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Abstract

The job of a decoder in statistical machine translation is to find
the most probable translation of a given sentence, as defined
by a set of previously learned parameters. Because the search
space of potential translations is essentially infinite, there is al-
ways a trade-off between accuracy and speed when designing a
decoder. Germann et al. [4] recently presented a fast, greedy de-
coder that starts with an initial guess and then refines that guess
through small “mutations” that produce more probable transla-
tions. The greedy decoder in [4] was designed to work with the
IBM Model 4 translation model, which, while being a sophis-
ticated model of the translation process, is also quite complex
and therefore difficult to implement and fairly slow in training
and decoding. We present modifications to the greedy decoder
presented in [4] that allow it to work with the simpler and more
efficient IBM Model 2. We have tested our modified decoder
by having it translate equivalent French and German sentences
into English, and we present the results and translation accura-
cies that we have obtained. Because we are interested in the rel-
ative effectiveness of our decoder in translating between differ-
ent languages, we discuss the discrepancies between the results
we obtained when performing French-to-English and German-
to-English translation, and we speculate on the factors inherent
to these languages that may have contributed to these discrep-
ancies.

1. Introduction and Related Work
The goal of statistical machine translation is to translate a sen-
tence in one language, say French, into another language, say
English. The statistical machine translation process is typically
divided into three parts: a language model, a translation model,
and a decoder. A language model assigns probalities to English
strings, a translation model assigns probabilities to English-
French sentence pairs based on the likelihood that one is a trans-
lation of the other, and a decoder attempts to find the English
sentence for which the product of the language and translation
model probabilities is highest. The details and derivation of this
type of machine translation system are described in Section 2.

Much research has been done on language models, but we
will not discuss such work here as it is only tangential to our
work. Our language model, which is described in Section 2.1,
was chosen for its favorable balance between simplicity, re-
source requirements, and effectiveness. Brown et al. [2] intro-
duced a set of translation models that have since been put into
use by many researchers in machine translation. These mod-
els aregenerativein that they model a process that generates a
French sentence from an English one; to translate from French
to English, it is necessary to reverse this process and determine

which English sentence was most likely to have generated the
French one that is to be translated. This generative process is
related to thenoisy channel modelof translation, which postu-
lates (falsely) that French speakers “have in mind” an English
sentence that is garbled in some way when spoken so as to be-
come a French one.

We employ the second of the models presented in [2], IBM
Model 2, and we have adapted the greedy decoder presented
in [4] to work with this model. Brown et al. did not include
a decoding algorithm in their original paper, and their only
public work to date on the subject was published in the form
of a patent application [3], which describes a priority-queue
(“stack”) based IBM Model 3 decoder. Priority-queue based
decoders typically enumerate a large subset of possible decod-
ings, forming hypotheses that are inserted into priority queues
and ordered based on heuristics. Such decoders are typically
extremely slow, especially for longer sentences (i.e., sentences
over 15 words in length). Wang and Waibel [7] have presented
a similar priority-queue based decoder that was designed to
work with IBM Model 2, and Jahr [5] has presented a sophisti-
cated priority-queue based decoder designed to work with IBM
Model 4. Germann et al. [4] recently presented an entirely new
type of decoder: a decoder that is “greedy” in the sense that it
very aggressively prunes paths from the search space, only fol-
lowing the search direction that is locally best, as determined
by a number of simple sentence “mutation” operations. Ger-
mann et al. showed their greedy decoder to be extremely fast
in comparison to stack-based decoders and only marginally less
accurate. We have chosen to base our work on this decoder. To
our knowledge, no previous work has been done in analyzing
the relative effectiveness of a particular decoder in obtaining
translations between different languages.

In Section 2 of our paper, we describe the machine transla-
tion process and our choices of language model and translation
model. In Section 3, we describe our IBM Model 2 greedy de-
coder, which is a modified version of the IBM Model 4 greedy
decoder presented in [4]. In Section 4, we describe several ex-
periments we have performed to test our decoder’s ability to
translate French and German sentences into English, and we
present the translation accuracies we were able to obtain. Fi-
nally, in Section 5, we discuss the issue of decoding errors and
look at language-specific issues that may have contributed to the
discrepancy in accuracy that we observed between translations
from French and translations from German in our experiments.

2. Statistical Machine Translation

Say we wish to translate French sentences into English ones.
Letting f be a French sentence ande be a possible English



translation, we therefore wish to find the most likely English
translation

ê = argmax
e

P (e|f), (1)

whereP (e|f) is the probability that a given French sentence
f was produced from an English sentencee (under the noisy
channel model of translation).

By Bayes’ theorem, we can rewriteP (e|f) as

P (e|f) =
P (e)P (f |e)

P (f)
. (2)

Thus, equation (1) becomes:

ê = argmax
e

P (e)P (f |e)

P (f)
. (3)

We can think ofP (e) (or P (f)) as the probability that an En-
glish (or French) speaker utters the phrasee (or f ) out of all
possible utterances. BecauseP (f) is independent ofe, we can
simplify equation (3) to obtain what the authors of [2] refer to
as the “Fundamental Equation of Machine Translation”:

ê = argmax
e

P (e)P (f |e). (4)

Thus, in order to evaluate a particular English sentence transla-
tion candidatee, we must have some way of computingP (e)
andP (f |e). The computation ofP (e), which is done by a lan-
guage model, will be discussed in Section 2.1. Because we are
using a word alignment model (specifically, IBM Model 2) for
translation modeling, we do not explicitly computeP (f |e). As
will be discussed in Section 2.2, we instead generate an align-
menta along with each English sentencee and compute

〈ê, â〉 = argmax
〈e,a〉

P (e)P (a, f |e) (5)

The concept of an alignment between a French and English sen-
tence will be defined in Section 2.2.

2.1. The Language Model

We have chosen to use a trigram mixture model (with interpo-
lation) as our language model for computingP (e) for a given
English sentencee. To computeP (e), we iterate through the
words ofe, multiplying together the conditional trigram proba-
bilities PCT (w) for each wordw as we go.

Say that we encounter a wordw3 after having seen the
words w1 and w2 (in that order). We define the conditional
trigram probability ofw3 to be:

PCT (w3) = λ1Pabs(w3)+λ2Pabs(w3|w2)+λ3Pabs(w3|w1, w2),
(6)

whereλ1, λ2, andλ3 are manually chosen interpolation pa-
rameters (we useλ1 = 0.5, λ2 = 0.3, andλ3 = 0.2), and
Pabs(w3), Pabs(w3|w2), andPabs(w3|w1, w2) are the unigram
and conditional bigram and trigram probabilities ofw3 derived
from English training sentences, usingabsolute discountingfor
smoothing.

Under our absolute discounting smoothing scheme, all pre-
viously unseen words encountered in testing data are viewed as
instances of one〈unk〉 token. Using the unigram case as an
example, we computePabs(w3) as

Pabs(w3) =


(r − δ)/N if r > 0
|S|δ/N otherwise

, (7)

whereN is the total number of words seen in the training data,
S is thesetof unique words seen in the training data,C(w3) =
r is the number of times wordw3 appears in the training data,
andδ is a manually adjusted parameter (we usedδ = 0.75).

2.2. The Translation Model: IBM Model 2

The goal of a translation model is to compute the probability
P (f |e) of a French sentencef being the translation of a given
English sentencee (or, under the noisy channel model, hav-
ing been producedfrom e). The IBM translation models (of
which there are five) rely on the concept ofsentence alignment
to compute translation probabilities. An alignmenta between a
French sentencef and an English sentencee is the mapping be-
tween words in the two sentences; if an English wordei and
a French wordfj are aligned, we say thatfj was produced
by ei in the translation process. We define the length ofe to
be l and the length off to bem; thus, i = 0, 1, 2, . . . , l and
j = 1, 2, . . . , m. We define there to be a “imaginary” word
calledNULL at the 0th position ofe, which is whyi may equal
0. If a French word is aligned to theNULL English word, that
French word is said to have been spontaneously generated; that
is, no word in the English sentence generated it during the trans-
lation process.

An alignmenta corresponding to a French-English sen-
tence pair(f , e) is a vector of alignment indicesaj mapping
words of the French sentence to words of the English sentence
(or theNULL English word). Eachaj (wherej = 1, 2, . . . , m)
takes one of the values0, 1, 2, . . . , l. Thus, if (for example)
a2 = 3, then the French sentence wordf2 is aligned to the En-
glish sentence worde3. In general, the French sentence word
fj is aligned to the English sentence wordeaj .

Because the IBM models deal with alignments, it is much
more efficient to computeP (a, f |e) than it is to compute
P (f |e) (which equals

P
a P (a, f |e)). We therefore attempt to

find the most probable sentence and alignmentpair 〈e,a〉 for
a translation, rather than just the most probable sentencee (as
described in Section 2).

We have chosen to use IBM Model 2 because it is quite a bit
simpler and more efficient than the higher IBM models, yet it is
still reasonably effective in modeling sentence translation. IBM
Model 2 definesP (a, f |e) according to the following equation:

P (a, f |e) =

mY
j=1

P (aj |j, m, l)P (fj |eaj ), (8)

whereP (aj |j, m, l) is analignment probability—specifically,
the probability that for a French sentence of lengthm and an
English sentence of lengthl thejth French sentence word will
align to theaj th English sentence word—andP (fj |eaj ) is a
translation probability—specifically, the probability that a par-
ticular French wordfj is the translation of a particular English
wordeaj .

IBM Model 2 is trained on a set of French-English sen-
tence translation pairs. Theexpectation maximization(EM) al-
gorithm, which works in an iterative fashion, is used to estimate
the optimal value for each alignment and translation probabil-
ity. Each iteration of the EM algorithm computes the expected
number of co-occurrences of a particular pair of French and En-
glish words (or of a type of alignment) and compares this value
to the actual number of co-occurrences (or alignments). The
probabilities are then adjusted to account for the differences in
these numbers. A thorough discussion of how the EM algorithm
works for training IBM Model 2 is beyond the scope of this pa-



per, and we refer the reader to [2] for a full treatment of this
topic.

The net effect of the IBM Model 2 translation model is that
unlikely translations—such asdog translating tobanane(En-
glish: banana)—and unlikely alignments—such as those in-
volving sentences of widely varying lengths—are penalized.
Some anomalies are still not penalized however; for example,
under IBM Model 2 it is just as likely for a particular English
word to align with 10 French words as it is for it align with 1
French word. This deficiency is dealt with in the higher IBM
models, at the cost of greater complexity and decreased effi-
ciency.

3. IBM Model 2 Greedy Decoding
As was discussed in Sections 2 and 2.2, our goal in perform-
ing machine translation using IBM Model 2 is to find the most
likely English sentence and alignment pair for a given French
sentence:

〈ê, â〉 = argmax
〈e,a〉

P (e)P (a, f |e)

Finding 〈ê, â〉 (or, more importantly, just̂e) is known as the
decoding problem in machine translation. Because the search
space of possible English sentences and alignments is essen-
tially infinite, it is clear that computing the probabilities of all
such pairs for each French sentence one wishes to translate is
infeasible. Various approaches to enumerating likely sentence-
alignment pairs have been developed; most such strategies per-
form a heuristic-based search using one or more priority queues,
in which partially completed sentence-alignment hypotheses
are stored (e.g., [7], [5]). We have chosen to base our decod-
ing strategy on the greedy decoding algorithm described in Ger-
mann et al. [4], which is orders of magnitude faster than existing
priority-queue (“stack”) based algorithms but has been shown
to be only marginally less effective in finding highly probable
sentence-alignment pairs.

The greedy decoder described in [4] was designed to work
with IBM Model 4, which is more complex than IBM Model 2,
the translation model we use. We thus have developed a modi-
fied version of this decoder designed to work with IBM Model
2; although our changes are relatively minor, the decoding pro-
cess would be impossible without them. Because our decoder
uses IBM Model 2 (rather than 4), theoretically it should run
faster than the decoder described in [4].

3.1. Greedy Decoder Operation

The general greedy decoding strategy described in [4] is as fol-
lows:

1. Starting with the French sentence that we wish to trans-
late (into English), we create a preliminary English
“gloss” of that sentence. For each wordf in the French
sentence, we find the English worde for which P (e|f)
is highest. Because theNULL English word may be the
most probable, it is possible for the English gloss to be
shorter than the French sentence, but it will never be
longer. Because when training the translation model, we
obtain only probabilities of the formP (f |e), we must do
some addition work to obtain the “inverse” probabilities
P (e|f). We will discuss our method of doing this below.

2. Set the current translation〈eT,aT〉 to be the English
gloss (which is a sentence and alignment pair).

3. Compute the probabilityP (aT, f |eT) of the current
translation.

4. Apply a series of “mutations” to the current translation
and compute the probabilityP (aTi , f |eTi) of the new
sentence-alignment pair generated by each mutation.
The mutation strategies we use involve adding and re-
moving words from the translation, changing the transla-
tions of words, and moving words around. These strate-
gies are described in Section 3.2. We iterate through
all possible mutations of the current translation, keep-
ing track of the best (most probable) one〈eTM ,aTM〉
we have encountered as we go.

5. If the most probable mutation〈eTM ,aTM〉 is more
probable than the current translation〈eT,aT〉, set
〈eT,aT〉 := 〈eTM ,aTM〉 and go to step 3. Otherwise,
stop.

Of the steps listed above, steps 1 and 4 require further ex-
planation. When constructing the English gloss of the French
sentence we wish to translate, we require “inverse” probabil-
ities of the formP (e|f), which are not estimated during the
IBM Model 2 training process. The authors of [4] have not de-
scribed specifically how they computed these probabilities. We
tried two methods. The first method was simply to apply the
translation model training process in reverse, which will auto-
matically estimate the inverse probabilities. We found that this
method did not work well at all, largely because it is often the
case thatP (f |e) is estimated to be low whileP (e|f) is esti-
mated to be high (or vice versa). The cause of this problem
is largely inherent to the languages involved in the translation
process. For example, there may be a common French word
f1 that usually translates to a common English worde1 and a
rare French wordf2 thatnearly alwaystranslates toe1. In this
case,P (e1|f2) will be very high, whileP (f2|e1) while be very
low (becausef2 is rare). Thus, while the English gloss that is
generated maylook good, it will actually be of very low prob-
ability and may be quite far from the optimal translation. This
issue rises from the fact that our translation model is genera-
tive: we are trying to find the English sentence most likelyto
have generatedthe given French sentence. Thus, if a particular
English word almost never generates a particular French word,
that word should not be chosen when constructing the English
gloss.

The second method we tried for calculating the inverse
probabilities is also quite straightforward and has worked well
in practice. First, we note that by Bayes’ rule,

P (e|f) =
P (f |e)P (e)

P (f)
,

wheree andf are English and French words, respectively. Sec-
ond, we note that when creating the English gloss, for a given
French wordf we are interested in the English worde for
whichP (e|f) is highest, but we are not interested in the actual
value ofP (e|f). Thus, we can simply computeP (f |e)P (e)
for each English word co-occurring withf and find the maxi-
mum of these values (and use the corresponding English word).
In the case discussed earlier, it is extremely unlikely that we
will choosee1 as a translation forf2 in the English gloss, as
P (f2|e1) will be very low.

3.2. Mutation Strategies

We will next discuss the mutation strategies that we employ in
step 4 of the process described in the previous section (3.1). We
use essentially the same mutation strategies as are described in
[4]; however, we needed to make modifications to some of them
to get them to work with IBM Model 2.



Englishe P (e generated fromNULL)
. 0.4832

the 0.1635
to 0.0499
is 0.0484
of 0.0350
it 0.0318

that 0.0301
a 0.0235
, 0.0198
in 0.0160

this 0.0155
for 0.0118

have 0.0113
are 0.0088
we 0.0066
on 0.0057
be 0.0055
and 0.0040
there 0.0029
with 0.0028
will 0.0026
has 0.0021
i 0.0019

do 0.0016
an 0.0013
’ 0.0012

about 0.0011
they 0.0011
as 0.0011

would 0.0010

Table 1:The top 30 English words we estimate to be most likely
to generate no French words in the translation process (i.e., to
have fertility 0). These words were determined to be the most
likely to have been generated from the FrenchNULL word in a
reverse training process.

We use the following mutation strategies:

• translate-one-or-two-words(j1,w1,j2,w2)
Changes the translation of the French words at positions
j1 andj2 to the English wordse1 ande2. If the English
word previously aligned to one of the French wordsfji

(i = 1, 2) is only aligned to that word andwi is the
NULL English word, then that English word is deleted
from the translation. If one of the French wordsfji is
aligned toNULL already, then the new English wordwi

is inserted into the translation in the position that yields
the highest probability. If the English words previously
aligned to one of the French wordsfji is equal to wi,
then this operation amounts to changing the translation
of one word.

As was suggested in [4], for efficiency reasons we only
attempt to change the translation of each French word its
10 most likely English translations (as determined by the
inverse translation probabilitiesP (e|f)).

• translate-and-insert(j,w1,w2)
Changes the translation of the French word at position
j to w1 and then insertsw2 into the English sentence
at the position that yields the highest probability. If the
English word previously aligned tofj is equal tow1, this
operation amounts to the insertion of one word.

For efficiency concerns, we choosew2 from a list of
1024 English words as the authors of [4] suggest. While
[4] prescribes that this list should consist of the 1024 En-
glish words most likely to have fertility 0 (i.e., not to gen-
erate any French words in the translation process), we are
using IBM Model 2 and thus do not have this data, as it is
not estimated in the model 2 training process. We have
devised an alternative method for finding words likely
to have fertility 0: we run the iterative model 2 train-
ing process in reverse, generating inverse probabilities
P (e|f) for each English/French word pair. We then pick
the 1024 English words most likely to have been gener-
ated from theFrench NULLword. Intuitively, it makes
sense that English words unlikely to have been generated
by French words are not likely to generate French words
themselveswhen the process is reversed. Table 1 shows
the 30 words deemed most likely to have been generated
from the FrenchNULL word according to this method;
the results are very similar to those obtained in [5] for the
same corpus. We have also experimented with modify-
ing this operation so that it only inserts a new word and
does no translation; we have found that this approach is
muchfaster and very rarely yields poorer results.

• remove-word-of-fertility-0 (i)
If the English word at positioni is not aligned to any
French words (i.e., has fertility 0), it is deleted from the
sentence.

• swap-segments(i1,i2,j1,j2)
Swaps the (non-overlapping) English word segments
[i1, i2] and [j1, j2]; each of these segments can be as
short as a word and as long asl−1 words (wherel is the
length of the English sentence). All alignments between
French and English words remain unchanged during the
swap.

• join-words(i1,i2)
Deletes the English word at positioni1 and aligns all the
French words thatwerealigned with this word (ei1 ) to
the English word at positioni2.

4. Results
We have tested our greedy decoder on multiple corpora and for
two types of translation: French to English, and German to En-
glish. Our first experiment involved the Hansard corpus, which
contains parallel French and English texts of Canadian parlia-
mentary proceedings. We used the sentence-aligned data pro-
duced from this corpus by Brown et al. [1]. We trained our
translation model (see Section 2.2) on approximately 100,000
sentence translation pairs, and we trained our language model
(see Section 2.1) on approximately 200,000 English sentences,
or about 4 million words of text.

We ran our decoder on 30 French sentences from the
Hansard corpus, each of which was no greater than 20 words
in length. For evaluation purposes, we have rated the quality of
each decoded sentence. Each sentence was judged either to be
fully understandable and correct, fully understandable, mainly
understandable, or not understandable. Sentences that arefully
understandable and correctmust convey the same idea that is
conveyed in the original sentence (as judged from the “gold
standard” translation) and must be grammatically correct. Sen-
tences in thefully understandableandmainly understandable
categories need not be grammatically correct, but should not be
too far off; their meanings will also be slightly distorted from



Rating Example
Original french Mon coll̀egue de Toronto dit encore 53 ans.

Fully understandable/correct Gold standard My friend from Toronto says 53 more years.
Decoded translation My colleague from Toronto says 53 more years.
Original french Ils ont d̀ejà indiqùe les embranchements que ils songeaientà fermer.

Fully understandable Gold standard They have already given an indication of the branches they intend to close.
Decoded translation They have already indicated that the branches they want to close.
Original french Si je comprends bien, on preévoit un taux de int́erêts annuel de 70%.

Mainly understandable Gold standard I understand that a rate of at least 70 per cent per annum is being contemplated.
Decoded translation If I understand it, it provides an annual rate of interest 70 per cent.
Original french Il laissait une femme et une famille.

Not understandable Gold standard He left a wife and family.
Decoded translation It hearing a woman and her family.

Table 2:To gauge the accuracy of our decoder (in combination with our language and translation models), we have assigned one of
four different ranks to each decoded translation. This table shows typical examples of translations falling into each rank. For each
example, the original sentence, the “gold standard” English translation, and the translation our decoder produced are listed.

the meaning of the original sentence or missing some parts.
Sentences in thenot understandablecategory have essentially
no value as translations. Examples of each translation rating
are shown in Table 2. We assign a score from 0 to 1 for each
rating: 1.0 forfully understandable and correct, 0.75 for fully
understandable, 0.5 formainly understandable, and 0.0 fornot
understandable. We obtained an average score of54.2% for
the 30 French sentences we tested our decoder on. Of these
30 sentences, 9 of the decoded translations were ratedfully un-
derstandable and correct, 5 were ratedfully understandable, 7
were ratedmainly understandable, and 9 were ratednot under-
standable.

Our decoder generally takes less than a second on sentences
of less than 5 words, less than 5 seconds on sentences of less
than 10 words, and less than 20 seconds on sentences of 20
words or less. The decoder typically takes anywhere from 2 to
15 iterations before it is unable to find a more probable transla-
tion using its mutation strategies. Figure 1 shows the decoding
process for one sentence in the Hansard corpus. This sentence,
which is 8 words long, took 3 iterations to decode.

Because we wanted to see how the performance of our
decoder differs when translating between different languages,
we performed a second experiment, which involved translating
both French and German sentences into English. For this ex-
periment, we used sentence-aligned text derived from the pro-
ceedings of the European Parliament [6]. This data set contains
parallel texts in French, German, and English (among other lan-
guages), which means that we can train our language and trans-
lation models on equalivalent text and then test by decoding
equivalent sentences (i.e., French and German sentences with
identical English translations). Because of memory constraints,
we were not able to train our models on quite as many sentence
translation pairs as for the previous experiment: we trained our
translation model on approximately 60,000 sentence pairs for
both French and German, and we trained our language model
on 150,000 English sentences, or about 4.5 million words of
text.

We ran our decoder on 30 French sentences and 30 Ger-
man sentences; these sentences were equivalent, in that they
were translations of each other and had identical English trans-
lations. After rating each decoded translation using the scheme
described eariier, we obtained the results shown in Table 3. Of
the 30 translations from French, 8 were ratedfully understand-
able and correct, 5 were ratedfully understandable, 10 were
ratedmainly understandable, and 7 were ratednot understand-

French German
Fully understandable/correct 8 7

Fully understandable 5 6
Mainly understandable 10 7

Not understandable 7 10

Average score 55.8% 50.0%

Table 3: The results of our decoding of 30 equivalent French
and German sentences into English. Counts of the number of
decoded sentences rated in each category are shown as well as
the average score for each language.

able; the average score for the French translations was55.8%,
which is very similar to the result obtained for the first exper-
iment. Of the 30 translations from German, 7 were ratedfully
understandable and correct, 6 were ratedfully understandable,
7 were ratedmainly understandable, and 10 were ratednot un-
derstandable; the average score for the German translations was
50.0%.

5. Analysis

5.1. Decoding Errors

When there are errors in the sentence that a decoder produces,
it is difficult to ascertain whether these errors have come as a
result of language or translation modeling errors, or as a result
of a decoding error. A decoding error is when the decoder fails
to find the English sentence that is most likely to have generated
the sentence we wish to translate. As the authors of [7] note,
decoding errors are difficult to identify: the only way to do so is
to come up with an alternative sentence for which the language
and translation models assign higher probability. One method to
detect decoding errors is to evaluate the probability of the “gold
standard” translation having generated the sentence that is being
translated. If the probability of this sentence is higher than that
of the decoded sentence, there certainly was a decoding error;
however, if the probability isnot higher, which was the case for
most of our decodings, we still do not know whether or not there
was a decoding error. This sort of finding does, however, give us
some indication that our language and translation models may
sometimes be failing to work adequately.



Figure 1:This figure depicts the translation process of our greedy decoder for a particular French sentence, “Mon collègue de Toronto
dit encore 53 ans.” The first English sentence is the gloss generated in the first stage of the decoding process. Each additional English
sentence and alignment pair was generated using the mutation operation indicated next to the arrow pointing to it. The lines connecting
French and English words represent the alignment at each stage of the process. The “gold standard” translation of the French sentence
was: “My friend from Toronto says 53 more years.”

5.2. Language-specific Issues

Although there was not a huge difference in the average scores
obtained by our decoder for French-to-English and German-to-
English translation in the second experiment described in Sec-
tion 4, the decoder did score about 6% higher for its translations
from French, and the translations from Germanwereof notice-
ably poorer quality. For example, our decoder translated the
German sentence “In Tadschikistan wird damit kein einziges
Problem gel̈ost” into “, Tajikistan is no problem is solved,”
whereas it translated the equivalent French sentence “Cette aide
ne permettra de résoudre aucun problème au sein du Tadjik-
istan” into “This is not capable of solving the problem within
Tajikistan.” The “gold standard” English translation of this sen-
tence was “As such, this will not solve any problems within
Tajikistan,” which is similar to the French translation.

We suspect that much of the discrepancy in performance
between our translations between French and German and En-
glish can be accounted for by looking at characteristics of the
languages being translated. While some of this discrepancy is
likely caused by language and/or translation modeling errors,
we suspect that much of it is actually caused by errors in decod-
ing (see Section 5.1). One very important aspect of greedy de-
coding is the choice of initial state for the first iteration. As we
discussed in 3.1, the algorithm we use forms an English “gloss”
of the French (foreign) sentence that we wish to translate. Im-
portantly, this gloss is aligned directly with the French sentence,
which is to say that the first word in the gloss is aligned with the
first word in the French sentence, and so on. If the most prob-
able translation is aligned similarly, this strategy works well;
if, on the other hand, the most probable translation is aligned
in a substantially different manner, it is likely that the greedy
decoding algorithm will fail to make the “jump” to the optimal
solution and will instead get caught at a local maximum.

Although the word order of French and German sentences
is generally not that far off of the word order of their English
counterparts, both languages do have features that may give our
greedy decoder a hard time. We suspect that the word order dis-
crepancies between German and English are more serious than
the discrepancies between French and English, and the results

of our second experiment seem to support this conclusion. In
the following two sections, we discuss some of the word order
issues that arise in French-to-English and German-to-English
translation.

5.2.1. French-to-English alignment issues

Most (but not all) French adjectives comeafter the noun that
they modify. Thus, every (successful) greedy decoding of a
French sentence containing adjectives will usually involve one
or more uses of theswap-segmentsmutation strategy (see Sec-
tion 3.2). In addition, pronouns in French will often appear
before the verb when they serve as the direct or indirect ob-
ject of a sentence. This issue also generally requires thatswap-
segmentsbe used during greedy decoding for the sentences it
impacts.

Although in the interest of brevity we will not discuss all of
the discrepancies between French and English word orderings,
it appears to us that most, if not all, such discrepancies can be
remedied using a single mutation operation—most oftenswap-
segments. As we will see in the next section, this is sometimes
not that case in German to English translation.

5.2.2. German-to-English alignment issues

The word order issue in German-to-English translation is a se-
rious one. In general, German verbs that are not in the present
tense appear in a very different place than they would in equiv-
alent English sentences. For example, one German equivalent
of “I ate at the restaurant on Monday” is “Ich habe an der
Gastsẗatte am Montag gegessen,” wheregegessenis essentially
the German translation ofate. The English gloss of this sen-
tence might be “I have on the restaurant on Monday ate,” which
is likely to be assigned low probability by the language model.
We suspect that our decoder has a hard time properly translat-
ing sentences like this because it generally takes more than one
mutation operation to see an improvement in translation proba-
bility. For example, if thejoin-words operation were used to re-
placehavewith atein the English gloss above, we might obtain
the sentence “I ate on the restaurant on Monday.” While this



sentence still has problems, it will likely be gauged as much
more probable by the language model;however, because we
have moved the wordateso far from the diagonal, the transla-
tion (alignment) model may penalize the new sentence enough
that it is not seen as an improvement over the gloss. On the
other hand, iftranslate-one-or-two-words is used to translate
on to at in the gloss (obtaining the new sentence “I have at the
restaurant on Monday ate”) there will likely be no substantial
improvement to either the language or translation model proba-
bility. If both of these changes had been made simultaneously,
therewouldbe a substantial improvement in probability, but the
greedy decoder only performs one operation per iteration, so
such a jump is impossible.

In Section 5.2 we mentioned that our decoder did a very
poor job translating the German sentence “In Tadschikistan
wird damit kein einziges Problem gelöst.” This sentence ex-
hibits the problem we have just described: the verb is not in
the present tense, so it appears at the end of the sentence. The
bizarre translation that our decoder produced (“, Tajikistan is no
problem is solved,”) is evidence for our suspicion that this word
ordering issue is a significant problem for the greedy decoding
strategy that we employ. There are certainly other discrepancies
between German and English word order that (in the interest of
brevity) we will not discuss, but we feel that this one is likely
one of the most problematic.

6. Conclusion
We have presented a modified greedy decoder for IBM Model
2 that was based on the greedy decoder presented in [4]. Ac-
cording to a rating scale that we devised, our decoder—in com-
bination with our language and translation models—obtained a
translation accuracy of about 55% for French-to-English trans-
lation and of about 50% for German-to-English translation.
We have discussed language-specific issues that may have con-
tributed to the discrepancy in these accuracies, and we have
argued that it is likely mainly our decoder itself—rather than
our language and translation models—that interacted negatively
with these language features.
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