====== Lectures ====== The Lectures for this course include: * {{:lecture_1.ppt|Lecture 1 - course introduction and fuzzy logic}} * {{:lecture_2.ppt|Lecture 2 - preliminaries and fuzzy logic}} * {{:rs-kdd.ppt|Alternative Lecture 2 - Rough Sets in KDD: Tutorial Notes}} * {{:lecture_3c.ppt|Lecture 3 - finish fuzzy logic and begin rough sets}} * {{:flcases.pdf|fuzzy logic cases}} * {{:lecture_4.ppt|Lecture 4 - more roughsets}} * {{:lecture_5x.ppt|Lecture 5 - more roughsets-Various Reducts & Rough Sets Applications}} * {{:umuai2007_aug31.pdf|application 1}} * {{:ohrn_thesis.pdf|application 2}} * {{:p1120548004.pdf|application 3}} * {{:camwa2008pp.pdf|application 4}} * {{:full3912.pdf|application 5}} * {{:lecture_6.ppt|Lecture 6 - Neural Networks}} * {{:lecture_7a.ppt|Lecture 7 - More on Neural Networks}} * {{:cse4403lec8.pdf|Lecture 8 - Evolutionary Computing: What}} * {{:cse4403lec9.pdf|Lecture 9 - Genetic Algorithms & Evolution Strategies}} * {{:cse4403lec10.pdf|Lecture 10 - Evolutionary & Genetic Programming}} * {{:cse4403lec11.pdf|Lecture 11 - Probabilistic Reasoning: Why}} * {{:cse4403lec12.pdf|Lecture 12 - Bayesian Networks}} * {{:cse4403lec13.pdf|Lecture 13 - Discussion on Bayesian Networks}} * {{:lecture_14_copy.ppt|Lecture 14 - Recurrent Neural Networks}} * {{:lecture_14aa.ppt|Lecture 14a - The Next Generation Neural Networks - G. Hinton}} * {{:lecture_14b.ppt|Lecture 14b - Neural Networks - Single Layer}} * {{:lecture_14c.ppt|Lecture 14c - Neural Networks - Probabilistic}} * {{:lecture_14d.ppt|Lecture 14d - Neural Networks - Learning}} * {{:lecture_14f.ppt|Lecture 14e - Neural Networks - Feed Forward}} * {{:lecture_15.ppt||Lecture 15 - Web Intelligence, Brain Informatics and Granular Computing}} * {{:wimbit.ppt|Lecture 15a - Web Intelligence meet Brain Informatics}} * {{:lecture_16.ppt|Lecture 16 - Granular Computing}} * {{:att00207.ppt|Lecture 16a - Zadeh's Granular Computing}} * {{:conceptual_granularity_fuzzy_and_rough_sets.ppt|Lecture 16 - Erich's Granular Computing}} * {{:granular_computing.pdf|Lecture 16c - Skrowon's Granular Computing}} * {{:lecture_17.ppt|Lecture 17 - Introduction to Expert Systems}} * {{:bayesian_network_modeling_for_evolutionary_genetic_structures.ppt|Lecture 18 - Bayesian Network Modeling for evolutionary genetic structures}} * {{:cercone.ppt|Lecture 19 - A graph theory approach to characterize the relationship between protein functions and structure of biological networks}} * {{:lecture_20.ppt|Lecture 20 & 21- Ontology and Representation}} * {{:lecture_22.ppt|Lecture 22 - Course Review}}