
CSE3215 Lab3 W11 1

CSE3215 Embedded Systems Laboratory

Lab3 – Reaction Time Measurement

Introduction
Human reaction time is a parameter of interest in many psychological and
physiological studies of the effects of drugs, stress, attention etc. In order to
measure reaction time an experimenter presents a stimulus to the subject (for
example a flashing light or a beep) and measures the time that passes until the
subject reacts (for example pushes a button). Tests measuring the reaction time
to single audio or visual stimuli can measure the “vigilance” of the central nervous
system. More complex reaction test involving different stimuli can measure the
speed of the decision making and response selection process.

Objective
The objective of this lab is to provide you with experience with microcontroller
peripheral and I/O interfacing. To accomplish this you will design a “complex”
reaction timer based on the Dragon12 board. The reaction timer is complex in the
sense that although only a single visual stimulus is used the subject must still
make a decision in determining the correct response.

Design Specifications
The reaction timer measures and displays the reaction time of a subject’s
response to a visual stimulus. The reaction timer uses LEDS PB7 and PB0 as the
visual stimulus and pushbuttons SW2 and SW5 as the response mechanisms.

1. The reaction timer must measure reaction times up to 9999+/-1ms.

2. Measurements are displayed on the 7-segment display with leading zeros

blanked i.e. display “ 67” and not “0067”.

3. The system starts up in an idle state with the power-up message “P000”
displayed on the 7-segment display while waiting for the first reaction time
measurement to be initiated.

4. Pushbutton SW3 is used to start a new reaction time measurement.

Actuating SW3 blanks the 7-segment display; the measurement itself does
not start until the release of SW3. Upon the release of SW3 a random
stimulus onset delay (500ms to 3sec) is started. After the stimulus onset
delay is complete the stimulus LEDS (PB7 or PB0) are pulsed for 100ms.
The system then waits for a press of the response buttons (SW2 or SW5).
Following the press of the response buttons the measured reaction time for
this trial is displayed on the 7-segment display. If a valid response is not
received within 9999ms after the stimulus LEDS are pulsed then the

CSE3215 Lab3 W11 2

measurement is discarded and the value “E001” is displayed indicating an
error condition. The system then waits for a new reaction time
measurement request.

5. The onset delay time must be random and within the range of 500ms to

3sec.

6. The choice of which stimulus LEDS to display for each measurement must
be random and either PB7 or PB0.

7. Pushbuttons SW2 and SW5 are used as the subjects response mechanism.

Which button(s) used during a measurement is dependent on the stimulus
LEDS used for that measurement. Use SW2 to record responses to
illumination of LED PB7 and use SW5 to record responses to illumination of
LED PB0.

8. The reaction time is defined as the time interval between the initial display

of the LEDS PB7 or PB0 to the actuation (falling edge) of the correct
pushbuttons, SW2 or SW5.

Pre Lab
1. How many timers are available on the MC9S12DP256B microcontroller?

2. What other feature is incorporated into the MC9S12DP256 timer module

that maybe of use in measuring time intervals?

3. Where is the interrupt vector table located in the MC9S12DP256B’ s
memory map? What happens to this vector table when using D-Bug12?

4. What is the interrupt vector address for the Real-Time Interrupt (RTI) when

using the MC9SDP256B with and without D-Bug12?

5. Develop your reaction timer according to the design specifications in:

• Assembler using the _CSE3215_ABS_ASM stationery for absolute
assembler projects.

• Assembler for absolute or the _CSE3215_RELOC_ASM stationery
for re-locatable assembler projects.

• C using the _CSE3215_C_MS stationery. (preferred)
A complete design and compiled implementation is required prior to starting
the lab.

Hints
It may be possible to generate pseudo random numbers using the timer modules
16-bit main timer register TCNT, you may have to mask certain bits to achieve the
necessary results but for the purposes of this lab the level of “randomness”
obtained is adequate.

CSE3215 Lab3 W11 3

Reference Material
Dragon12 Schematics

Dragon12 Schematics.pdf

Reference Guide For D-Bug12 Version 4.x.x
DB12RG4 April 04, 2005.pdf

MC9S12DP256 Advanced information

MC9S12DP256B.pdf

Procedure
1. Download and debug your program on the Dragon12.

2. Use the oscilloscope and or logic analyzer to help you debug your program

and verify your reaction time measurements.

Evaluation
1. Prelab (including preliminary code) 20%
2. Lab demonstration, in-lab explanations and answers, debug and test

approach 60%
3. Program/design documentation (code should be well documented but no

report is required – submit electronically within 24 hours on Prism) 20%

Demonstrate your program to the T.A showing that it conforms to the design
specifications. Part of this demonstration must be a measurement of the reaction
time using both the oscilloscope and logic analyzer.

CSE3215 Lab3 W11 4

Appendix A: Declaring Interrupt Routines
There are two things one must remember when setting up interrupt service
routines (ISR): 1. You must use the “rti” return from interrupt instruction not the
“rts” return from subroutine instruction to return from the ISR. 2. The address of
the ISR must be stored in the correct vector address for the interrupt source.

To declare a function in C/C++ as an interrupt service routine (ISR) use the
keyword interrupt as part of the functions return type as follows:

#pragma CODE_SEG __NEAR_SEG NON_BANKED
interrupt void MyISR(void)
{
 your code
}

#pragma CODE_SEG DEFAULT

Note: This function has a return type of void and does not accept any parameters.
The keyword interrupt informs the compiler that this is an ISR and as such the
compiler will use the correct rti instruction and not the rts instruction to return from
the ISR.

To place the ISR in the correct vector address edit the isrVectors.c file placing the
proto-type for your ISR in the “External ISR Function prototypes” section as
follows:

/***
 External ISR Function prototypes
**/
interrupt void MyISR(void);

Then within the const IsrFunc _vectab[] @0x3e00 structure replace the null 0 with
the name of your ISR in the line with the description of the appropriate interrupt
source. The @0x3e00 tells the linker to place this structure at address 0x3e00.
Below shows how to set the MyISR routine in the correct vector address for
PORTH.

(IsrFunc)0, /* Mod Down Cnt Underflow 0xFFCA */
(IsrFunc)MyISR, /* PortH Interrupt 0xFFCC */
(IsrFunc)0, /* PortJ Interrupt 0xFFCE */

Note: Do not edit this structure any further. If you do want to make use of an
interrupt then replace the name of the ISR with the null 0.

CSE3215 Lab3 W11 5

Declaring a sub-routine in Assembler as an (ISR) is the same as that of a
subroutine that does not retrieve parameters via the stack. Just remember to
return from the subroutine using the “rti” instruction and not the “rts” instruction.

MyISR:
 your code
 rti

You must manually store the address of your ISR in the proper vector address as
part of your code. As an example to set your ISR to service interrupts generated
by PORTH one can do the following:

movw #MyISR, $3E4C

Note: Do not forget to initialize the stack in assembler based applications.

