
qa42: Web-Based Question Answering System
CS224N Final Project

 Jyotika Prasad Antone R. Vogt Riku Inoue
 jyotika@stanford.edu ubiquity@stanford.edu rikui@stanford.edu

1. Introduction

qa42, named in memory of Douglas Adams [8], is an open
domain question-answering system that builds upon and
extends prior work in [1] by exploiting the redundancy of
the world wide web [9]. qa42 returns specific answers to
factoid questions rather than summaries as is done in search
engines and traditional question-answering systems. The
current version of qa42 is geared to answer only questions
for persons, organizations, locations, dates, and quantities.
Additional types of questions are planned for future work.

An outline of the process is diagrammed in Figure 1. The
question to be answered is written into one or more search
engine queries, which are then sent to the Google search
engine [10]. Summaries returned by Google are scored
against answer models also generated from the question.
Similar viable answers are clustered together and rescored
based upon frequency. qa42 presents the three answers that
score the highest.

For the reader’s convenience, examples and several tables
are presented at the end of this document. We now present
the details.

2. Question Processing

2.1. Parse Analysis

As a first step, the qa42.query.Question Java class parses
the question using [2] as the parser trained on data from
[11]. From the resultant parse tree, it ascertains the pronoun
type, pronoun subtype, main verb, subject noun phrases, and
object noun phrases.

The pronoun type is defined as who/whom, where, when,
why, how, which, what, and other. In general, the pronoun
type is taken to be the interrogative pronoun used in the
question. In the case where more than one interrogative
pronoun appears in the question, the outermost from the
parse tree is used.

The other category is used when no such interrogative
pronoun exists in the question. This is commonly the case
when the question is worded as an imperative. An example
is: Name the designer of the shoe that spawned millions of
plastic imitations, known as “jellies”. As such, qa42 does
not perform particularly well on imperatives. The fact that
[11] contains relatively few imperatives also impacts the
effectiveness of analyzing such sentences.

Figure 1. qa42 process outline.

CS224N Final Programming Assignment qa42: Web-Based Question Answering System page 2

The pronoun subtype is defined as the subordinate phrase or
clause that is headed by the interrogative pronoun. Thus,
the pronoun type and subtype respectively are what and
company in this example: What company is the largest
Japanese ship builder?

Since the what and which pronoun type categories give
little clue as to the intended answer form, qa42 converts
these categories to either where or when in the case
that the subtype respectively indicates a location or time.
qa42 contains a hard-coded set of 42 location words
and 40 time words respectively [6] represented by
the qa42.word.LocationList and qa42.word.TimeList
classes.

We use minimal analysis of pronoun types and subtypes
since it is not the major focus of our experiment. Deeper
evaluation of these natural language features is reserved for
future work.

The main verb is defined as the word heading the outermost
verb phrase identified by the parser that is not a form of do
or have. In the case of these helper verbs, the tense and
number is noted so that the main verb can be represented
either in its original form or in a revised form to match the
helper. For example, the main verb is die and the revised
main verb is died in this question: When did Nixon die?
Similarly, the main verb is mean and the revised main verb
is means in this example: What does El Nino mean in
Spanish?

The main verb is also converted to a past participle form for
the purpose of forming passive voice phrases in query
templates (§2.2).

The qa42.word.VerbFormConverter Java class makes these
conversions. It contains a set of 388 past participle
mappings and 344 tense mappings to handle irregular verbs.
The list of irregular verbs was reduced from an exception
list in [3]. For all other words, qa42 applies heuristics based
on standard rules of English.

The subject and object noun phrases are defined as any and
all noun phrases identified by the parser that respectively
come before or after the main verb. As such, El Nino and
Spanish are the subject and object nouns phrases in the
earlier example: What does El Nino mean in Spanish?

The effect of this processing is that words with little
semantic value, such as prepositions, are dropped.
Additionally, since our definition of subject and object are
more general than standard English, it is frequently the case
that there are multiple subjects and/or object to be
identified. For example, since the main verb is ask, both
the FBI and a word processor are object noun phrases in
this question: Why did David Koresh ask the FBI for a
word processor? The fact that we have multiple phrases
becomes significant in generating answer models (§2.3).

Each quoted phrase is taken as a simple noun phrase
regardless of its parsing. The assumption is that the quoted
phrase refers to a single title, quote, etc. Quoted phrases are
handled specially in template generation (§2.2).

2.2. Query Templates

Once parse analysis is complete, qa42 generates a list of
one or more query templates. From each template,
qa42 generates a single search engine query and a
(possibly empty) set of answer models (§2.3), the latter of
which are matched against search engine summaries.
These templates are generally represented by objects of the
qa42.query.Template Java class.

Each template represents a sequence of phrases with at most
one pronoun position marker. This marker indicates the
place within the phrase sequence in which the answer
expected. It is used in generating answer models but not in
the formatting of search-engine queries.

As a typical example, the question What state does Charles
Robb represent? results in this template (among others):
pronoun, state, represented, Charles Robb. When this
template is formatted for the Google search engine, the
pronoun is dropped, so the query reads as follows: state
represented Charles Robb. Since the order of words is
significant [10], Google is likely to match a search-engine
summary such as Virginia is the southern state
represented by Charles Robb, assuming that it exists.

qa42 always generates one simple query template for each
question, which is the verbatim text of the question itself.
Since this special template is not the result of analysis, it is
not broken into phrases, does not contain a pronoun, and
therefore is not used to generate answer models (§2.3). A
special qa42.query.SimpleTemplate Java class, which is a
subclass of Template, is used to handle this special case.

Depending on the structure of the question parse, qa42 may
generate as many as eight additional templates per question,
each one with a pronoun position marker. Table 7 (near the
end of this document) summarizes the possible formats of
these templates, along with examples of matching sentences
from a potential search engine summary. Since many of
these formats differ only in the placement of the pronoun
position marker, duplicate search-engine queries are
discarded.

In general, search-engine queries do not contain quotes or
special operators. The exception applies when phrases are
quoted in the original question. In this case, the same
phrase is quoted in the query under the assumption that it
refers to a title or quotation.

2.3. Answer Models

qa42 generates several answer models from each query
template (other than simple templates) with the purpose of
predicting and scoring search-engine summaries.

CS224N Final Programming Assignment qa42: Web-Based Question Answering System page 3

With some exception, the set of answer models is the set of
all possible subsequences of the phrases from the template
from which it is generated. That is to say, qa42 creates an
answer model by including or excluding each template
phrase. The exceptions are that qa42 never generates an
empty answer model nor a model with no pronoun.

Therefore, the number of models m generated from a single
template with n phrases is:

!

m = 2
n"1
"1 (2.1)

since n–1 represents the number of phrases other than the
pronoun position marker.

Each model is ranked by the ratio of the number of phrases
it contains to the number of phrases contained by its
template. That is, for a model with n′ phrases and a
template with n phrases, the specificity rank r is given by:

!

r =
" n

n
 (2.2)

For example, the template pronoun, state, represented,
Charles Robb results in these models:

 pronoun, state, represented, Charles Robb [1.00]
 pronoun, represented, Charles Robb [0.75]
 pronoun, state, Charles Robb [0.75]
 pronoun, state, represented [0.75]
 pronoun, Charles Robb [0.50]
 pronoun, represented [0.50]
 pronoun, state [0.50]

When reviewing this in the context of Table 7, it is useful to
keep in mind that each subject or object may represent
several phrases. For example, in the question Why did
David Koresh ask the FBI for a word processor?, there are
one subject phrase, David Koresh, and two object phrases,
the FBI and a word processor. Therefore, from the
template the FBI, a word processor, asked by, David
Koresh, pronoun, 15 models are generated.

Since there are generally multiple templates per question,
there is a potential for duplicate answer models.
Consequently, qa42 eliminates the duplicates.

Since the number of answer models is a function of the
number of templates and the number of phrases in each
template, it can be thought of as a function of the question
complexity and the length of the sentence. As such, some
of the questions can have a fairly large number of models.
For example, How much did Manchester United spend on
players in 1993? results in 8 non-simple query templates
and 158 answer models due to the complexity. In contrast,
What is the name of the rare neurological disease with
symptoms such as: involuntary movements (tics), swearing,
and incoherent vocalizations (grunts, shouts, etc.)? results
in 4094 models from only one template.

3. Information Retrieval

3.1. Search Engine Module and Google

The search engine module of qa42 sends the queries
generated from the query templates to Google [10]. The
results returned from the search engine are preprocessed
(§3.2) before being passed to the named entity recognition
module (§3.3).

qa42 uses the Google SOAP API to retrieve the query
results. qa42 processes only the page summaries returned
by Google and not the referenced pages. This improves on
temporal performance, since looking at these pages would
involve separate network URL requests and introduce a
bottleneck. Also, under the assumption is that the answer
appears close to the query phrases, the summary proves to
be sufficient. For every query, we request a maximum of
ten results per query from Google.

3.2. HTML Preprocessor

qa42 preprocesses the summaries returned by Google to
transform the HTML into a more usable format. The
preprocessor starts by removing HTML tags such as
and character references such as ', since these data
elements carry little or no natural language information.

The preprocessor also inserts white space between
adjacent digit and non-digit characters to aid the named
entity recognizer (§3.3) in identifying quantities. For
instance, One Big Mac costs 24EEK in Estonia, 1$ =
13.64EEK is converted to One Big Mac costs 24 EEK in
Estonia, 1 $ = 13.64 EEK.

3.3. Named Entity Recognizer

The named entity recognizer (NER) module analyzes the
preprocessed search-engine summaries to extracts candidate
answers. Specifically, the Stanford NER [4], which was
trained on three corpora [12,13,14], is used to identify
person, organization, and location entities over the
summaries for who and where pronoun types. qa42 also
uses an augmented NER for when and how pronoun types.
The current version of qa42 does not handle other types of
pronouns.

This logic is augmented for when and how pronoun types
since [4] does not provide sufficiently fine-grained entity
types in the cases. qa42 uses logic based on regular
expression to identify date and quantity entities. The
approximating assumption here is that when pronoun types
usually refer to a date (as opposed to a time) and how types
usually refer to a quantity (as in how much or how far).

The augmented NER module contains the DateMatcher
Java class, which extracts from the search-engine
summaries phrases with patterns that indicate a date or year.
Examples include 1776, July 4th 1776, 07/04/76, and 4th

CS224N Final Programming Assignment qa42: Web-Based Question Answering System page 4

of July. This logic searches the summary string for dates
using regular expressions, then reformats these candidates
into a common American format of July 4, 1776 to simplify
clustering (§4.2).

Quantities are extracted using a simple rule. qa42 defines a
quantity to be any number with a unit, such as $ 40,000, 20
meters, 30 ft, etc. Several lists of units for distance, area,
money, etc. [7] are hard-coded into qa42 to facilitate this
process. This module has room for further development but
is not the focus of our project.

From each of these NER modules, qa42 extracts entities that
match the pronoun type as specified in Table 1. For
example, if the question has a who pronoun type, the NER
module returns a list of all persons and organizations found
in the search-engine summaries. All such entities are sent to
the scoring module as candidate answers.

4. Candidate Analysis

4.1. Scorer

The scoring module scores the candidate answers as a
function of the number of times the candidate appears
among and the answer model (§2.3) it matches.

We experimented with basic scoring, which simply counts
the number of times c that a particular answer occurs across
all the search-engine summaries. In many cases, this fails to
give the correct answer, since there are examples where a
particular incorrect candidate occurs more frequently than
the correct answer.

To compensate for this, qa42 uses a scoring function which
approximately captures the semantic corrects of a candidate.
The answer models, which are generated during the parse
analysis phase, represent an ordering of the phrases that we
expect in the answer. The models do not contain most stop
words, allowing for some flexibility in scoring.

The list of models are ordered by specificity rank r
(Equation 2.2). For each candidate, the list is searched
starting with the highest specificity rank until a match is
found. If there is no match, r=0.2 is used. Each candidate
answer is given a score s=r.

This differs from other question answering systems such as
AskMSR [15] in that it scores each candidate based on the
query that was used. Contrastingly in qa42, the answer
models used in scoring are related to the query only in that
they are generated from the same templates. However, qa42
makes no attempt to trace a particular model or candidate
back to the query or template. In other words, the score of a
candidate depends on the specificity of the predicted answer
model rather than the query from which it came.

4.2. Clustering Module

The clustering module aggregates the candidates in a
manner identical to [1]. In the first of two passes, qa42
merges candidates that are the same (ignoring case and
white space) and sums their scores.

In the second pass, a candidate is merged into a larger
candidate if the former is a subsequence of the latter. As in
the first pass, the score of the merged candidate is the sum
of the other two. Therefore, in either pass:

!

" s = s# (4.2)

where s′ is the score of the cluster and s are the scores of the
candidates which are merged together.

The top three scoring candidate are returned as answers.

5. Conclusion

5.1. Evaluation Framework

We test the system on the questions from the TREC 8 [5]
question bank, which are classified by one of the categories
listed in Table 1. Other classifications are outside the
purview of our experiment.

Pronoun Types NER Entity
Types

TREC-8
Classifications

who person
organization

person
organization

where location
location

city
country

when date
duration

time
date

how quantity

money
distance

age
measure

measurement
age

Table 1. Relation among pronoun types, NER entity types, and TREC-8
classifications.

Our evaluation has two criteria: (i) accuracy, the ratio of
questions where qa42 presents the correct answer as its most
likely candidate, and (ii) mean retrieval rate (MRR), which
is defined as follows: For each question, 1 point is awarded
if the first answer is correct, 0.5 points if the second answer
is correct, and 0.333 if the third answer is correct. Zero
points are awarded for candidates rated as fourth or lower.
The MRR is the mean average of these points.

CS224N Final Programming Assignment qa42: Web-Based Question Answering System page 5

We used four testing configurations: the full qa42 system,
qa42 with nonsimple query templates disabled, qa42 with
answer-models based scoring disabled, and the baseline
with both of these features disabled. When the nonsimple
query templates are disabled, the only query sent to Google
is the original verbatim question. When the answer models
are disabled, the scorer uses only the counts (i.e. s=1 rather
than s=r).

For each configuration, we have two sets of results: one on
all questions from TREC-8 [5] and another only on
questions that we classified correctly. The second set of
results is important since misclassification of the question
type, which is a very significant source of error, is not the
focus of our project. Thus it is reasonable to evaluate the
system separately for those questions where the
classification is correct.

5.2. Results

The results presented here are accurate as of June 7, 2007.
Since Google is dynamic, subsequent rerun of this data may
have slightly differing results.

Table 2a shows the accuracy and MRR per TREC-8
classification, while Table 2b presents the same results for
those questions that we classified correctly. qa42 performs
best on questions with who and where pronouns, followed
by when pronouns, finally by how pronouns. This is
directly related to NER accuracy on each pronoun type, so
we conclude that the augmented NER module has
significant impact on performance. On the pronoun types
where the NER module is strong, the MRR is fairly high,
around 0.6 in general.

Question misclassification is the primary source of error.
To evaluate the system without misclassification, we ran an
experiment where the correct question type was given to the
question. The results are presented in Table 3. As
expected, this improved both the MRR and accuracy
metrics, especially for questions with how pronouns, which
are the most difficult to classify.

The next step in analysis was to determine the degree to
which the query templates and the answer-model based
scoring helped. To this end, we experimented with the
configurations described above (§5.1). As can be seen from
Tables 4-6, query templates improve performance by
approximately 2-3%.

In contrast, answer-model based scoring on its own is
deleterious to performance, but is beneficial when combined
with query templates. Since the lack of templates results in
fewer candidate answers, we conclude that simple counting
works better with sparse summary sets. Additionally, since
the answer models are generated from the templates,
summaries returned by Google are not as likely to contain
appropriate matches to the models.

5.3. Analysis and Conclusion

We identified three specific areas where significant
improvement is possible: quantity entity types, the NER,
and the parser. However, we further conclude that the
mechanism of question parsing does improve the
performance of qa42.

The results show that questions in the quantity entity type
perform most poorly. We surmise that this effect is due to
the following factors: (i) The NER is the weakest for the
quantity type and is critical for accuracy in our system.
(ii) Clustering does only basic string comparisons and is
therefore extremely weak for quantities. (iii) Shallow
analysis of the pronoun subtype for this entity type weakens
the value of the query template and answer models.

Some errors would be resolved if the augmented NER were
more fine-grained. For who pronoun types, we look both
for person and organization entity types, which leads
to errors in examples such as Which company created
the Internet browser Mosaic?. In this case, the correct
answers are University of Illinois National Centre for
Supercomputing Applications and NCSA / Netscape
Communications, according to [5]. Because qa42 does not
distinguish persons from organizations, it answers Marc
Andreessen, the person who created Mosaic.

The accuracy of qa42 depends on good parse analysis and in
certain cases this process goes awry. The parse analyzer
depends on a reasonably valid parse of the question and an
error in parsing throws it off. This is especially noticeable
in the case of imperatives as discussed above (§2.1). This is
expected since the training data [3] used for the Stanford
Parser [2] contains few imperatives.

The question parse analysis in qa42 performs well for
questions such as Who killed John Lennon?. According to
our experiments, without parse analysis, qa42 returns the
answer Fenton Bressler, who has written a book titled Who
killed John Lennon? [16]. Since qa42 with parse analysis
submits John Lennon killed by as a query and John Lennon,
killed by, pronoun as an answer model, Mark David
Chapman, the correct answer, scores higher.

Thus we conclude that our basic concept is valid and that
parse analysis is key to identifying text phrases from the
search-engine summaries which contain likely answers.

5.4. Future Work

Future work on qa42 would include (i) more aggressive
interpretation of quantities to improve clustering (§3.3),
(ii) deeper analysis of pronoun types and subtypes (§2.1),
and (iii) handling additional question classifications (§5.1).

An relatively straight-forward but significant enhancement
to the augmented NER would improve resultant clustering
by standardizing quantities in much the same way as dates.
That is, the unit of measure would always follow the

CS224N Final Programming Assignment qa42: Web-Based Question Answering System page 6

quantity. For example, $ 400 would be rewritten as 400
dollars.

Additional performance gains may also be realized by
interpreting words such as million and translating units, such
as feet to meters. Thus 4 million becomes 4000000, 12 in
becomes 1 foot, and 3.28 feet becomes 1 meter. This also
implies the interpretation of common abbreviations and
varied unit notations, and pluralization or singularization as
needed.

The current version of qa42 employs a minimal analysis of
pronoun types and subtypes. Better analysis could
potentially improve the generation of query templates and
answer models. For example, How far is Yaroslavl from
Moscow? results in a template of pronoun, far, Yaroslavl,
Moscow since the parse analysis blindly inserts the query
subtype far into the template. Logic to apply context to
determine that this question is about distance would allow
qa42 to use templates that include appropriate units of
measure.

qa42 currently can only return answers that fall into a
handful of entity types. The extension we plan for this
would work as follows: If the answer type as determined
from the parse analysis module is not any one of the known
entities, the qa42 would simply mine n-grams and return
them as candidates, which could then be tiled using a
straight-forward greedy tiling algorithm similar to AskMSR
[15]. In this way, qa42 would benefit from its intelligent
approach when possible and fall back upon a more basic
approach as needed.

References

[1] Vincenzo Di Nicola and Jyotika Prasad. 42: A Web
Based Question Answering System, 2006.

[2] Dan Klein and Christopher Manning. The Stanford
Parser: A Statistical Parser.
http://nlp.stanford.edu/downloads/lex-parser.shtml.

[3] George A. Miller, et al. WordNet: a lexical database
for the English language. http://wordnet.princeton.edu.

[4] Jenny Finkel, Dan Klein, and Christopher Manning.
Stanford Named Entity Recognizer.
http://nlp.stanford.edu/software/CRF-NER.shtml

[5] Text Retrieval Conference (TREC-8). National
Institute of Standards and Technology. 1999.
http://trec.nist.gov/data/qa/t8_qadata.html.

[6] Roget's New Millennium Thesaurus, First Edition
(v 1.3.1). Lexico Publishing Group. 02 Jun. 2007.
http://thesaurus.reference.com.

[7] Wikipedia, http://en.wikipedia.org.

[8] Douglas Adams, The Hitchhiker’s Guide to the
Galaxy, BBC Radio 4, 1978.

[9] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. Web
Question Qnswering: Is More Always Better?
Proceedings of the 25th Annual international ACM
SIGIR Conference on Research and Development in
information Retrieval, pp. 291–298, ACM Press, New
York, August 2002,
http://doi.acm.org/10.1145/564376.564428.

[10] Google search engine. http://www.google.com.

[11] Mitchell P. Marcus, Mary Ann Marcinkiewicz,
Beatrice Santorini. Building a Large Annotated
Corpus of English: The Penn Treebank.
Computational Linguistics 19 (1993), 313-330.

[12] Message Understanding Conference (MUC) 7 Corpus.
Linguistic Data Consortium. Philadelphia. 2001.
LDC2001T02.

[13] ACE 2004 Multilingual Training Corpus. Linguistic
Data Consortium. Philadelphia. 2004. LDC2005T09.

[14] Conference on Computational Natural Language
Learning, CoNLL. Linguistic Data Consortium.
Philadelphia. 2005. LDC2005E43.

[15] Eric Brill, Susan Dumais, and Michele Banko. An
analysis of the AskMSR question-answering system.
Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing –
Volume 10. Association for Computational
Linguistics, Morristown, NJ, 257-264. 2002.
http://dx.doi.org/10.3115/1118693.1118726

[16] Fenton Bresler. Who killed John Lennon?
St. Martin’s Press. New York. 1989.

CS224N Final Programming Assignment qa42: Web-Based Question Answering System page 7

Entity Type MRR Score Accuracy
quantity 0.0811 0.0541
date 0.4321 0.3333
location 0.3984 0.2927
person/organization 0.5464 0.4754

Average 0.3876 0.3133
Table 2a. Results from all TREC-8 questions with full qa42 system.

Entity Type MRR Score Accuracy
quantity 0.1982 0.1892
date 0.5062 0.4074
location 0.5732 0.3902
person/organization 0.5956 0.5082

Average 0.4869 0.3916
Table 3. Results from all TREC-8 questions with full qa42 system plus entity-type

oracle.

Entity Type MRR Score Accuracy
quantity 0.0811 0.0811
date 0.3827 0.2963
location 0.3537 0.2927
person/organization 0.4508 0.3934

Average 0.3333 0.2831
Table 4a. Results from all TREC-8 questions with query templates disabled.

Entity Type MRR Score Accuracy
quantity 0.0921 0.0789
date 0.4383 0.3704
location 0.3618 0.2683
person/organization 0.4973 0.4262

Average 0.3584 0.2952
Table 5a. Results from all TREC-8 questions with answer-model scoring disabled.

Entity Type MRR Score Accuracy
quantity 0.0857 0.0857
date 0.3889 0.3333
location 0.3618 0.2927
person/organization 0.4917 0.4167

Average 0.3505 0.2970
Table 6a. Results from all TREC-8 questions with both query templates and

answer-model scoring disabled.

Entity Type MRR Score Accuracy
quantity 0.1111 0.0741
date 0.5833 0.4500
location 0.6049 0.4444
person/organization 0.6736 0.5833
Table 2b. Results from selected TREC-8 questions with full qa42 system.

Entity Type MRR Score Accuracy
quantity 0.1111 0.1111
date 0.5167 0.4000
location 0.5370 0.4444
person/organization 0.5729 0.5000

Table 4b. Results from selected TREC-8 questions with query templates disabled.

Entity Type MRR Score Accuracy
quantity 0.1250 0.1071
date 0.5917 0.5000
location 0.5494 0.4074
person/organization 0.6319 0.5417

Table 5b. Results from selected TREC-8 questions with answer-model scoring
disabled.

Entity Type MRR Score Accuracy
quantity 0.1154 0.1154
date 0.5250 0.4500
location 0.5494 0.4444
person/organization 0.6146 0.5208

Table 6b. Results from selected TREC-8 questions with both query templates and
answer-model scoring disabled.

CS224N Final Programming Assignment qa42: Web-Based Question Answering System page 8

question: Who did write Hamlet?
pronounType: WHO
mainVerb: write
mainVerbRevised: wrote
mainVerbPassive: written
mainVerbForm: PAST
objectNoun: ((NP [27.133] (NNP [23.177] Hamlet)))
parsePCFG: (ROOT [86.546] (S [86.441] (SBAR [25.134] (WHNP [9.763] (WP
[8.615] Who)) (S [11.803] (VP [11.463] (VBD [7.860] did)))) (VP [42.518]
(VB [13.309] write) (NP [27.133] (NNP [23.177] Hamlet))) (. [8.916] ?)))

getBestPCFGParse:
(ROOT [86.546]
 (S [86.441]
 (SBAR [25.134]
 (WHNP [9.763] (WP [8.615] Who))
 (S [11.803]
 (VP [11.463] (VBD [7.860] did))))
 (VP [42.518] (VB [13.309] write)
 (NP [27.133] (NNP [23.177] Hamlet)))
 (. [8.916] ?)))

queryTemplateList: [[Who did write Hamlet?], [<PRONOUN>, wrote, hamlet],
[hamlet, written by, <PRONOUN>]]

queryList:
Who did write Hamlet?
wrote hamlet
hamlet written by

answerModelList:
[<PRONOUN>, wrote, hamlet] r=1.0
[hamlet, written by, <PRONOUN>] r=1.0
[<PRONOUN>, hamlet] r=0.6666666666666666
[<PRONOUN>, wrote] r=0.6666666666666666
[hamlet, <PRONOUN>] r=0.6666666666666666
[written by, <PRONOUN>] r=0.6666666666666666

correct: William Shakespeare
qa42 answer 1: mr. william shakespeare s=12.0
qa42 answer 2: queen elizabeth s=2.0
qa42 answer 3: christopher marlowe s=1.0

Figure 2. Example.

question: Where is Microsoft's corporate headquarters located?
pronounType: WHERE
mainVerb: <BE>
mainVerbRevised: <BE>
mainVerbPassive: <BE>
objectNoun: ((NP [48.744] (NP [18.375] (NNP [17.089] Microsoft) (POS
[0.146] 's)) (JJ [11.013] corporate) (NN [15.197] headquarters)))
parsePCFG: (ROOT [98.602] (SBARQ [93.184] (WHADVP [9.392] (WRB
[9.327] Where)) (SQ [80.755] (VBZ [2.273] is) (NP [48.744] (NP [18.375]
(NNP [17.089] Microsoft) (POS [0.146] 's)) (JJ [11.013] corporate) (NN
[15.197] headquarters)) (VP [15.440] (VBN [14.105] located)) (. [8.916]
?))))

queryTemplateList: [[Where is Microsoft's corporate headquarters located?],
[<PRONOUN>, corporate headquarters, microsoft's], [corporate headquarters,
microsoft's, <PRONOUN>]]

queryList:
Where is Microsoft's corporate headquarters located?
corporate headquarters microsoft's

answerModelList:
[<PRONOUN>, corporate headquarters, microsoft's] priority=1.0
[corporate headquarters, microsoft's, <PRONOUN>] priority=1.0
[<PRONOUN>, corporate headquarters] priority=0.6666666666666666
[<PRONOUN>, microsoft's] priority=0.6666666666666666
[corporate headquarters, <PRONOUN>] priority=0.6666666666666666
[microsoft's, <PRONOUN>] priority=0.6666666666666666

correct: Redmond, Washington
qa42 answer 1: redmond r=1.2
qa42 answer 2: washington r=0.6
qa42 answer 3: phoenix r=0.4

Figure 3. Example.

CS224N Final Programming Assignment qa42: Web-Based Question Answering System page 9

question: When did the original Howdy Doody show go off the air?
pronounType: WHEN
mainVerb: go
mainVerbRevised: went
mainVerbPassive: gone
mainVerbForm: PAST
subjectNoun: ((NP [84.054] (DT [1.380] the) (JJ [13.813] original) (NNP
[23.163] Howdy) (NNP [23.163] Doody) (NN [14.678] show)))
objectNoun: ((NP [18.379] (DT [1.380] the) (NN [15.002] air)))
parsePCFG: (ROOT [159.520] (SBARQ [154.102] (WHADVP [4.435] (WRB
[4.370] When)) (SQ [139.291] (VP [137.327] (VBD [7.860] did) (NP
[84.054] (DT [1.380] the) (JJ [13.813] original) (NNP [23.163] Howdy) (NNP
[23.163] Doody) (NN [14.678] show)) (S [41.043] (VP [37.015] (VB [9.585]
go) (PRT [4.415] (RP [4.348] off)) (NP [18.379] (DT [1.380] the) (NN
[15.002] air)))))) (. [8.916] ?)))
queryTemplateList: [[When did the original Howdy Doody show go off the air?],
[the original howdy doody show, went, the air, on, <PRONOUN>], [the original
howdy doody show, went, the air, in, <PRONOUN>], [the original howdy doody
show, went, the air, at, <PRONOUN>], [the air, gone by, the original howdy
doody show, on, <PRONOUN>], [the air, gone by, the original howdy doody
show, in, <PRONOUN>], [the air, gone by, the original howdy doody show, at,
<PRONOUN>]]

QueryList:
When did the original Howdy Doody show go off the air?
the original howdy doody show went the air on
the original howdy doody show went the air in
the original howdy doody show went the air at
the air gone by the original howdy doody show on
the air gone by the original howdy doody show in
the air gone by the original howdy doody show at

answerModelList:
[the air, gone by, the original howdy doody show, at, <PRONOUN>] r=1.0
[the air, gone by, the original howdy doody show, in, <PRONOUN>] r=1.0
[the air, gone by, the original howdy doody show, on, <PRONOUN>] r=1.0
[the original howdy doody show, went, the air, at, <PRONOUN>] r=1.0
[the original howdy doody show, went, the air, in, <PRONOUN>] r=1.0
[the original howdy doody show, went, the air, on, <PRONOUN>] r=1.0
[gone by, the original howdy doody show, at, <PRONOUN>] r=0.8
[gone by, the original howdy doody show, in, <PRONOUN>] r=0.8
[gone by, the original howdy doody show, on, <PRONOUN>] r=0.8
[the air, gone by, at, <PRONOUN>] r=0.8
[the air, gone by, in, <PRONOUN>] r=0.8
[the air, gone by, on, <PRONOUN>] r=0.8
[the air, gone by, the original howdy doody show, <PRONOUN>] r=0.8
[the air, the original howdy doody show, at, <PRONOUN>] r=0.8
[the air, the original howdy doody show, in, <PRONOUN>] r=0.8
[the air, the original howdy doody show, on, <PRONOUN>] r=0.8
[the original howdy doody show, the air, at, <PRONOUN>] r=0.8
[the original howdy doody show, the air, in, <PRONOUN>] r=0.8
[the original howdy doody show, the air, on, <PRONOUN>] r=0.8
[the original howdy doody show, went, at, <PRONOUN>] r=0.8
[the original howdy doody show, went, in, <PRONOUN>] r=0.8
[the original howdy doody show, went, on, <PRONOUN>] r=0.8
[the original howdy doody show, went, the air, <PRONOUN>] r=0.8
[went, the air, at, <PRONOUN>] r=0.8
[went, the air, in, <PRONOUN>] r=0.8
[went, the air, on, <PRONOUN>] r=0.8
[gone by, at, <PRONOUN>] r=0.6
[gone by, in, <PRONOUN>] r=0.6
[gone by, on, <PRONOUN>] r=0.6
[gone by, the original howdy doody show, <PRONOUN>] r=0.6

[the air, at, <PRONOUN>] r=0.6
[the air, gone by, <PRONOUN>] r=0.6
[the air, in, <PRONOUN>] r=0.6
[the air, on, <PRONOUN>] r=0.6
[the air, the original howdy doody show, <PRONOUN>] r=0.6
[the original howdy doody show, at, <PRONOUN>] r=0.6
[the original howdy doody show, in, <PRONOUN>] r=0.6
[the original howdy doody show, on, <PRONOUN>] r=0.6
[the original howdy doody show, the air, <PRONOUN>] r=0.6
[the original howdy doody show, went, <PRONOUN>] r=0.6
[went, at, <PRONOUN>] r=0.6
[went, in, <PRONOUN>] r=0.6
[went, on, <PRONOUN>] r=0.6
[went, the air, <PRONOUN>] r=0.6
[at, <PRONOUN>] r=0.4
[gone by, <PRONOUN>] r=0.4
[in, <PRONOUN>] r=0.4
[on, <PRONOUN>] r=0.4
[the air, <PRONOUN>] r=0.4
[the original howdy doody show, <PRONOUN>] r=0.4
[went, <PRONOUN>] r=0.4

correct: 1960
qa42 answer 1: 1960 s=2.6
qa42 answer 2: 1954 s=0.8
qa42 answer 3: 1941 s=0.6

Figure 4. Example.

CS224N Final Programming Assignment qa42: Web-Based Question Answering System page 10

Query Template Format Verb Subject Object Type Example Summary

subject, verb, pronoun req req Charles Robb represents Virginia.
pronoun, passiveverb, subject req req Virginia is represented by Charlse Robb.
subject, verb, pronounsubtype, pronoun req req Charles Robb represents the state of Virginia.
pronounsubtype, pronoun, passiveverb,
subject

req req The state of Virginia is represented by Charlse Robb.

subject, verb, pronoun, pronounsubtype req req Charles Robb represents Virginia state.
pronoun, pronounsubtype, passiveverb,
subject

req req Virginia state is represented by Charlse Robb.

pronounsubtype, verb, object req req
object, passiveverb+by, pronoun req req who John Lennon was killed by Mark Chapman.
object, passiveverb+at, pronoun req req where John Lennon was killed at The Dakota.
object, passiveverb+in, pronoun req req where John Lennon was killed in The Dakota.
object, passiveverb+on, pronoun req req when John Lennon was killed on December 8. 1980.
object, passiveverb+at, pronoun req req when John Lennon was killed at 10.50pm on December 8.

1980.
object, passiveverb+in, pronoun req req when John Lennon was killed in 1980 on December 8.
subject, verb, object, in, pronoun req req req where Mark Chapman killed John Lennon in The Dakota.
subject, verb, object, at, pronoun req req req where Mark Chapman killed John Lennon at The Dakota.
object, passiveverb+by, subject, in, pronoun req req req where John Lennon was killed by Mark Chapman in The

Dakota.
object, passiveverb+by, subject, at, pronoun req req req where John Lennon was killed by Mark Chapman at The

Dakota.
subject, verb, object, on, pronoun req req req when French revolutionaries stormed the Bastille on July 14,

1789.
subject, verb, object, in, pronoun req req req when French revolutionaries stormed the Bastille in 1789.
subject, verb, object, at, pronoun req req req when French revolutionaries stormed the Bastille at sunrise

on July 14, 1789.
object, passiveverb+by, subject, on, pronoun req req req when The Bastille was stormed by French revolutionaries on

July 14, 1789.
object, passiveverb+by, subject, in, pronoun req req req when The Bastille was stormed by French revolutionaries in

1789.
object, passiveverb+by, subject, at, pronoun req req req when The Bastille was stormed by French revolutionaries at

sunrise on July 14, 1789.
subject, verb, object, pronoun req req req Mark Chapman killed John Lennon with a gun.
object, passiveverb+by, subject, pronoun req req req John Lennon was killed by Mark Chapman with a gun.
subject, verb, object, pronounsubtype,
pronoun

req req req Mark Chapman killed John Lennon in the year 1980.

pronounsubtype, pronoun, subject, verb,
object

req req req In the year 1980, Mark Chapman killed John Lennon.

object, passiveverb+by, subject,
pronounsubtype, pronoun

req req req John Lennon was killed by Mark Chapman in the year
1980.

pronounsubtype, pronoun, object,
passiveverb+by, subject

req req req In the year 1980, John Lennon was killed by Mark
Chapman.

pronounsubtype, subject, verb, object,
pronoun

req req req The year Mark Chapman killed John Lennon was
1980.

pronoun, pronounsubtype, subject, verb,
object

req req req 1980 was the year that Mark Chapman killed John
Lennon.

pronounsubtype, object, passiveverb+by,
subject, pronoun

req req req The year that John Lennon was killed by Mark
Chapman 1980.

pronoun, pronounsubtype, object,
passiveverb+by, subject

req req req 1980 was the year that John Lennon was killed by
Mark Chapman.

pronoun, verb req Bob procrastinates.
pronounsubtype, verb, pronoun req The metal that burns is magnesium.
pronoun, pronounsubtype, verb req Magnesium is the metal that burns.
pronounsubtype, pronoun, verb req The metal magnesium burns.

Table 7a. Different formats for query templates. In the example, the pronoun is underlined. This table is continued on the following page.

CS224N Final Programming Assignment qa42: Web-Based Question Answering System page 11

Query Template Format Verb Subject Object Type Example Summary

verb, pronounsubtype, pronoun req The spiffiest substance that burns is the metal
magnesium.

subject, object, pronoun, pronounsubtype opt opt how
pronounsubtype, pronoun, subject, object opt opt which
pronoun, pronounsubtype, subject, object opt opt
pronounsubtype, subject, object, pronoun opt opt
pronoun, subject, object
subject, object, pronoun
subject, pronoun, object req req

Table 7b. Different formats for query templates. In the example, the pronoun is underlined. This table was continued from the previous page.

Java Class Summary
qa42.query.Model Model for the expected answer expressed as a List of String objects. Most items in

the list represent phrases that are to be matched in the search-engine summary. Each
Model object contains one reference to the symbol pronoun to represent the position in
which the answer is expected to be found.

qa42.query.ModelList List of Model objects for a particular Question. Sorted by model priority when
constructed by TemplateList.queryModelList.

qa42.query.QuerySet Set of String objects that are sent as queries to the search engine. Each String
element represents one query.

qa42.query.Question Question to be answered. An object of this class encapsulates several attributes
including the question text, an arbitrary identifier, a list of gold-standard answers, and
analysis results including the parse results and query templates.

qa42.query.QuestionList List of Question objects. This class includes methods for reading questions from
specific plain text and XML file formats used by [5].

qa42.query.SimpleTemplate Special form of a Template object produces no Model objects. This class is used by
Question methods to insert a copy of the original question as a query template since it
contains no pronoun element.

qa42.query.Template Query template represented as a List of String objects. Each object is sent to the
search engine as a query; each element represents a phrase used to generate several
Model objects. The special symbol pronoun is included in all Model objects but excluded
from the search engine query.

qa42.query.TemplateList List of Template objects. This class contains logic to generate a QuerySet object and
a sorted ModelList object.

qa42.word.AreaList Set of words that indicate units of measure for area.
qa42.word.BeList Set of words that are forms of the verb “to be”.
qa42.word.ByteList Set of words that indicate units of measure for data storage.
qa42.word.DistanceList Set of words that indicate units of measure for distance.
qa42.word.HelperVerbList Set of words that are forms of the verb “to do” and “to have”.
qa42.word.InterrogativePronoun Enum indicating the question pronoun type, i.e. who/whom, where, when, why, how,

which, what, and other.
qa42.word.LocationList Set of words that indicate location. Words in this list, when combined with interrogative

pronouns “which” or “what”, are taken to be idiomatically equivalent to “where”.
qa42.word.MoneyList Set of words that indicate units of measure for money including the names of most

currencies through modern history.
qa42.word.PostFixList Set of words that can be used as a postfix.
qa42.word.PrefixList Set of words that can be used as a prefix, such as currency symbols.
qa42.word.TimeList Set of words that indicate units of measure for time.
qa42.word.VerbForm Enum indicating the voice and tense of the main verb, i.e. past, present singular, present

plural.
qa42.word.VerbFormConverter Logic for converting present tense to past perfect and past participle. Member Map

objects handle irregular forms.
DateMatcher NER for date entities.
HTMLPreprocessor Logic for cleaning up search-engine summaries.

Table 8. Summary of Java classes.

