loaded into Prolog via consult/1 or
reconsult/1 (these predicates can also be used at run-time so they are subject
to the same strictures as the rest described below).

If, during run-time, a new clause is introduced into the Prolog database then
this can change the behaviour of the program as, often, the program’s meaning
changes.



92 Interlude

sum(2,Ans!)

sum(1,1) NewN! is 2-1 sum(NewN! Ans1!)  Ans! is Ans1!+42

Ans! #3
]

NewN'!=1

]

sum(1,1) | This part of the seach tree pruned by the cut!

Ansl'=1

O

Figure 9.4: The Effect of the cut on the Goal sum(2,Ans)

The predicates that we refer to are as follows:

Program Modifying Predicates
assert(C) Assert clause C
asserta(C) Assert C as first clause
assertz(C) Assert C as last clause
retract(C) Erase the first clause of form C
abolish(Name,Arity) | Abolish the procedure named F with arity N

Note that all the predicates except retract/1 are determinate. They are not
resatisfiable. The predicate abolish/2 has mode abolish(+4,+) while the
predicate retract/1 can be used with mode retract(-). This latter predicate
can therefore be used to ‘wipe out’ a complete program as in:

?7- retract(X),fail.

This will fail with the side-effect of removing all the clauses loaded. We can
remove just some clauses as in:

?7- retract(foo(1,X)).

will remove all clauses whose heads unify with foo(1,X).

Note that to add a clause which is also a rule you will need to write assert((a:-
b)) and not assert(a:-b). See chapter 10 for an explanation.



Draft of January 24, 2001 93

Together, these predicates can be used to implement global flags and a form of
global variable. This almost always makes it harder to understand individual
parts of the program —let alone the disastrous effect such changes have on the
declarative reading of programs.

All these predicates are side-effecting. Therefore, backtracking will not undo
these side-effects. For example, if assert/1 is used to maintain a database of
results found so far then, on backtracking, Prolog will not remove these results.

Further, the program becomes sensitive to interupts. It has been known for
someone to abort a program (using ~C and then a for abort) between the
asserting of a new clause and the retracting of an old clause —leaving an
unexpected old clause around which interfered badly with the subsequent exe-
cution of the program.

If a problem seems to require the use of assert/1 then, usually, there is another
way of doing things.

9.2.2 Sometimes You have To!

There are one or two occasions when you might want to use these predicates.
The main one is when you have definitely proved that something is the case.
That is, there is no way in which some statement (added to the program as a
clause) can be false. Sometimes, of course, a program is supposed to modify
the Prolog database. For example, consult/1 and reconsult/1.

Often, we do not want to modify the program itself —rather, we want to change
the data the program accesses. There is a facility in Edinburgh Prolog known
as the recorded database. This is a way of storing Prolog terms under a key.
Such terms are hidden from the listing/0 program. The predicates that access
this recorded database are:

Program Modifying Predicates

erase(R) Erase the record with reference R.

record(K,T,R) Record term T under key K, reference R.
recorda(K,T,R) | Make term T the first record under key K, reference R.
recorded(K,T,R) | Term T is recorded under key K, reference R.
recordz(K,T,R) | Make term T the last record under key K, reference R.

These can be used to squirrel away information to be used by the program
itself. An example is the predicate random /2:

random(Range,Num):- % to choose random number in range
recorded (seed,Seed,Ref), % get seed from database
erase(Ref), % delete old value of seed
Num is (Seed mod Range) + 1, % fit seed into range
NewSeed is (125*Seed+1) mod 4093,% calculate new value
record(seed,NewSeed,_Ref). % and assert it into database

This shows how we can maintain information about the seed used to generate
the next pseudo-random number. Note that, unless we want to delete an entry
(using erase/1) we usually use an anonymous variable for the record reference.

Using this family of predicates is more elegant (and sometimes more efficient)
but suffers from the same problems as the assert family.



94 Interlude

9.3 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to use the cut (!) to implement the
techniques of commit, make—determinate and fail-goal-now
(cut—fail).

You should know how to change the program at run-time and
understand the dangers in doing so. You should know some of
the circumstances when it is acceptable to do so.

You should know how to use the recorded database.

Exercise 9.1 1. Given the following clauses, it is required to place cut(s)
in the program to achieve the given outputs: First, determine what the
output will be without placing any cuts in the program.

female_author:-
author(X),
write(X),
write(’ is an author’),
nl,
female(X),
write(’ and female’),
nl.
female_author:-
write(’no luck!’),

nl.
author(X):-

name(X).
author(X):-

write(’no more found!’),

nl,

fail.
name(sartre).
name(calvino).
name(joyce).
female(murdoch).
female(bembridge).

and here are the desired outputs. Make sure that you use only one cut to
get the desired output.

(a) sartre is an author
no more found!
no luck!

(b) sartre is an author

calvino s an author



Draft of January 24, 2001 95

joyce is an author
no more found!

(c) sartre is an author
no luck!

(d) sartre is an author

(e) sartre is an author

calvino s an author
joyce is an author
no luck!

2. Here is an example of code taken from one of the standard Prolog libraries
—only all the cuts have been removed! Try to put them back.

delete(]], -, []).

delete([Kill| Tail], Kill, Rest) :-
delete(Tail, Kill, Rest).

delete([Head| Tail], Kill, [Head|Rest]):-
delete(Tail, Kill, Rest).

The semantics is roughly “remove the element named in the second ar-
gument from the list in the first argument to produce the list in the third
argument (which does not contain any copies of the element to be re-
moved)”.

Therefore, the first two arguments are supposed to be inputs and the third
an output. Note that the predicate must be determinate so that, if asked
to Redo, it will fail.

3. Define a predicate disjoint/1 which is true only when the argument to
disjoint/1 contains no repeated elements. Make sure that the predicate
15 determinate.

Now use the cut—fail method to define the same predicate.

4. Try writing plus/3 which declares that “the first two arguments add up to
the third argument provided all the instantiated arguments are integers”.
If, however, less than two argument are not integers then the predicate
should fail and print out some pleasing error message.

Note that this is not equivalent to “Z is X + Y” and get the cuts in!



Chapter 10

Prolog Syntax

We describe Prolog syntax more formally.

We introduce the concept of a Prolog term, a variation of the
logical variable and arbitrarily nested terms.

We explain how two Prolog terms are unified and demonstrate
the need for a special check to ensure that we do not get infinite
datastructures.

We show that lists are also terms and illustrate how to con-
catenate two lists together.

We also show that the structure of every Prolog clause is also
a Prolog term.

Prolog Terms are one of:

e Constant
e Variable

e Compound Term

10.1 Constants

A Constant is one of:

e Atom
e Integer

e Real Number
Atoms are made up of:

e letters and digits: AB...Zab...z01...9 and _ (underscore)
e symbol: any number of +, -, *, /, \, *, <, >, =, 7,:, ., 7, Q #,$§ &

e quoted strings: ’any old character’ —but the single quote character is
handled specially

Normally, atoms start with a lower case letter. Note that, in a quoted atom,
you can include a “’” by prefixing it with another * ’ ”. So, to print a “’” on
the screen you will need a goal like write(’’”?).



Draft of January 24, 2001 97

10.2 Variables

Variables usually start with a capital letter. The only interesting exception is
the special anonymous variable written _ and pronounced “underscore”. In the
rule

process(X,Y):-
generate(_,Z),
test(_,Z),
evaluate(Z,Y).

the underscores refer to different unnamed variables. For example, here are two
versions of member /2.

member(X,[X]Y]).
member(X,[Y|Z]):-
member(X,Z).

member(X,[X]|]).
member (X,][_|Z]):-
member(X,Z).

Note that, in the clause,

know_both_parents(X):-
mother(_,X),
father(_,X).

the underscores do not refer to the same object. The reading is roughly that “we
know both the parents of X if someone(name unimportant) is the mother of X
and someone else (unimportant) is the father”. Note that Prolog regards the
two occurrences of the anonymous variable in the above as different variables.

10.3 Compound Terms

A Compound Term is a functor with a (fixed) number of arguments each of
which may be a Prolog term.

This means that we can arbitrarily nest compound terms. For some examples:

happy (fred)

principal functor =  happy

Ist argument =  a constant (atom)
sum(5,X)

principal functor =  sum

Ist argument =  constant (integer)

2nd argument = variable



98 Interlude

not(happy(woman))
principal functor =  not
1st argument = compound term

Nesting compound terms may be of use to the programmer. For example, the
clause

fact(fred,10000).

is not as informative as

fact(name(fred),salary(10000)).
which can be thought of as defining a PASCAL-type record structure.

10.4 (Compound) Terms as Trees

Take the compound term
sentence(np(noun(fred)),vp(verb(swims)))
and construct a tree. Start by marking the root of the tree with the principal

functor and draw as many arcs as the principle functor has arguments. For
each of the arguments, repeat the above procedure.

sentence
np vp
|
noun verb
fred swims

10.5 Compound Terms and Unification
Consider

?- happy(X)=sad(jim).

—fails, because we know that it is necessary that the principal functors and
their arities are the same for unification to succeed.

?7- data(X,salary(10000))=data(name(fred),Y).



Draft of January 24, 2001 99

—succeeds, because, having matched the principal functors (and checked that
the arities are the same) we recursively try to match corresponding arguments.
This generates two subgoals:

X = name(fred)
salary(10000) =Y

which both succeed.

10.6 The Occurs Check

This is an aside. If we try to unify two expressions we must generally avoid
situations where the unification process tries to build infinite structures. Con-
sider:

data(X,name(X)).

and try:

?7- data(Y,Y).

First we successfully match the first arguments and Y is bound to X. Now we
try to match Y with name(X). This involves trying to unify name(X) with X.
What happens is an attempt to identify X with name(X) which yields a new
problem —to match name(X) against name(name(X)) and so on. We get a
form of circularity which most Prolog systems cannot handle.

To avoid this it is necessary, that, whenever an attempt is made to unify a
variable with a compound term, we check to see if the variable is contained
within the structure of the compound term.

This check is known as the occurs check. If we try to unify two terms and we
end up trying to unify a variable against a term containing that variable then
the unification should fail.

Most Prolog implementations have deliberately missed out the occurs check
—mostly because it is computationally very expensive.

Consequently, the goal X=f(X) will usually succeed where it should really fail.
The most common way in which this error might manifest itself is when the
system tries to print out the binding for X. This usually results in an attempt
to print an infinite term.

7. X=f(X).
X =F(F(FE(EECEECEECECEECECE...

10.7 Lists Are Terms Too

If a list is a term then it must be a compound term. What, then is its principal
functor? Predicates have a fixed arity but lists can be any length —so what is
the arity of the principle functor?



100 Interlude

For the moment only, let us suppose we have a gluing agent which glues an
element onto the front of a list. We know this is a reasonable supposition
because we already have a list destructor/constructor that works like this.

[a,b,c,d] = [Head|Tail]
—results in Head=a, Tail=[b,c,d]

We might think of this constructor as a predicate cons/2. We have to build
lists like this. Note, however, that there is no built-in predicate named cons/2
—the real name for the list constructor function is ./2!

In Prolog, the empty list is represented as []. In some implementations, the
empty list is named “nil” —but the Prolog you will use does not use this name.

Familiar Intermediate | Compound Term
List Notation Form | Form
[] I
[a] cons(a,|])
[b,al cons(b,[a]) | cons(b,cons(a,[]))
[c,b,a] cons(c,[b,a]) | cons(c,cons(b,cons(a,[])))

Now to represent the lists as trees —but we will distort them a little:

[ [a] [a,b]

You will have noticed that we could have written cons where we have written .
—well, remember that Prolog doesn’t use a meaningful name for the construc-
tor cons/2. Really, the constructor is ./2. For (textual) explanation purposes,
we shall stick to using cons/2.

Now we will show how to unpack the structure of a non-flat list. We do this by
building up the structure from left to right.

[a,[b,c].d]
goes to
cons(a,[[b,c],d])
goes to
cons(a,cons([b,cl,[d])
goes to
now [b,c] is cons(b,[c])
that is, cons(b,cons(c,[]))
cons(a,cons(cons(b,cons(c,[])),[d])
goes to
cons(a,cons(cons(b,cons(c,[])),cons(d,[])))

As this is difficult to read, we construct a tree using the method for drawing
trees of compound terms.



Draft of January 24, 2001 101

10.8 How To Glue Two Lists Together

We want to ‘glue’, say, [a,b] to [c,d,e] to give the result [a,b,c,d,e]. That
is, we want a predicate append/3 taking two lists as input and returning the
third argument as the required result.

Here are the two lists as trees:

-jT[]
c d e
ﬁ'—[]
a b

You might think of checking to see whether cons([a,b],[c,d,e]) correctly rep-
resents the list [a,b,c,d,e]. Look at this ‘solution’ as a tree.

It is not the required

Let’s try again:



102 Interlude

-j—ﬁ[]
¢c d e
ﬁ'—ﬂ
a b

We could solve our problem in a procedural manner using our list deconstructor
as follows:

Lop off the head a of the first list [a,b]
Solve the subproblem of gluing [b] to [c,d,e]
Put the head a back at the front of the result

But we have a subproblem to solve:

Lop off the head b of the first list [b]
Solve the subproblem of gluing [] to [c,d,e€]
Put the head a back at the front of the result

But we have a subproblem to solve:
Gluing [] to [c,d,e] is easy..the result is [c,d,e]

First thing to note is that there is a recursive process going on. It can be read
as:

Take the head off the first list and keep it until we have solved the
subproblem of gluing the rest of the first list to the second list. To
solve the subproblem simply apply the same method.

Once we are reduced to adding the empty list to the second list,
return the solution —which is the second list. Now, as the recursion
unwinds, the lopped off heads are stuck back on in the correct order.

Here is the code:
append([],List2,List2).

append([Head|List1],List2,[Head|List3]):-
append(List1,List2,List3).

10.9 Rules as Terms

Consider:

happy (X):-
rich(X).

If this is a term then it is a compound term. Again, what is its principal functor
and its arity?



Draft of January 24, 2001 103

1 Principal Functor is

Usually, the functor is written in infix form rather than the more usual prefix
form.

2 Arity is

2

3 The above rule in prefix form

:-(happy(X),rich(X)).

But what about

happy (X):-
healthy (X),
wealthy (X),
wise(X).

Trying to rewrite in prefix form:

:-(happy(X),whatgoeshere?).

Note that the comma ‘,” in this expression is an argument separator. In the
definition of happy/1 above, the commas are read as “and”.

Yes,

healthy(X),wealthy(X),wise(X).

is also a compound term with principal functor

and arity 2. Since we have to represent three subgoals and the arity of ‘,” is 2 we
again have a nested compound term. The correct prefix form for the example
is:

» 7 (healthy(X),?,? (wealthy (X),wise(X))).

Note: try the goal display((healthy(X),wealthy(X),wise(X))) to see the
“truth”. Also, note that, for a reason as yet unexplained, you need an extra
pair of brackets around the goal you want printed via display/1.

Here is the tree:



104 Interlude

happy (X)

healthy(X)

wealthy (X) wise(X)

10.10 What You Should Be Able To Do

You should be able to use the anonymous variable correctly.
You should know how to form Prolog atoms.

You should be able to construct a tree to represent any com-
pound term —including lists and rules.

You should be able to determine whether or not two Prolog
terms unify.

You should know what the occurs check is for and when it
should be used.




Another Interlude:
Input/Output

We describe how to make use of input and output streams.
We show how to read from files and write to files.

We describe how to read individual Prolog terms and how to
build a ‘consult’ predicate.

We illustrate the development of several example programs to
demonstrate how to write Prolog programs.

We discuss a number of practical issues.

Testing a Predicate

Suppose that we want to test the predicate double/2 to see if it works for its
intended inputs.

double(X,Y):-
Y is 2*X.

To do this, we write a test predicate:

test:-
read(X),
double(X,Y),
write(Y),
nl.

Here is a transcription of executing the query test:

?- test.
| 2.

4

yes

Note that, since we are using read/1 which only accepts valid Prolog terms
terminated by a “.” followed by Return (in this case), we have to enter input
integers as 2.!



106 Another Interlude

Now to make this into a loop. The easy way is to recursively call test/0. We
would prefer, however, to put in a test so that we can abort the loop. This
requires an end-of-input marker.

test:-
read(X),
\+(X = -1),
double(X,Y),
write(Y),
nl,
test.

When we input the end-of-input marker (-1) we backtrack to read/1 which fails
(for this Prolog implementation!) and test /0 fails as there are no other clauses.
We could always add a second clause (after —not before) which guaranteed that
the goal test succeeded once the end-of-input marker was met.

Note that it is up to us to make sure that read/1 is never asked to
process non-integer inputs. We could always define and use our own
read_integer/1 to catch non-integer input.

Input/ Output Channels

The standard input stream is taken from the keyboard and is known as “user”.
Think of the stream of characters typed in as issuing from a file called “user”.

The standard output stream is directed to the terminal screen and is known
as “user” too.

Think of the stream of characters issuing from Prolog as going to a file called
“user”.

Input/ Output and Files

Let us take our input data from a file called “in”.

go:-
see(in),
test,
seen.

We wrap the test/0 predicate into a predicate go/0 which takes input from
the specified file “in”. This file should contain legal Prolog terms —for the
predicate double/2 we want something like:

2.
23.
-1.



Draft of January 24, 2001

Facilities for Redirecting Input

see/1

Take input from the named file

seen /0

Close the current input stream and take input from user

How do you find out what the current input stream is?

seeing/1 ‘ Returns name of current input stream

Now to redirect output to a file named “out”:

go:-

tell(out),
see(in),
test,
seen,

told.

Using the same file “in” as previously, “out” will contain:

4
46
Facilities for Redirecting Output
tell/1 Send output to the named file
told/0 Close the current output stream and send output to user

How do you find out what the current output stream is?

telling/1 ‘ Returns name of current output stream

The End of File Marker

When read/1 encounters the end of a file it returns the Prolog atom

end_of _file

So we can rewrite test/0:

test:-

read(X),

\+(X = end_of file),
double(X,Y),
write(Y),

nl,

test.

and now we have our end-of-input marker as the atom end_of_file.

107



108 Another Interlude

Input of Prolog Terms

Both consult/1 and reconsult/1 have been described in chapter 5.5. Prolog
will try to read a clause at a time from the named file. So any error message
only refers to the current term being parsed.

Of course, if Prolog cannot find the end properly then we have problems. The
Prolog you are using will load all clauses that parse as correct and throw away
any ones that do not parse.

)

Some example problems: the first is where we have typed a ‘,” instead of a ‘.’

a:- a-

o o

c, is read as

Q.
1
&
@

There are problems with this reading which will be reported by Prolog. Here
is another problem caused by typing a ‘.” for a ,".

a:- a-

c, is read as c,d:-e.

This is basically illegal as we are seen to be trying to insert a clause defining
,/2 into the Prolog database.

Defining Your Own Consult

For this, we need some additional information about the side-effecting predicate as-
sert/1. Note that you should make use of this predicate as little as possible. If tempted
to use it, think again.

The predicate assert/1 takes a legal Prolog clause as its argument. A call with a legal
argument will always succeed with the side-effect of inserting the clause in the database
—usually, at the end of any clauses with the same principle functor and arity (there
is a variant, asserta/1, which can be used to position a new clause for a predicate at
the beginning).

Essentially, we redirect input to a named file, read a clause, assert it and recurse.

my _consult(File):see(File),
my_read(X),
my_process(X),
seen.

my _process(X):-
\+(X=end_of file),
my_assert(X),!,
my_read(Y),
my_process(Y).

my _process(X):-



Draft of January 24, 2001 109

\+(X=end_of file),
my_read(Y),!,
my_process(Y).

my _process(end_of_file).

my read(X):-

read(X),!.
my _read(X):-

my . read(X).
my_assert(X):-

assert(X).

There are some subtleties here. We have to consider various problems with, inevitably,
different treatments.

The first problem is that of syntactically incorrect input. To handle this, we have
defined a resatisfiable form of read /1. The predicate my_read/1 is designed so that,
if read /1 fails, we just try again. Since read/1 has the side-effect of throwing away
the offending input, we can have a go with another chunk of input. This mimics the
behaviour of consult/1.

The second problem is to make sure that end_of_file is treated properly —we do
not want to insert it into our database nor do we want to force backtracking to take
place back into my_read/1! The simplest solution is to realise that we only want to
keep resatisfying my _read /1 if read/1 fails owing to a syntactic error. Once read/1
succeeds we would like to be committed. Hence we use case selection in my_process/1
making use of \+/1. This means that, on encountering end_of_file, we will use the
third clause of my_process/1.

There is a third problem which this procedure can handle. There are syntactically
correct Prolog terms which are not legal Prolog clauses. For example, a,b:-c. is a
legal term but not a legal clause. The predicate my_assert/1 will fail and we will then
try the second clause of my_process/1 which will pick up some more input and try to
handle that. The cut (!/0) is needed in the first and second clauses of my_process/1
because we are certain that if we have successfully ‘processed’ a clause then we are
committed from there on.

There is a fourth problem. If there is a query (or directive) in the file consulted such
as 7- write(hello) then we do not want to assert this clause —we want to issue
some goal to the Prolog interpreter. This could be handled by two extra clauses for
my_assert/1. One of these would be my_assert((?- X)):- !,call(X). Fixing this
program to deal with this fourth difficulty can be left as an exercise for the reader
(again).

The fifth problem is to write your own version of reconsult/1. This is a little trickier.

The sixth problem is not immediately obvious —but remember that Prolog converts a
grammer rule like s -=> np,vp into something like s(S,S0):- np(S,S1), vp(S1,S0).
Therefore, we ought to arrange to handle this.

In reality there is one further problem. It is possible to write one’s own transformation
rule to turn some legal Prolog clause into another one using term_expansion/2.
This, however, can be hidden inside the call to the predicate that transforms grammar
rules.

What You Should Be Able To Do

After finishing the exercises at the end of the chapter:



110 Another Interlude

You should be able to write a program to read input from one
file and write output to another file.

You should also understand something of how the Prolog consult-
loop works and (possibly) be able to write your own version.




Chapter 11

Operators

We describe some familiar operators.

We define the three forms which they may take.

We introduce and describe the notions of operator precedence
and operator associativity.

We then describe how to define new operators and then how to
parse complex terms containing several user-defined operators.

An operator is a predicate which has some special properties.

Here is a list of ones we have met already:

+ - *
< =< > >=
= s \+

,  ——> = 7=

Note that \+/1 is an operator. So we can write \+(man(jim)) as \+
man (jim).

11.1 The Three Forms

11.1.1 Infix

Here are some examples of arithmetic expressions that use infix operators:

3+2 23-2 8x2 30/2 2<7 6>2 Yis23

All the infix operators used in the above are necessarily binary operators —i.e.
they have an arity of 2. Each of the above terms can be rewritten in ‘regular’
Prolog syntax as

+(3,2) —(23,2) x(8,2) /(30,2) < (2,7) >(6,2) is(Y,23)

Remember that the use of the inequality operators requires that both arguments
are evaluated before unification is applied. For is/2, only the second argument
is evaluated before unification is applied.

Here are some examples of infix operators used in the basic syntax of Prolog
clauses.



112 Another Interlude

healthy(jim), wealthy(fred) adjective —=> [clever] a:- b
These infix operators are also binary. Here are their regular forms.
’’(healthy(jim), wealthy(fred)) -->(adjective, [clever]) :-(a,b)

Note how the functor ,/2 has to be ‘protected’ with single quotes as in ’,’.

11.1.2 Prefix
Some expressions using prefix operators:
\+ man(jane) + 23 - 12
and here are the equivalent regular expressions:
\+(man(jane)) +(23) -(12)

Inevitably, prefix operators are associated with unary predicates —-i.e. they
have an arity of 1.

11.1.3 Postfix
There are no predefined postfix operators but this one might have existed!
X is_a_factorial

If it had then it would have been writable in the regular form is_a_factorial(X).
As with prefix operators, postfix operators have an arity of 1.

11.2 Precedence

We will now look at the structure of some Prolog expressions:

happy (jim):-
healthy(jim),
wealthy (jim).

We assume that it is always possible to represent a Prolog expression as a tree
in an unambiguous way. Is this

happy (jim)

healthy (jim) wealthy (jim)




Draft of January 24, 2001 113

which corresponds to happy(jim):- (healthy(jim),wealthy(jim)) or

wealthy (jim)

happy(jim) healthy (jim)

which corresponds to (happy(jim):- healthy(jim)),wealthy(jim). We can
see that the first version is the one we have taken for granted. We describe this
situation by saying that ,/2 binds tighter than :-/2.

This relates to the way we are taught to calculate arithmetical expressions in
that we are told that we do multiplication before addition (unless brackets
are used to override this). But there is another way to think of things: how to
construct the expression tree. In this case, we choose the root to be the operator
that is ‘loosest’ (in opposition to ‘tightest’ for computational purposes).

The issue is decided by operator precedence.

To construct a tree which describes a Prolog expression we first look for the
operator with the highest precedence (this is in some sense the opposite of the
way we compute a function). If this operator is an infix one, we can divide
the expression into a left hand one and a right hand one. The process is then
repeated, generating left and right subtrees.

Operator | Precedence
:- 1200
-——> 1200
, 1000
\+ 900
is 700
< 700
= 700
=< 700
> 700
>= 700
+ 500
- 500
* 400
/ 400

We still need to decide what to do with two operators of the same precedence.
Should we regard

3-2-1



114 Another Interlude
as one or the other of:

3 2 2 1

and, remember, that we are not yet talking about arithmetic evaluation!

We can use brackets to distinguish
(3-2)-1

from
3-(2-1)

but we have a special way of distinguishing which interpretation we wish Prolog
to make. In the above arithmetic example, the left hand tree has two subtrees
hanging from the root “-”. The left hand one has “-” as its root while the
right hand one is not so allowed. We say that this interpretation of “-” is left
associative.

The normal interpretation of “-” is left associative. The common left associative
operators are:

) o+ - div!

Are there any right associative operators? Yes —consider how we are to dis-
ambiguate

a,b,c
where “a”, “b” and “c” are all legal Prolog subgoals.
/<\C a/>\
a b b ¢

(a,b),c a,(b,c)
(left associative) (right associative)

The answer is that ,/2 is right associative. Usually, we do not have to concern
ourselves with the details of this.

In all the previous cases we have allowed exactly one subtree to have, as its
root, the same operator as the “principal” root. We can extend this to permit
operators of the same precedence. Thus, since “4+” and “-” have the same
precedence, we know that both operators in

'div/2 is integer division. It is a synonym for ///2 —read this as an infix operator of
arity 2 written //.



Draft of January 24, 2001 115

3-2+4+1
are left associative (and legal) and therefore the expression repres