Parser evaluation across text types

Yannick Versley Seminar für Sprachwissenschaft Universität Tübingen E-mail: versley@sfs.uni-tuebingen.de

Workshop on Treebanks and Linguistic Theories, December 2005

2 Construction and evaluation of the parser

- (Beil et al., 2002; Schulte im Walde, 2003)
 Unsupervised training of a hand-written PCFG
- (Dubey and Keller, 2003) Lexicalized parsing for German isn't better than unlexicalized parsing, but keeping some horizontal context helps

- (Beil et al., 2002; Schulte im Walde, 2003)
 Unsupervised training of a hand-written PCFG
- (Dubey and Keller, 2003) Lexicalized parsing for German isn't better than unlexicalized parsing, but keeping some horizontal context helps
- (Foth et al., 2004) Weighted Constraint Dependency Grammar Parsing as optimization with declarative rules

- (Beil et al., 2002; Schulte im Walde, 2003)
 Unsupervised training of a hand-written PCFG
- (Dubey and Keller, 2003) Lexicalized parsing for German isn't better than unlexicalized parsing, but keeping some horizontal context helps
- (Foth et al., 2004) Weighted Constraint Dependency Grammar Parsing as optimization with declarative rules
- (Müller, 2004) Extended finite-state approach

- (Beil et al., 2002; Schulte im Walde, 2003)
 Unsupervised training of a hand-written PCFG
- (Dubey and Keller, 2003) Lexicalized parsing for German isn't better than unlexicalized parsing, but keeping some horizontal context helps
- (Foth et al., 2004) Weighted Constraint Dependency Grammar Parsing as optimization with declarative rules
- (Müller, 2004) Extended finite-state approach
- (Schiehlen, 2004), (Dubey, 2005) Accurate unlexicalized PCFGs

Statistical Parsing of German

Construction and evaluation of the parser Results References

Evaluations

	Dubey	Schiehlen	Foth	Müller	This
TüBa-D/Z (Dep)			*		*
TüBa-D/Z (GF)			*	+	*
Negra (Dep)		+	+		*
Negra (CS)	+	+			
CDG Corpus (Dep)			+		*

- Different measures (Parseval vs. Dependencies vs. Grammatical Functions)
- Different text types TüBa/Negra: newspaper text CDG Corpus: newswire text, trivial/serious literature, law text

Statistical parsing of German

- Freer word order and richer morphology than English
- More nonprojectivity
- Lexicalization helps for other highly configurational languages such as French (Arun and Keller, 2005), but only very little for German (Dubey and Keller, 2003)

 1 = all sentences of the first release

Statistical parsing of German

- Freer word order and richer morphology than English
- More nonprojectivity
- Lexicalization helps for other highly configurational languages such as French (Arun and Keller, 2005), but only very little for German (Dubey and Keller, 2003)
- As an example for a state of the art statistical parser, we developed an unlexicalized PCFG parser using BitPar (Schmid, 2004) and TüBa-D/Z

 $^{^{1}}$ = all sentences of the first release

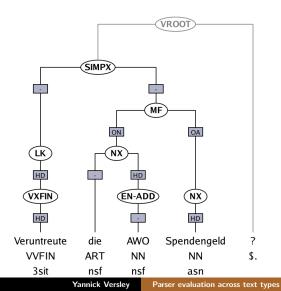
Statistical parsing of German

- Freer word order and richer morphology than English
- More nonprojectivity
- Lexicalization helps for other highly configurational languages such as French (Arun and Keller, 2005), but only very little for German (Dubey and Keller, 2003)
- As an example for a state of the art statistical parser, we developed an unlexicalized PCFG parser using BitPar (Schmid, 2004) and TüBa-D/Z
- Contrary to Negra, TüBa-D/Z (2nd release) contains morphology information for 15 260 sentences¹.

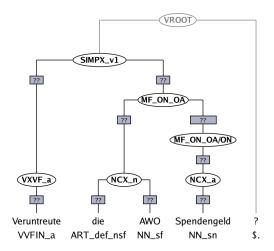
 $^{^{1}}$ = all sentences of the first release

From a treebank to a PCFG

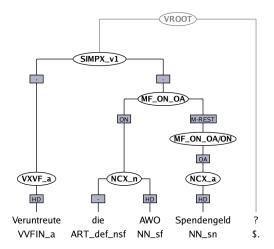
- Different goals for treebanking and PCFG construction:
 - annotating linguistic information in a convenient way vs.
 - independence assumptions of a PCFG

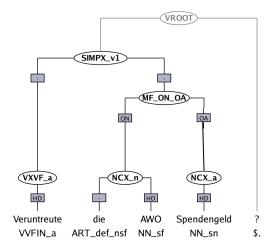

From a treebank to a PCFG

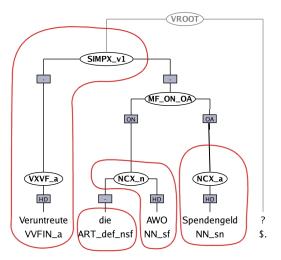
- Different goals for treebanking and PCFG construction:
 - annotating linguistic information in a convenient way vs.
 - independence assumptions of a PCFG
- Enriching node labels by adding information that would be lost to the PCFG
 - Incorporate morphological information
 - Subcategorize clauses by their form
 - Annotate arguments of verbs in the topological fields

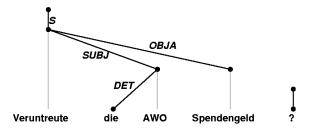

From a treebank to a PCFG

- Different goals for treebanking and PCFG construction:
 - annotating linguistic information in a convenient way vs.
 - independence assumptions of a PCFG
- Enriching node labels by adding information that would be lost to the PCFG
 - Incorporate morphological information
 - Subcategorize clauses by their form
 - Annotate arguments of verbs in the topological fields
- Limiting yourself to the information that can be estimated from the treebank
 - Underspecified morphology
 - Disregarding rare verb complements in subcategorization
 - Better unknown word classification


An Example: Treebank


An Example: PCFG


An Example: Relabeling


An Example: Undo Markovization

An Example: Head projection

An Example: Dependencies

Results (quantitative)

- Baseline for the unmodified treebank grammar: 80.0% unlabeled F-measure against manually converted trees 78.0% on Negra
- TüBa-D/Z:

85.4% unlabeled F-measure against manually converted trees 87.2% against automatically converted trees

- Negra: 84.1% on development set (sent. 1-3000), 83.6% on unseen test set (sent. 18603-19602)
- Grammatical functions on TüBa-D/Z (F-measure): 86.9% (SUBJ), 73.5% (OBJA), 53.8% (OBJD)

Comparison to previous work

- For the grammatical function task, Foth's WCDG parser performs slightly better than Müller's parser, which in turn visibly outperforms the PCFG parser
- On the Negra test set, our PCFG parser performs better than Schiehlen's (83.6% vs. 81.7% unlabeled F-measure) Foth's WCDG parser outperforms both (89.0% unlabeled F-measure)
- For the "serious literature" texts, our PCFG parser is slightly better in terms of unlabeled F-measure (80.7% vs. 78.0%)
- For the law text, our PCFG parser performs much worse than Foth's WCDG parser (62.2% vs. 88.8%)

Conclusion

- With existing tools, it is possible to construct an unlexicalized PCFG parser from a treebank in a reasonable timeframe (about 6 months).
- Statistical parsing for German² is lacking not only in comparison with results for English, but also in comparison with manually constructed parsers for German
- Introducing morphological features is important, but easily leads to sparse data problems in a PCFG.
- Outlook: Reranking with global features

²This probably applies to other languages with freer word order

References

Thanks for listening

The End

Yannick Versley Parser evaluation across text types

Arun, A. and Keller, F. (2005).

Lexicalization in crosslinguistic probabilistic parsing: The case of french.

In ACL'05, pages 306-313.

Beil, F., Prescher, D., Schmid, H., and Schulte im Walde, S. (2002).Evaluation of the Gramotron parser for German.In *LREC'02*.

Dubey, A. (2005).

What to do when lexicalization fails: parsing German with suffix analysis and smoothing.

In Proc. 43rd Annual Meeting of the Association for Computational Linguistics (ACL-2005).

Dubey, A. and Keller, F. (2003).

Probabilistic parsing for german using sister-head dependencies. In *ACL'2003*.

Foth, K., Daum, M., and Menzel, W. (2004).

A broad-coverage parser for German based on defeasible constraints.

In KONVENS 2004, Beiträge zur 7. Konferenz zur Verarbeitung natürlicher Sprache, pages 45–52, Wien.

Müller, F. H. (2004).

Annotating grammatical functions in german using finite-state cascades.

In Proc. 20th Int. Conference on Computational Linguistics (COLING 2004).

Schiehlen, M. (2004).

Annotation strategies for probabilistic parsing in german.

In Proc. 20th Int. Conference on Computational Linguistics (COLING-2004).

Schmid, H. (2004).

Efficient parsing of highly ambiguous context-free grammars with bit vectors.

In Proc. 20th Int. Conference on Computational Linguistics (COLING 2004).

Schulte im Walde, S. (2003).

Experiments on the Automatic Induction of German Semantic Verb Classes.

PhD thesis, Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart.