p-10f9

Written Test
CSE 1020 3.0
Section A, Summer 2011

Family Name:

Given Name(s):

Student Number: | | | | ! | | | \ \

Guidelines and Instructions:

1.

This is a 80-minute test. You can use the textbook, but no electronic aids such as
calculators, cellphones etc.

. Answer questions in the space provided. If you need more space, use the back of

the page. Clearly indicate that your answer continues on the back of the page.

. Write legibly. Unreadable answers will not be marked.

Leave your ID on the desk. A sign-up sheet will be distributed during the test. By
signing it, you acknowledge that you are registered in the course and you are the
owner of the associated ID.

. Keep your eyes on your own work. At the discretion of the invigilators, students

may be asked to move.

Question | Out of Mark
Q1 20
Q2 20
Q3 20
Q4 20
Total 80
Letter grade

p-20f9

All questions in this exam refer to the following set of classes. Study them carefully
before answering any questions.

«interface» «utility»
Iterator Utility

+search(in warehouse : Warehouse, in id : long) : Asset
+copy(in warehouse : Warehouse) : Warehouse

Warehouse
-isLocked : boolean
+addAsset(in asset : Asset) : boolean

1

Asset Sat
-id : long - __ate
-name : String ‘*- ay : |n. .
-dateAcquired : Date) 1 -mont_h_. ;nt
+getinfo() : String -year:in
+Asset(in name : String, in date : Date)

SoftwareAsset HardwareAsset
-version : Strmg -location : Strlng
+getinfo() : String +getinfo() : String

Some of the attribute and methods in these classes are self-explanatory. The follow-
ing pages provide extra information on the remaining attributes as well as the getInfo,
search and copy methods.

The Warehouse class stores information about company assets. The isLocked attribute

p-30f9

indicates whether the warehouse is locked, which means that it is impossible to add as-
sets.

The company has two types of specialized assets: SoftwareAsset and HardwareAsset

Every asset has a name, an automatically generated unique id number, and a purchase
date (dateAcquired).

Software assets have the attribute version which contains information about the soft-
ware version, such as "Microsoft Word 2008".

Hardware assets have the attribute location which contains information about the
location of the asset, such as "Server Room".

The getInfo method in class Asset returns a string containing detailed information
about the asset as in the sample below:
Type : Asset
ID:12
Name : Windows
Date Acquired : 14/07/2011

The getInfo method in class SoftwareAsset returns a string containing detailed in-
formation about the software asset as in the sample below:
Type : Software
ID:12
Name : Windows
Version : Windows 7
Date Acquired : 14/07/2011

The getInfo method in class HardwareAsset returns a string containing detailed in-
formation about the hardware asset as in the sample below
Type : Hardware
ID:15
Name : Switch
Location : Server Room
Date Acquired : 14/07/2011

The search method in class Utility finds and returns an asset that matches a given
id. If no asset matches the given id, null is returned.

The copy method in class Utility create a copy of the Warehouse object.

p-40f9

Instructions pertaining to all questions in this exam

e Minor syntax errors and outputting formatting problems in your answers will not
affect your mark. Concentrate on concepts rather than syntax.

e Classes Warehouse, Asset ,SoftwareAsset, HardwareAsset, and Date have construc-
tors that initialize all attributes, as well as accessors and mutators for all attributes

p-50f9

Q1. [20 marks] Assume that w is a reference to a Warehouse object that is already popu-
lated with assets.

(@) [10 marks] Write a fragment that prints detailed information about all assets
in w. The datailed information must be as in Pg. 3, i.e. it differs depending
on whether we have a generic asset, a software asset, or a hardware asset. No
marks will be given for unnecessarily convoluted solutions.

for(Asset a:w)
{

output.println(a.getInfo());
}

p-60f9

(b) [10 marks] Write a fragment that calculates how many hardware assets are in
w.

int count = O;
for(Asset a:w)
{
if (a instanceof HardwareAsset)
count++;

p-70of9

Q2. [20 marks] Write a fragment of code which determines what level of copy is imple-
mented in the copy method of the Utility class. Your fragment must output one
the following strings as appropriate: Aliasing, Shallow, Deep.

Warehouse w = new Warehouse();

Date date = new Date("12/12/12");

Asset asset = new SoftwareAsset("test","version",date);
w.addAsset (asset) ;

Warehouse w2 = Utility.copy(w);

if (w2 == w)
output.println("Aliasing");
else {
Asset a = Utility.search(w, asset.getID());
Asset b = Utility.search(w2, asset.getID());
if (a == D)
output.println("Shallow");
else

output.println("Deep");

p-80f9

Q3. [20 marks] Write a fragment that verifies the relations between classes Asset, Warehouse,
and Date in the UML diagram. If all is well, the fragment should output nothing.
Otherwise, it should output one or both of the following messages as appropriate:

There is no composition between Date and Asset

There is no aggregation between Warehouse and Asset

Date date = new Date("12/12/12");
Asset asset = new SoftwareAsset("test","version'",date);
date.setDay(14);
if (asset.getDateAcquired().equals(date))
output.println("There is no composition between Date and Asset");

Warehouse w = new Warehouse();
w.addAsset (asset) ;
asset.setDateAcquired(new Date("12/12/12"));
Asset b = Utility.search(w,asset.getID());
if (!b.equals(asset))

output.println("There is no aggregation between Warehouse and Asset");

p-9o0f9

Q4. [20 marks] You are asked to test an application that reads two integers, x and y, and
outputs a string. The key part of the code is shown below:

final int MIN = 5;
final int MAX = 10;
final int LIMIT = 5;
if (x < MIN)
{
output.println("Left");
} else if (x < MAX && y < LIMIT)
{
output.println("Middle");
} else if (x < MAX)

{

output .println("Top");
} else
{

output.println("Right");
}

Propose test cases that will accomplish execution-path coverage.

Execution-path coverage include test cases which ensure that every statement and
every path in code will be executed. (0, 0) ; (6,1); (6;7); (12,0);

