
Detection of New Malicious Code Using N-grams
Signatures

Tony Abou-Assaleh, Nick Cercone, Vlado Kešelj, and Ray Sweidan
Privacy and Security Laboratory, Faculty of Computer Science

Dalhousie University, Canada
Email: {taa,nick,vlado,sweidan}@cs.dal.ca

Abstract— Signature-based malicious code detection is the
standard technique in all commercial anti-virus software. This
method can detect a virus only after the virus has appeared and
caused damage. Signature-based detection performs poorly when
attempting to identify new viruses. Motivated by the standard
signature-based technique for detecting viruses, and a recent
successful text classification method, n-grams analysis, we explore
the idea of automatically detecting new malicious code. We
employ n-grams analysis to automatically generate signatures
from malicious and benign software collections. The n-grams-
based signatures are capable of classifying unseen benign and
malicious code. The datasets used are large compared to earlier
applications of n-grams analysis.

I. I NTRODUCTION

Since the appearance of the first computer virus in 1986,
a significant number of new viruses has appeared every
year.1 This number is growing and it threatens to outpace
the manual effort by anti-virus experts in designing solutions
for detecting them and removing them from the system [5].
Even without this threat, the traditional approach consists of
waiting for a number of computers to be infected, detecting the
virus, designing a solution, and delivering and deploying the
solution. A significant damage is done during this process. To
address this problem, we explore solutions based on machine
learning and not strictly dependent on certain viruses. It would
not be feasible to design a general anti-virus tool that could
replace a human expert or be as reliable as the exact solutions
for known viruses, but such a solution would be of a great
benefit in warning against new viruses, in aiding experts in
finding a good signature for a new virus, and in adaptable
solutions for different users.2

The termvirus is commonly used for malicious code , but
for clarity reasons, we will use the termmalicious code in
further discussion, since it is relevant for all kinds of malicious
code, such as viruses, worms, and Trojan horses.

Since the specific substrings of malicious code (MC), or
signatures, are typically used to detect certain type of MC,
it is natural to use sets of such substrings as indicators for

1“Virus Writers: The End of The Innocence?” by Sarah Gordon, IBM
Thomas J. Watson Research Center, http://www.research.ibm.com/antivirus/
SciPapers/VB2000SG.htm
The WildList — http://www.wildlist.org/

2A criterion for detecting viruses may be adopted to a specific user.
For some users any executable attachment in an e-mail message canbe
immediately classifies as malicious code, while other users do exchange
executable code by e-mail.

MC detection.N-grams—all substrings of a file of a fixed
lengthn—are a candidate for such a set that can be efficiently
collected. The idea of using n-grams for MC analysis is not
new. In 1994, a byte n-gram-based method for automatic
extraction of virus signatures was described in [5]. Similarly,
an n-gram-based method is used in a proposal for a “computer
immune system” in [6]. However, there is little literature on
this approach after 1994.

The word n-gram analysis, which uses a window ofn con-
secutive words, has been used for a while in natural language
processing (NLP). For example, it is successfully used in
language modelling and speech recognition [4]. On the other
hand, thecharactern-gram analysis was only sparsely used.
In 1994, character n-grams were used for text categorization
in [3] with modest results. The Common N-Gram analysis
(CNG) method [7] for text classification has been recently suc-
cessfully used in automatic authorship attribution [7], detection
of dementia of Alzheimer’s type [8], and text clustering.
The CNG method was motivated by an approach introduced
by W. R. Bennett in 1976 [2], in which the letter bi-gram
frequencies were used in authorship attribution.

Byte n-grams of a file are overlapping substrings, collected
in a sliding-window fashion where the windows of sizen
slides one byte at a time. Concordantly, they do not capture
just statistics about substrings of lengthn, but they implic-
itly capture frequencies of longer substrings as well. This
phenomenon was noted in NLP, where tri-grams frequently
perform very well even though they seem to be too short to
capture any significant information. N-grams have the ability
to capture implicit features of the input that are difficult to
detect explicitly. As a growing number of MC writers use tools
to write and compile their code, n-grams could detect features
of the code that are specific for certain tools, or families of
tools, including code generators, compilers, and programming
environment. In addition, n-grams could capture features that
are specific for authors, coding styles, or even behavioural
features.

Given a database of MC and benign code (BC), n-gram
analysis can be used to extract the most frequent n-grams,
which act as signatures. When a new code is analyzed, it can
be classified as benign or malicious based on the category
that it matches the most. Thus, n-grams could predict the
maliciousness of unseen code and capture new viruses that
share features with previously learned viruses. Since the cap-

193



TABLE I

WIN32 COLLECTION: ACCURACY WITH A LIMIT OF 100, 000

n

L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
20 .45 .58 .52 .63 .69 .57 .55 .51 .50 .49 .44 .42 .38 .36 .37
50 .60 .63 .88 .89 .87 .84 .73 .68 .82 .63 .79 .79 .82 .85 .82

100 .77 .75 .90 .87 .87 .89 .87 .84 .84 .86 .86 .87 .87 .86 .85
200 .85 .76 .87 .89 .90 .90 .92 .89 .90 .90 .90 .89 .89 .89 .90
500 .85 .89 .89 .91 .90 .90 .91 .90 .88 .88 .87 .87 .84 .85 .85
1K .85 .92 .93 .93 .91 .90 .89 .87 .85 .84 .84 .83 .85 .80 .80
2K .85 .87 .93 .92 .90 .87 .86 .84 .83 .81 .83 .83 .86 .79 .75
3K .85 .83 .92 .91 .90 .87 .86 .83 .82 .81 .81 .82 .84 .93 .93
4K .85 .78 .91 .91 .89 .87 .85 .82 .81 .85 .92 .92 .92 .92 .92
5K .85 .73 .91 .89 .89 .87 .84 .81 .92 .93 .93 .92 .92 .92 .92
6K .85 .69 .91 .88 .88 .86 .84 .92 .93 .93 .93 .92 .92 .92 .92
7K .85 .65 .91 .87 .87 .84 .92 .92 .93 .93 .93 .92 .92 .92 .92
8K .85 .63 .91 .87 .87 .84 .92 .92 .93 .93 .93 .92 .92 .92 .92
9K .85 .61 .90 .86 .87 .92 .92 .92 .93 .93 .93 .92 .92 .92 .92

10K .85 .59 .89 .86 .86 .92 .92 .92 .93 .93 .93 .92 .92 .92 .92

tured features are implicit in the extracted n-grams, it would
be difficult for virus writers to deliberately write virusesthat
fool n-gram analysis even when they have full access to the
detection algorithm.

The datasets used in our experiments are in the order of tens
of megabytes in size, which is small compared to the terabyte
virus repositories, but is considerably larger than the datasets
traditionally used in n-grams analysis, which usually doesnot
exceed a few megabytes. In addition to using n-grams analysis
for malicious code detection, this work presents

II. CNG METHOD

The CNG classification method relies on profiles for class
representation. During training, the data for each class is
collected and n-grams with their normalized frequencies are
counted. TheL most frequent n-grams with their normalized
frequencies represent a class profile. There are two parameters
in building a profile:n — the n-gram size, andL — the
profile length. When a new instance needs to be classified,
the instance profile is built in the same way. The instance is
classified using k-nearest neighbour algorithm withk = 1;
i.e., the similarity distance is measured between the instance
profile and class profiles, and the class with the closest class
profile is chosen. The following distance measure is used:

∑

s∈profiles

(

f1(s) − f2(s)
f1(s)+f2(s)

2

)2

(1)

where s is any n-gram from one of the two profiles,f1(s)
is frequency of the n-gram in one profile, or 0 if the n-gram
does not exist in the profile, andf2(s) is the frequency of the
n-gram in another profile. The difference between frequencies
is divided by(f1(s)+f2(s))/2 in order to make the difference
relative instead of absolute, so that the same weight is given to
the difference between low-frequent n-grams as for the high-
frequent n-grams.

TABLE II

WIN32 COLLECTION: ACCURACY WITH A LIMIT OF 200, 000

n

L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
20 .45 .59 .50 .62 .70 .60 .55 .53 .51 .50 .46 .44 .41 .40 .42
50 .60 .64 .88 .89 .87 .84 .73 .69 .81 .63 .78 .79 .83 .85 .82

100 .77 .75 .90 .88 .88 .91 .87 .85 .84 .85 .86 .87 .87 .87 .85
200 .85 .76 .87 .89 .91 .91 .93 .90 .89 .90 .90 .90 .89 .89 .90
500 .85 .90 .88 .91 .91 .90 .91 .91 .89 .89 .88 .87 .84 .84 .85
1K .85 .92 .93 .93 .92 .90 .90 .88 .88 .87 .87 .84 .84 .84 .85
2K .85 .90 .94 .92 .91 .89 .89 .86 .86 .84 .83 .82 .83 .82 .81
3K .85 .83 .93 .91 .90 .87 .85 .85 .84 .83 .82 .82 .82 .78 .77
4K .85 .82 .92 .91 .90 .86 .85 .85 .83 .82 .81 .81 .81 .76 .75
5K .85 .78 .93 .91 .89 .86 .85 .84 .83 .80 .78 .78 .78 .74 .73
6K .85 .75 .93 .88 .88 .86 .85 .82 .80 .79 .76 .75 .76 .73 .72
7K .85 .72 .92 .87 .87 .86 .84 .81 .79 .78 .76 .74 .74 .72 .72
8K .85 .70 .90 .86 .87 .86 .84 .81 .79 .77 .75 .74 .74 .71 .92
9K .85 .69 .90 .86 .86 .85 .83 .81 .79 .93 .75 .93 .92 .92 .92

10K .85 .66 .90 .86 .85 .85 .82 .80 .94 .93 .92 .93 .92 .92 .92

III. E XPERIMENTAL RESULTS

In our earlier experiments [1], we used a small collection
of 25 worms (831KB) that we extracted from infected email
messages and 40healthyWindows executable files (5.5MB).
We achieved a training accuracy of 100% for several parameter
configurations and a 3-fold cross-validation average accuracy
of 98%.

Following the encouraging results of using the CNG method
with the small worm collection, we conducted series of
experiments with two larger collections of MC: theI-Worm
collection and theWin32 collection. These collections are
available from [11]. The I-Worm collection consists of 292
Internet worms that are Windows binary executable files. The
total size of the I-Worm collection is 15.7MB. The Win32
collection contains 493 Windows binary executable viruses
whose names begin with “Win32”; their total size is 21.2MB.

There are computational issues that must be considered
when dealing with larger code collections. In our initial
experiments, we computed n-grams of sizes up to 10 bytes.
The number of potential n-grams of size 10 is210∗8 ≈ 1024.
The small code size in our initial experiments resulted in
a computationally-tractable upper bound on the number of
possible n-grams. With the larger code collections, computing
the frequencies of all seen n-grams is impractical. The Perl
software tool Ngrams [9], which we use in our experiments,
supports thelimit parameter; if the number of collected n-
grams exceeds twice the limit, the list of n-grams is reduced
to the limit by removing the least frequent n-grams from the
list.

A. Parameter selection

There are three primary parameters in our experiments: the
limit, the maximum length of the n-grams, and the maximum
profile size. The limit ensures that the computation does
not overflow the physical memory and is a single-valued
parameter. The length of the n-grams,n, takes values from 1
to the specified maximum. As evident in table I and table II,

194



TABLE III

I-WORM COLLECTION: TRAINING ACCURACY FOR DIFFERENT VALUES OF

N-GRAM SIZE (n) AND PROFILE SIZE(L)

n

L 1 2 3 4 5 6 7 8 9 10
20 0.54 0.50 0.65 0.74 0.68 0.64 0.52 0.50 0.52 0.43
50 0.62 0.62 0.83 0.80 0.85 0.83 0.72 0.65 0.60 0.57

100 0.80 0.65 0.76 0.68 0.84 0.86 0.85 0.83 0.83 0.85
200 0.75 0.69 0.63 0.62 0.79 0.86 0.89 0.87 0.89 0.88
500 0.57 0.87 0.88 0.70 0.83 0.89 0.88 0.87 0.88 0.89

1000 0.57 0.85 0.89 0.90 0.90 0.89 0.88 0.88 0.89 0.87
1500 0.57 0.86 0.89 0.91 0.88 0.90 0.86 0.85 0.83 0.84
2000 0.57 0.83 0.90 0.90 0.88 0.87 0.84 0.79 0.73 0.74
3000 0.57 0.81 0.88 0.89 0.86 0.83 0.71 0.71 0.64 0.65
4000 0.57 0.78 0.88 0.87 0.84 0.82 0.68 0.64 0.61 0.62
5000 0.57 0.76 0.88 0.85 0.80 0.80 0.64 0.62 0.58 0.61

larger values ofn do not always result in a better performance.
The maximum value ofn should be chosen large enough as to
demonstrate that the optimal value ofn is withing the tested
range. The profile size,L, determines the number of the most
frequent n-grams of a file that are used as a signature for that
file. Similar to n, larger values ofL do not always result in
a better performance and a maximum value should be chosen
as to encompass the optimal value ofL.

In our experience with n-grams, we found that a limit
of 100, 000, n-grams of lengths 1 to 10, and profile sizes
ranging from 20 to5, 000 most frequent n-grams provided
good results. We conducted several runs to verify whether
these choices of values are suitable for the I-Worm collection
and Win32 collection. The results of two runs using the Win32
collection are shown in table I and table II. In these two
runs, we increased the maximum n-grams length to 15 and
the maximum profile size to10, 000. Table I shows the results
with a limit of 100, 000 n-grams and table II shows the results
with a limit of 200, 000 n-grams.

We did not find a significant improvement in training
accuracy when increasing the limit to200, 000, the maximum
n-grams length to 15, or the maximum profile size to10, 000.
Therefore, all the experiments described below are configured
with a limit of 100, 000, a maximum n-grams length of 10,
and a maximum profile size of5, 000.

B. Training accuracy

In the training accuracy experiments, we build amalicious
profile using all available MC, and, in a similar fashion, a
benign profileis built from the BC. Each file is then classified
as a malicious or a benign program using the CNG method,
and we measured the accuracy for different combinations of
parametersn (n-gram size) andL (profile size). The results
of the I-Worm collection and the Win32 collection are shown
in table III and table IV, respectively.

The results are very encouraging, achieving accuracy of
over 90% for several parameter configurations. An accuracy
of and 91% forn = 4 and L = 1500 is achieved for the
I-Worm collection, and 94% for the Win32 collection using
the same parameters, as well as others. This is a biased

TABLE IV

WIN32 COLLECTION: TRAINING ACCURACY FOR DIFFERENT VALUES OF

N-GRAM SIZE (n) AND PROFILE SIZE(L)

n

L 1 2 3 4 5 6 7 8 9 10
20 0.45 0.59 0.51 0.63 0.67 0.59 0.54 0.52 0.51 0.47
50 0.60 0.63 0.88 0.88 0.87 0.85 0.74 0.68 0.81 0.64

100 0.76 0.73 0.90 0.88 0.87 0.90 0.87 0.85 0.84 0.85
200 0.85 0.74 0.87 0.89 0.92 0.90 0.93 0.89 0.89 0.90
500 0.85 0.87 0.89 0.91 0.90 0.90 0.91 0.91 0.90 0.89

1000 0.85 0.90 0.93 0.93 0.91 0.90 0.89 0.88 0.87 0.87
1500 0.85 0.89 0.94 0.94 0.91 0.89 0.88 0.87 0.87 0.86
2000 0.85 0.87 0.94 0.92 0.91 0.89 0.87 0.86 0.85 0.82
3000 0.85 0.84 0.93 0.91 0.90 0.86 0.83 0.81 0.80 0.80
4000 0.85 0.79 0.93 0.92 0.87 0.86 0.81 0.80 0.80 0.79
5000 0.85 0.75 0.93 0.91 0.87 0.86 0.81 0.80 0.78 0.78

TABLE V

I-WORM COLLECTION: AVERAGE ACCURACY IN 5-FOLD

CROSS-VALIDATION FOR DIFFERENT VALUES OF N-GRAM SIZE (n) AND

PROFILE SIZE(L)

n

L 1 2 3 4 5 6 7 8 9 10
20 0.59 0.49 0.61 0.64 0.72 0.64 0.57 0.49 0.50 0.45
50 0.67 0.55 0.80 0.76 0.83 0.83 0.63 0.58 0.60 0.55

100 0.81 0.73 0.72 0.73 0.70 0.84 0.81 0.79 0.81 0.82
200 0.77 0.69 0.69 0.66 0.79 0.85 0.86 0.85 0.87 0.86
500 0.56 0.85 0.85 0.78 0.82 0.86 0.87 0.85 0.86 0.86

1000 0.56 0.84 0.89 0.89 0.90 0.88 0.85 0.87 0.88 0.87
1500 0.56 0.82 0.89 0.91 0.88 0.89 0.87 0.85 0.84 0.85
2000 0.56 0.83 0.89 0.89 0.87 0.87 0.85 0.83 0.82 0.84
3000 0.56 0.82 0.88 0.88 0.87 0.84 0.80 0.82 0.80 0.81
4000 0.56 0.80 0.87 0.86 0.83 0.81 0.79 0.81 0.78 0.80
5000 0.56 0.79 0.86 0.83 0.81 0.81 0.79 0.79 0.77 0.78

evaluation experiment, since the same training data is usedin
testing. Even though this is a biased experiment, the resultis
significant since it shows that the 5MB corpus of BC, 15.7MB
of I-Worm MC, and 21.2 of Win32 MC can be represented as
1500-length quad-gram profiles with a very simple algorithm,
and be successfully used in the classification.

C. 5-fold cross-validation

To obtain unbiased evaluation results, we performed a 5-
fold cross-validation. In the cross-validation method [10], the
data is randomly partitioned inton disjoint datasets or folds.
n−1 of these datasets are used for training and the remaining
dataset is used for testing. The process is repeatedn times,
each time using a different testing dataset. The results in these
n evaluations are averaged to obtain the final result.

The folds are created in a random, balanced way, i.e.,
approximately 1/5 of malicious files and 1/5 of benign files are
selected in each fold. The average accuracy using the I-Worm
collection and the Win32 collection are shown in table V and
table VI, respectively.

The result provides more positive evidence for the use of
the CNG method in the MC detection. The average accuracy
is high, achieving 91% for both the I-Worm collection and the

195



TABLE VI

WIN32 COLLECTION: AVERAGE ACCURACY IN 5-FOLD

CROSS-VALIDATION FOR DIFFERENT VALUES OF N-GRAM SIZE (n) AND

PROFILE SIZE(L)

n

L 1 2 3 4 5 6 7 8 9 10
20 0.64 0.63 0.63 0.61 0.58 0.58 0.55 0.52 0.50 0.47
50 0.58 0.70 0.81 0.87 0.85 0.86 0.80 0.63 0.68 0.64

100 0.75 0.74 0.90 0.87 0.87 0.89 0.88 0.85 0.86 0.85
200 0.85 0.70 0.87 0.88 0.90 0.90 0.91 0.88 0.87 0.89
500 0.85 0.81 0.88 0.91 0.90 0.90 0.90 0.89 0.89 0.88

1000 0.85 0.88 0.90 0.91 0.89 0.89 0.86 0.86 0.87 0.86
1500 0.85 0.86 0.91 0.91 0.90 0.88 0.87 0.87 0.87 0.85
2000 0.85 0.86 0.91 0.91 0.89 0.88 0.87 0.85 0.84 0.84
3000 0.85 0.84 0.91 0.90 0.88 0.87 0.85 0.84 0.83 0.83
4000 0.85 0.84 0.91 0.91 0.89 0.86 0.86 0.84 0.82 0.82
5000 0.85 0.79 0.91 0.90 0.88 0.86 0.86 0.83 0.81 0.87

Win32 collection.

IV. CONCLUSIONS ANDFUTURE WORK

We have demonstrated encouraging initial results in ap-
plying the CNG method based on byte n-gram analysis in
the detection of MC. We used two datasets of MC, I-Worm
collection and Win32 collection, and a collection of BC. The
size of the MC code of each of the collections is considerably
larger than what is traditionally used in n-grams analysis,and
still satisfactory results are obtained using the same parameter
values forn and L as in other works. The method achieves
over 90% accuracy on training data using each of the two
datasets, and 91% accuracy in 5-fold cross-validation. The
future work includes experiments on larger data collection
with sizes of the order of hundreds of megabytes. Currently,
we use the CNG method as black box for detecting viruses
and worms. Mining the extracted n-grams may help refine the
extraction of the MC signatures. Experimenting with reverse-
engineered MC source code is another direction that we plan
to pursue.

ACKNOWLEDGMENT

This work is supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES

[1] T. Abou-Assaleh, N. Cercone, V. Kešelj, and R. Sweidan. 2004. “N-
gram-based Detection of New Malicious Code.” InProceedings of
the 24th Annual International Computer Software and Applications
Conference (COMPSAC 2004), Hong Kong.

[2] W.R. Bennett. 1976.Scientific and engineering problem-solving with the
computer. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

[3] W. Cavnar and J. Trenkle. 1994. “N-gram-based text categorization.” In
Proceedings SDAIR-94.

[4] D. Jurafsky and H. M. James. 2000.Speech and Language Processing.
Prentice-Hall, Inc.

[5] J.O. Kephart and W.C. Arnold. 1994. “Automatic Extraction of Com-
puter Virus Signatures.” InProceedings of the 4th Virus Bulletin Interna-
tional Conference. R. Ford, ed., Virus Bulletin Ltd., Abingdon, England,
pp. 178-184.

[6] J.O. Kephart. 1994. “A Biologically Inspired Immune System for
Computers.” InArtificial Life IV, Proc.of the Fourth Intern.Workshop
on Synthesis and Simulation of Living Systems. Rodney A. Brooks and
Pattie Maes, eds., MIT Press, Cambridge, Massachusetts, pp.130-139.

[7] V. Kešelj, F. Peng, N. Cercone, and C. Thomas. 2003. “N-gram-based
Author Profiles for Authorship Attribution.” InProceedings of the Con-
ference Pacific Association for Computational Linguistics, PACLING’03,
Dalhousie University, Halifax, Nova Scotia, Canada.

[8] V. Kešelj, E. Asp, K. Rockwood, and N. Cercone. 2003. “Computational
analysis of language used by Alzheimer patients in interviews.” In Pro-
ceedings of the 6th Annual Symposium on the Treatment of Alzheimer’s
Disease, Halifax.

[9] V. Kešelj. 2003-04. Perl package Text::Ngrams. WWW: http://search.
cpan.org/author/VLADO/Text-Ngrams-0.03/Ngrams.pm.

[10] C. Manning and H. Schuetze. 1999.Foundations of Statistical Natural
Language Processing. The MIT Press.

[11] VX Heavens. 2004-06. WWW: http://vx.netlux.org/.

196




