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1. Introduction: 

Professional football is a multi-billion industry. NFL is by far the most successful sports league in 

America. The games are very exciting because outcomes of the games are very unpredictable. The injuries 

to players, psychological factors and leagues rules to create parity by allowing weaker teams to draft first 

make it even harder to guess the winner.  

  The goal of this project is to predict the winner of an NFL game. The outcome of no game can be 

predicted deterministically. Therefore the goal is to come up with a system that is comparable or better than 

human prediction. 

2. Data:  

Data is based on NFL seasons 2003, 2004, and 2005 scores and statistics. I crawled the web for 

the data. Different statistics are available on different web pages. I wrote some code in java and perl to 

extract required links and parse the html pages. I also wrote a fairly big java program to combine and 

process the different statistics for each team and output them in the required format.   

 

3. Training and testing methodology: 

I used a scheme similar to leave-one-out-classification with an additional constraint: You can not 

use the data from the games that happen in the same week or future weeks. We can technically use the 

statistics from games that happen in the earlier hours of the same day, but it would make the 

implementation much harder. 

  I did not classify the first two weeks of each season, although those weeks are used as training 

data. I didn't classify the first two weeks because some of my features depend on averages in past 3 weeks. 

 

4. Algorithms:  

At the beginning I was not sure if machine learning is applicable to this subject. Therefore I started 

with the simplest models to gain an intuition about the problem. I chose to try logistic regression and svm 

with different kernels. 

 

4.1 Logistic Regression 

I used my own implementation of logistic regression in matlab, which used Newton-Raphson 

method. It was by far the fastest algorithm in all my experiments.  

 

4.2 SVM with Different Kernels 

I used svm-light with linear, polynomial and tangent kernels. I also tried the sigmoid kernel for 

one or two experiments; however the results were not very good.  I tried different parameters for each type 

of kernel with two different basic feature sets and settled on the following parameters for the rest of the 

experiments: 

 

kernel formula params 

linear  C:1 

poly (s a*b+c)^d s:default, c:1, d:2, C:1 



Tan tanh(s a*b + c) s:0.1, c:1, C:1 

Table 1.( C: trade-off between training error and margin) 

 

4.3 Feature Sets 

I started with two groups of features and experimented with different feature sets from each group. 

For each feature I calculated that feature’s average. I calculated the average in two different ways (see 5.2 

for an explanation of averaging methods) 

4.3.1 Win-ratio Features 

The first group was what I call Win-ratio features.  Here are all the features in the Win-ratio group. 

For different experiments I omitted some of the features.  

{weekNo, VT_TeamNo VT_BothWin-ratio VT_HomeWinRatio VT_AwayWinRatio VT_3weekWinRatio 

VT_AvgPointsScored VT_AvgPointsAllowed HT_TeamNo HT_BothWinRatio HT_HomeWinRatio 

HT_AwayWinRatio HT_3weekWinRatio HT_AvgPtsScored HT_AvsPtsAllowed } 

 

4.3.2 Game Statistics Features 

  These were mainly composed of statistics for each game averaged over different games.  

There are too many game statistic features to mention all of them here (78 for each team plus weakNo). 

Here is a sample of these features. 

 {weekNo VT_TeamNo , final_score, AVG_YARDS_BY PASSING, AVG_YARDS_BY PENALTY[1] 

AVG_THIRD DOWN EFFICIENCY, AVG_FOURTH DOWN EFFICIENCY EFFICIENCY[2],TOTAL NET 

YARDS,  TOTAL OFFENSIVE PLAYS AVERAGE GAIN PER OFFENSIVE PLAY,  NET YARDS RUSHING, 

TOTAL RUSHING PLAYS, AVERAGE GAIN PER RUSH, TACKLES FOR A LOSS-NUMBER,...} 

 

4.4 Backward/Forward Selection 

  I implemented backward/forward selection mechanisms in matlab. Since these two mechanisms 

are wrappers and non-linear svm kernels take a long time to train I only tried them with logistic regression 

(also logistic regression almost always performed the best). 

  1- In each season try feature selection for some games and apply it to the whole season. 

  2- Use feature selection on a specific season (2003 for example) and use the best features on  different 

seasons. 

  The logic behind #2 is that if a feature is important in one season it should be important in another 

season because the game doesn't change much. This is a not a fool-proof assumption. I used the second 

approach with the game statistics sets. However in practice it didn't give very good results. For each season 

I got a different set of features and when I tried classification with feature sets chosen based on feature 

selection of another season, the result was not consistently better.  

I also tried the selection algorithms with the win-ratio features. Backward selection eliminated 

Week-No as the first feature for each season and forward-selection never chose it as a good feature. After 

removing the Week No, the results immediately improved for logistic regression (and almost all linear-

kernel tests) on every experiment that I had done. It even improved the results for feature sets that were 

derived from game-statistics. 

5. New Techniques  

5.1 Momentum Features: 



  There are many variables that are hard to include in our models. One example would be a team's 

recent adjustment in strategy or personnel. To account for such changes I introduced the idea of momentum. 

The idea is that a team is more likely to have a closer performance to its recent performance (similar to 

locally weighting). I chose to add two features for each game VT_3weekWinRatio (visitor's past 3 week 

win ratio), HT_3weekWinRatio (host's past 3 week win ratio). Initially the result seemed positive almost in 

every model. However after I eliminated the week Number it turned out that the best feature set didn't have 

any 3-week averages. I believe Week Number was a bad feature and initially when I added 3-week 

averages only lessened week-number’s negative effect. However I don't rule out that it can be useful with 

different feature sets. 

5.2 Using averages up to the test week:   

  I started with an initial set of win-ratio features. For each sample the averages were computed up 

to the week of the game. For example to classify games in week 16, I would need to create training samples 

for all the games that happened between week 1 and week 15 including a game between team A and B in 

week 2. To compute the average winning ratios of that game I would calculate the average winning ratio of 

team A and B up to week 2 and the training sample would look like: 

<result:1,  A, visitor, win-ratio(up to game’s week 2): 0,  B, host, win-ratio(up to w 2 ): .5>    

(where 1 means visitor won). This increased the number of training samples where teams with lower 

winning ratios actually won.   

  Instead of using the averages up to week 2 for a game that happened in the 2nd week, I used 

averages up to week 15. It is completely fair because we want to classify week 16's games and by then we 

have all the outcomes of week 1-15. Using this approach the training sample for the previous game may 

look like:  

<result:1, A, visitor, win-ratio (up to test week 16): .75, B, host, win-ratio (up to w 16): 0.2> 

This technique increased the accuracy for all models. Intuitively we use teams’ true strength (win-

loss ratio). Assume team A had a tough schedule at the beginning of the season and team B had an easy one, 

therefore B had a better win-loss ratio. However in reality team A is a much stronger team and that shows 

up in its results as the season progresses. 

5.3 Using week 17 training data of a different year: 

  The idea is to train a model based on all 17 weeks of a prior season for classification. I tried this 

approach with svm (linear kernel) and it gave very good results. That experiment included the team 

numbers as features. It would be interesting to know the results after removing the team numbers. The 

intuition behind removing team numbers is that teams may be very different from one season to another 

(given player and personal change) although the counter argument is I haven't had time to completely 

explore this option.  

 

6. Results and Analysis: 

6.1 Results: 

 

set Feature types avg-
method 

weekNo a feature? 

1 win-ratio t Yes 

2 win-ratio t Yes 

3 game-stat t Yes 



4 game-stat t No 

5 win-ratio t No 

6 win-ratio t No 

7 win-ratio g No 

8 win-ratio g No 

9 game-stat g No 

Table 2 (t: average up to test week, g: average up to game week) 

 

set sl_05 sp_05 lr_05 st_05 sl_04 sp_04 lr_04 st_04 sl_03 sp_03 lr_03 st_03 

1 65.03 59.31 63.63  60.03 55.2 60  65.02 56.7 66.25  

2 64.55 59.42 63.63  59.61 53.17 60.06  63.65 60.27 64.94 57.16 

3 60.38 60.5 62.32 61.33 57.83 53.71 59.29 54.49 61.98 66.81 61.01 61.87 

4 60.8 61.93  62.76 59.07 54.91  54.9 54.9 64.49  65.44 

5   65    61.73    66.61  

6 63.66 54.8 65.83 57.34 60.09 52.71 61.37 57 66.27 58.54 67.08 58.36 

7 63.53 52.59 62.14 47.7 56.15 47.7 57.74 51.33 60.81 55.99 62.14 53.47 

8 61.93 53.84  58.41 54.6 50.14  47.94 57.59 49.49  50.03 

9 54.73    53.9 52.23       

Table 3 (sl: svm linear kernel, sp: svm poly kernel, lr: log regress, st: svm tan kernel) 

6.2 Analysis: 

6.2.1 Best Results: 

  Best results were obtained using set 6 (win-ratio features without week number) by logistic 

regression. (2005: 65.83% - 2004: 61.37% - 2003: 67.08%) This is another reason why only performed 
feature selection with logistic regression. 

6.2.1 Best Algorithm:   

Over all logistic regression is the best method, although svm with linear kernel has a similar 

performance. An interesting observation is if any of the methods performs better on set of features A than it 

does on B, it is almost guaranteed that other methods will perform better on A as well.  So one can pick the 

best set of features using the fastest method and try it with other algorithms. 

6.2.3 Comparison of averaging methods: 

In the left column table 4 you can see feature sets calculated using averages up to the game’s week, 

and on the right column you can see feature sets whose averages were calculated up to the test’s week. If 

you refer back to table 3 you will see that in every case the set whose average was calculated up to the test 

week had better results. 

 

avg_to_game_week avg_to_test_week approximate improvements 

7 6 3-5 % 

8 1 1-8% 

9 4 2-6% 

Table 4 



6.2.4 Impact of removing week Number from the features: 

Again, on the left are the sets with week-number, and on the right are the exact same sets without 

the week-number. In this case there is always an improvement on the best case (logistic regression). 

With weekNo Without 

3 4 

5 1 

6 2 

Table 5 

6.3 Expert Picks: 

 Unfortunately I don’t have the results of expert-picks for 2003-2005 seasons. Here is their 

accuracy for their picks for 2006 season through week 14 (including 14) [1]. Bear in mind that in their 

picks they have the luxury of not picking a winner for some games hence for games that are too close they 

may not pick. 

expert Right [1-14] Wrong [1-14] Right  [1-2] Wrong  [1-2] Accuracy [2-14] 

Theisman 117 77 19 11 0.5976 

Salisbury 123 85 20 12 0.5852 

Hoge 121 87 23 9 0.5568 

Jaworski 124 84 20 12 0.5909 

Schlereth 126 82 19 13 0.608 

Allen 127 81 19 13 0.6136 

Mortensen 114 94 21 11 0.5284 

Golic 128 80 20 12 0.6136 

Accusoure 133 75 24 8 0.6193 

Table 6 

7. Conclusion:  

When I started this project I was not sure if machine learning can be applied to this problem. 

Given my current results (2005: 65.83% - 2004: 61.37% - 2003: 67.08%) I believe machine learning 
can be a reasonable solution specially compared to humans. However any solution will be able to reach 

very high accuracy.  

Given the time constraints I have not explored all the possible algorithms and features. BCS like 

formulas can be used to account for unbalanced schedules. It would also be nice to compute a confidence 

score to improve the results by not predicting close games. I think a couple of new things that I tried such 

as using averages up to the test game can be useful for similar experiments.  

[1] http://sports.espn.go.com/nfl/features/talent 


