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7
Life II: Developmental Biology—
Complex by Design

Conceptual Outline

Developmental biology strives to understand the sequence of events by
which a single cell becomes a system of many differentiated interacting cells. This
process involves placing different structures in particular locations and intercon-
necting them.

To model differentiation we focus on the formation of color patterns on an-
imal skins that have a variety of forms. Cellular automaton models show the rele-
vance of local activation and long-range inhibition of pigment production to the for-
mation of patterns. Chemical reaction-diffusion systems illustrate similar patterns
using slow- and fast-diffusing species.

Other elements of the tool kit for developmental processes include mech-
anisms for changes in cell structure, cell motion, timing and counting. Of particular
interest are sequential steps (programs) that can form branching structures. 

Theoretical modeling can better complement phenomenological studies of
biological systems if the different objectives of theory and experiment are recognized.

The approach of developmental biology to the design of complex systems
may be a useful framework for considering the design of complex artificial systems.

Models of pattern formation may be better suited to discussions of global
properties of the evolution of organisms than the models discussed in Chapter 6.

Developmental Biology: Programming a Brick

Reproduction in multicellular organisms, animals and plants, occurs through a
process of development from a single cell. The fundamental objective of develop-
mental biology is to understand how an individual cell through cell division, differ-
entiation and growth results in a complex physiology. The controls for this process of

7.1

❚ 7 . 6 ❚

❚ 7 . 5 ❚

❚ 7 . 4 ❚

❚ 7 . 3 ❚

❚ 7 . 2 ❚

❚ 7 . 1 ❚

07adBARYAM_29412  3/10/02 10:46 AM  Page 621



development are present within the initial cell and also in the environment in which
the cell develops.

Our concern in this chapter is largely with the cellular behavior in development
rather than with the internal functioning of the cell. However, in the following para-
graphs we discuss briefly models for the mechanisms that exercise control over the de-
velopmental process as part of the internal functioning of the cell.

It is generally believed that the design of plant or animal physiology is contained
within the nuclear DNA of the cell.DNA is often called the blueprint for the biologi-
cal organism. However, it is clear that DNA does not function like an architect’s blue-
print because the information does not represent the structure of the physiology in a
direct way—there is no homunculus there. For our purposes it is convenient to think
about the DNA blueprint as a program that specifies the interaction between a cell
and its environment,including cells in its vicinity, as well as the internal functioning
of the cell. However, in describing DNA as a program we are implicitly subsuming the
functions and description of the entire cellular machinery in the DNA. For our ab-
stract purposes, there is no difference in various sources of information,as there is no
essential difference between information that is found on the tape of a Turing ma-
chine and information in the table of the read-write head (see Section 1.9.4). There
are, however, other conceptual issues to address.

First, we must clarify the nature of DNA function within the cell.DNA serves at
least in part as a collection of templates (genes) that may be thought of as blueprints
for protein chains. These templates are sometimes being transcribed (active) and
sometimes not being transcribed (inactive). Thus, the role of DNA at a particular
time is described by a set of transcription activities. The activity of a particular gene
depends on the activity of other genes. Thus, a useful analo gy may be a neural net-
work model where the transcription activities are analogous to the neuronal activi-
ties in the network. Like the synapses of the network, the molecular machinery of
the cell mediates the activities (and performs the transcriptions) of the DNA. The
patterns of activity of the transcription of DNA are a part of the patterns of activity
of the cell as a whole which constitute possible behaviors of the cell. Thus it may be
reasonable to consider the relevance of attractors of patterns of activity, as in the
neural network models discussed in Chapter 2, to the study of cellular function. The
development of an organism consists of a temporal sequence of such patterns of cel-
lular function.

Second, we must clarify the relationship of information and behavior. It is likely
that the DNA in a cell contains a large proportion of the information needed to de-
scribe the function of the cell, the developmental dynamics and the physiological
function of the organism. However, this does not mean that the DNA should be
thought of as controlling the processes in the conventional sense of the term “control.”
A useful analogy is the role of a library in society. It is quite likely that most of the in-
formation about the function of society in one way or another may be found in the
Library of Congress. However, this does not mean that the library controls this func-
tion. It may, indeed, be better to think about the molecules in the cell as akin to a so-
ciety of entities that act upon each other and respond to external stimuli.DNA then
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serves this society as a source of information—in part as a repository of blueprints for
the manufacture of cellular machinery.

In this regard it may be helpful,though somewhat subtle, to recognize that DNA
is not by itself a complex organism. It does not satisfy our criteria of nondivisibility,
since its structure and behavior (including transcription) is essentially local. It is only
when the information in DNA takes form in the context of cellular or organismal be-
havior that the behavior is itself complex,and the system as a whole satisfies the con-
ditions of a complex organism. Incidentally, this is also a reason that the structure of
DNA does not satisfy the 7±2 rule—there are 23 pairs of homologue chromosomes in
most human beings, and a wide variation in the number of chromosomes in other
organisms.

Returning to our central focus in this chapter, for our purposes development is a
largely deterministic sequence of cellular states that results in a multicellular organ-
ism. In this sense the organism can be described as the result of a program, since all
deterministic processes can be so described. The program is largely contained in the
original cell. It is essential to recognize that all cells of an organism begin from one
cell in a unique state,and therefore inherit all or parts of the same set of information,
and thus the same program.

The central problem of developmental biology is to describe how the cells differ-
entiate in such a way as to place par ticular functions in particular locations in the
body—not to describe the specific eventual function of each cell. Part of this problem
is to describe how cells become interconnected by necessary structures formed out of
individual cells such as long branching neurons, or many-celled structures such as
blood vessels.This must be achieved by the program that specifies the sequence of cell
states and cell interactions. The overall process of development is shown in Fig. 7.1.1.

Biological development is a systematic approach to the very difficult problem of
designing complex systems. It enables the creation of a large variety of systems. In
studying this approach it may be helpful to think about designing a building in a sim-
ilar manner. Allowing some imagination, we might consider writing a program for a
brick. The program describes how a brick should move and interact with other bricks
in its vicinity. Providing the same program for each brick in a pile, we walk away and
return to find the whole building, with windows, ducts, and utilities in place. Cells,
unlike bricks, are themselves like organisms in consuming resources and producing
waste; they are self-reproducing and mobile. They also have the ability to change
shape. Through shape change and changes in chemical processes they can adopt a
large variety of functions in a multicellular organism. Even if we endow bricks with
similar abilities, it still requires careful thought to understand how the design of a
complex structure can arise from a program describing their interactions.

It is significant that this approach balances design with self-organization. In
Chapter 6 on evolution, we assumed a self-organizing process that occurred by chance
and external selection. In contrast, organism development should reliably achieve a
desired outcome from a preexisting (internal) design. Nevertheless, the built-in de-
sign directs a dynamic process where mutually interacting entities self-organize into
the desired complex structure.
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Figure 7.1.1 Illustration of some of the stages in the development of an animal. The top two
rows are schematic illustrations of the initial stages where a single fertilized cell undergoes
multiple divisions to form a spherical shell with a membrane separating its internal cavity
into two parts that become the primary yolk sack and the amniotic cavity. Cells from part of
the internal membrane then form the growing fetus. The bottom two rows are magnetic res-
onance microscopy images of mouse fetal development from 9 days to birth. All images are
shown at the same size despite a 10-fold increase in fetal dimensions from the first to last
image of this sequence. The multicellular structure of the organism arises through a set of
programmed steps originating in a single cell. The identification of processes and mechanisms
for this development is the subject of developmental biology (magnetic resonance microscopy
images are courtesy of Brad Smith, Elwood Linney and the Center for In Vivo Microscopy at
Duke University [A National Center for Research Resources, NIH]). ❚
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For many who have had occasion to contemplate a newborn, development is
miraculous. From a scientific point of view there are at least two reasons that this re-
action arises. First, the relationship between process and outcome is emergent—the
relationship between individual parts of the dynamics and the whole is difficult to un-
derstand. This is the nature of a complex self-organizing process. Second, designing a
dynamic process that can reliably ar rive at a specific complex outcome is difficult.
When a process involves many steps and an error in any step may give rise to failure,
the likelihood that the process will be successful is vanishingly small. Our analogy
with a computer program is telling, since a single bit error in computer hardware or
software would generally cause failure.It is useful to compare this with our discussion
of protein folding in Chapters 4 and 5, where we were also concerned about arriving
at a definite final structure. In Chapter 4 we considered exploration of conformation
space to find an energy minimum. As long as the dynamics could reach the energy
minimum, its identity was not in question. In Chapter 5 we argued that directed se-
quential steps could arrive at a desired final structure. Here we recognize that in a
strictly directed (deterministic) process, there must be no error in the dynamics so
that there will be no error in the eventual structure. What is particularly remarkable
is that the dynamic process must at the same time be stable to many perturbations,
and yet modifiable through mutations that enable evolutionary changes. To under-
stand how this is possible we must eventually recognize that the dynamics as a whole
must be formed out of a sequence of attractors that are sufficiently stable to be the
outcome of a variety of intermediaries. In this way the nonequilibrium dynamics and
its outcome may be relatively stable to perturbations.

From the most basic com p l ex - s ys tems point of vi ew,the probl em of devel opm en t a l
bi o l ogy is com po s ed out of t wo part s : f i rs t , to iden tify gen eral and specific proce s s e s
that cause a hom ogen eous set of cells to differen ti a te in a con tro ll ed fashion so that
s pecific stru ctu res are loc a ted in specific loc a ti ons with re s pect to each other; and sec-
on d , to iden tify mechanisms for cre a ting stru ctu res that intercon n ect or su pport va r-
ious functi onal regi ons of the sys tem . Mu ch of the qu a n ti t a tive modeling of su ch
processes is rel a tively recen t . In this ch a pter we focus on the probl em of d i f feren ti a-
ti on . In Secti on 7.2 we de s c ri be models of the form a ti on of p a t terns on animal skins.
This probl em captu res an essen tial aspect of d i f feren ti a ti on and stru ctu re . The adva n-
t a ge of su ch patterns is that their stru ctu re is not very specific and therefore lends it-
s el f to a simpler analys i s . However, the interp l ay of su ch patterns with specific bo u n d-
a ry con d i ti ons can give rise to well - def i n ed stru ctu res wh en they are nece s s a ry in
devel opm en t . In Secti on 7.3 we de s c ri be some more tools nece s s a ry for devel opm en-
tal form a ti on of phys i o l ogical sys tem s . O f p a rticular em phasis is the form a ti on of
bra n ching stru ctu res found in plants and animals in the lu n gs , n ervous and va s c u l a r
s ys tem s . In Secti on 7.4 we discuss some of the gen eral obj ectives and met h odo l ogi e s
of t h eory and mathem a tical modeling of bi o l ogical sys tem s . In Secti on 7.5 we discuss
the gen eral properties of or ga n i z a ti on by de s i gn in bi o l ogical com p l ex sys tems and
con trast it with the conven ti onal approaches used in human de s i gn and en gi n eeri n g.
F i n a lly, in Secti on 7.6 we retu rn to con s i der the implicati ons of the models of p a t tern
form a ti on in this ch a pter for the probl em of evo luti on discussed in Ch a pter 6.
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Differentiation: Patterns in Animal Colors

7.2.1 Introduction to pigment patterns
Many animals have patterns of coloration on their external surfaces. Color is the re-
sult of pigment produced in cells. Often the patterns are composed of only two dif-
ferent colors, but in some cases there are more. For our purposes,the examples that
are convenient to think about are the patterns on the fur of both predator and prey
mammals. Zebras, giraffes, tigers,leopards and many others have distinctive patterns
as a species. These patterns also vary in more subtle ways from individual to individ-
ual. Other kinds of patterns are present in some insects—particularly butterflies—
fish—particularly tropical fish—and birds—particularly tropical birds.

The functi onal rel eva n ce of p a t terns or bri lliant co l ora ti on for animals is an inter-
e s ting topic of s tu dy. We can try to understand the re a s ons for co l ora ti on thro u gh the
con cepts of evo luti on discussed in the previous ch a pter. Evo luti on a ry theory su gge s t s
that su ch phys i o l ogical attri butes arise from a su rvival adva n t a ge . It is a com m on prac-
ti ce to of fer ex p l a n a ti ons for the ex i s ten ce of phys i o l ogic or beh avi oral fe a tu res based
on this prem i s e . The ulti m a te difficulty is that these ex p l a n a ti on s , no matter how well
re a s on ed , a re ra rely su bj ect to direct ex peri m ental te s t . However, t h ere appe a rs little
do u bt that a uniform co l or for some animals is used for camouflage within a well - de-
f i n ed envi ron m en t . This is ch a racteri s tic of va rious green , brown or bl ack insects and
l i z a rds that are found on leave s , va rious tree tru n k s , or the gro u n d . Pa t terns of co l-
ora ti on , wh et h er of bl ack and wh i te or of bri lliant co l ors ,a ppear to be direct ly co u n ter
to this purpo s e . Al tern a tive ex p l a n a ti ons rely upon some form of s ocial or co ll ective be-
h avi or. The co l ora ti on of prey su ch as zebras and gi ra f fes might serve to confuse pred a-
tors bec a u s e , in the con text of a herd of a n i m a l s , it inhibits the disti n cti on of one indi-
vi dual from another. The bo u n d a ries bet ween animals become less disti n ct than the
i n ternal co l ora ti on bo u n d a ri e s . Si n ce the herd as a whole is not re ad i ly attacked , the in-
d ivi dual disg u i s ed as part of a larger sys tem is pro tected . This is con s i s tent with the gen-
eral discussion in Ch a pter 6 abo ut the natu re of co ll ective beh avi or. However, this doe s
not explain the co l ora ti on in the pred a tors — ti gers ,l eop a rd s , ch eet a h s , etc . The caref u l
d i s ti n ctness of the patterns of d i f ferent spec i e s ,h owever,su ggests that they serve as iden-
ti f i c a ti on . The abi l i ty to iden tify animals of the same species ei t h er for herding (animals
finding their way back to the herd or small er group) or for mating may be more im-
portant for su rvival than camouflage . It may also be that indivi du a l s — m a te s , young or
o t h ers — a re iden ti f i ed thro u gh the specific disti n cti ons bet ween indivi dual co l oring pat-
tern s . Rega rdl e s s , the functi onal purpose of co l ors is not direct ly rel evant to the prob-
l em of determining a process that can give rise to them—the topic of this ch a pter.

Why are co l or patterns intere s ting as a probl em in devel opm ental bi o l ogy? It wo u l d
s eem that they are qu i te incidental to more important probl ems su ch as the form a ti on
of l i m b s , the devel opm ent of or gans and the form a ti on of n et work s ,n eu ral or va s c u-
l a r. While co l ora ti on appe a rs to be su perf i c i a l , it captu res a basic fe a tu re nece s s a ry for
m a ny of the other proce s s e s — d i f feren ti a ti on . A cen tral probl em in devel opm ent is to
a s s i gn disti n ct tasks. In order for limbs to devel op, at some point in time there mu s t
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be an iden ti f i c a ti on of wh i ch cells are to pro l i fera te in su ch a way as to give rise to the
l i m b s , and wh i ch cells are not to pro l i fera te . This requ i res the form a ti on of a pattern
in the initi a lly undifferen ti a ted cell s .O n ly after a pattern has been establ i s h ed can the
processes assoc i a ted with differen tial functi on of the cells proceed . In a more gen era l
con tex t ,u n derstanding pattern form a ti on as a form of s p a tial and tem poral stru ctu re
is a cen tral issue in the form a ti on and functi on of com p l ex sys tems in gen era l .

Our objective is to construct mathematical models that can result in the forma-
tion of patterns such as those present on the skins of mammals (Fig. 7.2.1). The es-
sentially two-dimensional animal surfaces enable us to illustrate more readily the
models than if they were in three dimensions. The models might use a cellular space
with a variable representing the color of each cell in an array. Since many of these an-
imals have essentially two colors, we can use a binary variable si . This type of model
is suggestive of a simple cellular automaton (CA,Section 1.5) where the individual cell
determines its state (the color at that location) as a consequence of interactions with
neighboring cells. Indeed,the process of intercellular influence in biology is generally
suggestive of a CA—as long as communication between cells is local, and we do not
consider migration of cells or changes in their shape. The most direct model repre-
sents each biological cell by a lattice cell;however, we can also consider a homogenous
region of biological cells to be represented by a single lattice cell. Such CA are often
natural models for processes that take us from the behavior of an individual cell (or
homogenous region) to the inhomogenous behavior of a collection of cells.On a finer
scale we can model the diffusion and reaction of chemical messengers between cells
and their effect on pigmentation. This provides an additional level of detail to mod-
els of such patterns. In Section 7.2.2 we will consider CA models for pattern forma-
tion. In Sections 7.2.3 and 7.2.4 we introduce mathematical treatments of chemical
diffusion and reaction. Section 7.2.5 describes pattern formation in reaction-diffu-
sion systems. Section 7.2.6 discusses the coupling of a patterned chemical to addi-
tional chemical processes.Finally, Section 7.2.7 describes patterns that might form in
vertebrates during development by diffusion of pigment cells from their origin along
the spinal cord.A discussion of the relative benefits of CA and reaction-diffusion ap-
proaches is included later, in Section 7.4.

As will become apparent in the following sections,creating an interacting system
that evolves to a pattern requires us to specify interactions that satisfy various con-
straints. Since systems evolve toward equilibrium, the principle issues are not dy-
namic, but rather revolve around constructing a model with a complex pattern as its
equilibrium or steady-state structure. In simple systems the equilibrium is homoge-
neous and has no distinguishable or controllable features. The ability to make pat-
terns requires the specification of a system that behaves in an unconventional man-
ner in equilibrium or steady state.

7.2.2 Activation and inhibition in pattern formation:
CA models

We begin by thinking about the equilibrium behavior of some simple models. For a
CA,the equilibrium is generally described by a stochastic field such as the Ising model
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Figure 7.2.1 Photographs showing examples of pigment patterns on animal skins. From top
left by row: Grant’s zebra, South African cheetah, Grevy’s zebra, Uganda giraffe, reticulated
giraffe and Masai giraffe. These patterns arise from a process that requires differentiation be-
tween regions that contain pigment-producing cells and those that do not. The study of such
patterns captures one of the essential processes involved in various stages of development
that require differentiation in order to form structures and organs that form a functioning
physiology. ❚
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(Section 1.6). Since the developmental process leads to a long-lived pattern that re-
mains as the color of the animal,this seems a reasonable starting point. Are there in-
dications that such models can give rise to patterns? The seeds of pattern formation
are present in the behavior of an antiferromagnet on a square lattice (Fig. 1.6.7) with
alternating values of the variables si in its equilibrium state. This pattern arises from
simple interactions between neighbors that compel adjacent cells to have opposite
values of the spin variable. Considered as a color pattern, it is a checkerboard—the
simplest of two color patterns (there are only two such patterns). Is there a way to gen-
eralize this to form more elaborate patterns characteristic of animal colors? The most
basic feature of the color patterns of animals that is not captured by the checkerboard
is the existence of a new length scale. This length scale, the size of dots or bands of
color, is characteristic of the pattern. It is not given by the size of the cells or by the
size of the animal but rather is a characteristic length scale of its own. It is important
to consider how such a length scale can arise. An alternating black and white pattern
on the scale of individual cells would appear gray on the scale of the organism.

A straightforward method for creating a new length scale in CA is to extend the
range of the interactions between cells. We will take this approach and investigate the
consequences. Before we do this let us consider what this means from the point of
view of biological cells. It might seem that biological cells interact only with adjacent
cells. This interaction occurs by emitting chemicals into the intercellular fluid. The
chemicals are then detected by the adjacent cells. Such interactions,however, are not
necessarily local,because the distance over which the chemicals travel is controlled by
their diffusion constant and lifetime in the intercellular fluid or, more correctly, in the
matrix of cells and intercellular fluid. Thus an individual cell can interact with a re-
gion of cells in its vicinity, where the size of this region is controlled by the diffusion
constant of the chemical as well as reactions that might affect it. More direct model-
ing of diffusion is discussed in the following section. Here we consider only the effec-
tive interaction that results between cells.

In order to generate patterns that consist of a large number of cells that are either
all black or all white in regions of a characteristic size, we use interactions that extend
a distance typical of the linear dimension of the regions. There are two possible types
of pairwise interactions between cells. When a cell producing pigment causes other
cells to produce pigment we say that the interaction is activating. When a cell causes
others not to produce pigment we say that it is inhibiting. As with the discussion of
nerve cell interactions in Chapter 2, the terminology and mathematics of activation
and inhibition is similar to the use of ferromagnetic and antiferromagnetic interac-
tions that cause the spins in an Ising model to align or antialign.Spins that are UP are
producing pigment, while spins that are DOWN are not. Loosely speaking , a ferro-
magnetic interaction corresponds to mutual activation. An antiferromagnetic inter-
action corresponds to inhibition.

How can we design an Ising type model that will give rise to domains of locally
aligned spins (either ON or OFF) but will have large scale variation so that adjacent to
a region of ON cells there will be a region of OFF cells? The interactions must achieve
two effects.First,they must cause the cells that are nearby to have a bias toward having
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the same color so that the regions of color are formed. Second,they must have the ef-
fect of causing regions that are farther away to have the opposite color. This suggests
a short-range interaction that is mutually activating and a long-range inhibiting in-
teraction or, in magnetic language, a short-range ferromagnetic interaction and a
long-range antiferromagnetic interaction. This is the model we will be using to obtain
various pigment patterns.

It turns out that the magnetic analogy is not without practical application. Real
magnetic materials form magnetic domains. The reason for these magnetic domains
is that the short-range ferromagnetic interaction between spins is a local effect of
quantum mechanics. However, the long-range interaction between spins is through
the magnetic field that tries to antialign the spins—an antiferromagnetic interaction.
This gives rise to domains of magnetization that form a pattern of regions of UP and
DOWN spins that has a large scale compared to the atomic distances. When a piece of
iron is magnetized,it is forced into a metastable state by aligning these magnetic do-
mains. After long enough time,it demagnetizes by returning to its equilibrium state.
Modern use of patterns of magnetization appears in magnetic bubble memories that
vary external fields to manipulate the patterns of magnetic domains very much in the
manner described below.

We will adopt the Ising model terminology of spin variables to describe pattern
formation. In Fig. 7.2.2 the spin-spin interaction for a model of pattern formation is
plotted as a function of distance. The energy of the system would be written as:

(7.2.1)

where si = ±1 is ON and OFF respectively. J(rij) is the interaction as a function of dis-
tance rij between spins. This is similar to Eq.(1.6.52) but includes only a uniform bias
field h that controls how likely a cell is to have pigment (ON) as opposed to no pig-
ment (OFF). Writing explicitly the interaction in terms of two parameters J1 > 0 and
J2 < 0 we have:

(7.2.2)

What should we expect from the equilibrium structure of this model? The main point
is that the existence of long-range antiferromagnetic interactions should cause
patches of color. However, we have already found in some cases that the presence of
antiferromagnetic interactions causes many low-energy states rather than only a sin-
gle unique one. While this was true in Section 1.6 only for nonbipartite lattices,we an-
ticipate that it will be true for this more complicated model. Thus we will avoid try-
ing to describe directly the equilibrium states of this model and focus instead on what
we are more interested in anyway—the outcome of its dynamics. For convenience, we
take a square lattice and start from a random set of values with half of the cells ON.
We construct a dynamics for the system, then run it until there are no changes and
record the resulting pattern.
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The dynamics is the same as that used in Chapter 2 for the neural network—zero-
temperature Glauber or Monte Carlo dynamics.We choose a particular cell to update
and set it ON or OFF according to which gives the lower energy. Stated differently, the
cell is set ON if the net interaction of the cells causes it to be ON. The total influence
of the other cells is given by the effective field:

(7.2.3)

We thus set the value of si(t) to be:

(7.2.4)

This equation is quite similar to the equation describing the update of neural cells
Eq.(2.2.4). The difference between Eq.(7.2.4) and Eq.(2.2.4) is how we set the values
of the interactions between the spin variables, and the presence of a bias h. The pig-
ment cells are locally interacting, while in Chapter 2,neural cells were interconnected

    

si (t) = sign h + J1 s j (t −1)
rij <R1

∑ + J2 s j(t −1)
R 1<rij <R 2

∑
 

 
 
 

 

 
 
 

    

hi = h + J1 s j

rij <R1

∑ + J2 s j

R 1<r ij <R 2

∑
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Figure 7.2.2 A CA model of pattern formation uses interactions that cause short-range acti-
vation and long-range inhibition of pigment. The interaction as a function of distance J(r) in
this model is illustrated. The same model describes interactions that are locally ferromagnetic
and long-range antiferromagnetic in a magnetic system. ❚
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throughout by interactions Jij . In Chapter 2 we considered the update of cells to be
synchronous because in the presence of random interactions this does not generally
cause different results. Here, it is better to update the system asynchronously by se-
lecting cells to update sequentially at random. This avoids oscillations that can occur
when all the cells are updated simultaneously.

There are five parameters in this model:the two interaction ranges R1 and R2, the
two interaction strengths J1 and J2 and the bias field h. Since we have not yet chosen
the scale of the interaction strength, we can choose it so that one of them takes a con-
venient value. We set J1 = 1. It is positive,as required for a ferromagnetic interaction.
J2 takes a negative value. It makes sense to choose a value of J2 smaller than J1 because
J2 acts over a larger area. We choose J2 = −0.1. We set the value of R1, the range of the
short-range interaction, to a nearest-neighbor distance or R1 = 1. Distance is mea-
sured in the cellular space by cell size. The range of R2 should have something to do
with the size of the pattern elements that result. We set this to a value of R2 = 6 to have
a large enough value that will be distinct from the nearest-neighbor distance and
small enough to be comfortably within the space we simulate, which will be 60 × 60
cells. We start by setting the value of the bias field h = 0 and vary it to create patterns
with more or less ON or OFF cells.Fig. 7.2.3 illustrates the generation of a pattern from
a random starting configuration of the cells. The computer program used to generate
these patterns is similar to those used in Sections 1.5 and 1.6 to investigate the dy-
namics of cellular automata and the Ising model respectively. We can see that long-
range inhibition g ives rise to alternating regions of colors at a characteristic separa-
tion distance.

Fig. 7.2.4 illustrates the variation in patterns that can be generated as a result of
changing the value of the bias field h. All of the patterns on the left result from the
same initial random array of dots. Similarly, all of the patterns on the right result from
a single but different random initial array of dots. Considering the left patterns and
the right patterns separately, we can see how the change in the bias field affects the
eventual pattern that is formed. At one extreme there are black dots in a sea of white.
The dots are not regularly spaced or shaped. They are variable in size and some are
elongated. As the value of h is increased, more dots elongate and connect forming
bands that interconnect and eventually become the black background in which white
dots exist. These patterns are reminiscent of some animal color patterns.

In Fig. 7.2.5 we investigate the effect of increasing the value of R1 (right panels)
and R2 (left panels). The most obvious changes occur with R2. The characteristic size
of the pattern increases and is directly controlled by R2. Increasing R1 does not affect
the size of the pattern but rather the shape of the boundaries between regions of ON

and OFF cells. Increasing R1 ensures that the boundaries of dots and stripes are
smoother, with more gradual changes in curvature. This is particularly apparent in
our simulations because the size of R1 is comparable to the size of cells. For more re-
alistic animal color patterns, the size o f R1 should be larger than the size of cells, to
avoid sharp corners.

The initial conditions of the simulation can be important. We started these sim-
ulations with 50% of the cells set ON at random. The effect of the initial random
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Figure 7.2.3 A simulation of a CA model of pattern formation. ON cells (black) produce pig-
ment and OFF cells (white) do not. The initial conditions assign cells to be ON or OFF at ran-
dom with probability 1/2. Five updates are shown and then the unchanging stable limit that
is reached after about 20 updates. The parameters are R1 = 1, R2 = 6, J1 = 1, J2 = −0.1, and
h = 0. ❚
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h=–6

h=–3

h=–1

Figure 7.2.4 Additional simulations of the CA model that illustrate the effect of varying the
bias field h; other parameters are the same as Fig. 7.2.3. All patterns shown are the un-
changing stable limit of a simulation. h biases the system to have more or less ON cells.
Varying h results in patterns with black spots on a white background, white and black stripes,
or white spots on a black background. The left and right panels differ only in the initial
conditions of the simulation. All of the left panels start with the initial condition shown
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in Fig. 7.2.3. The right panels begin from a different random initial condition. We see that
left and right panels share general characteristics but are different in detail. While both ini-
tial conditions have a probability of 1/2 that cells are ON, qualitative aspects of the final pat-
terns are not sensitive to the initial probability, since they are determined by the ensemble
of stable states of the system. ❚
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configuration is apparent from the nonuniform nature of the pattern,and the two dif-
ferent results shown in left and right panels of Fig. 7.2.4. Changing the initial propor-
tion of ON cells has very little effect on the qualitative behavior of the model because
the resulting pattern is essentially an equilibrium pattern—one of many with similar
number and shapes of color regions. However, the specific pattern of dots and their
shapes is sensit ive to the precise starting pattern of ON and OFF cells. If we consider
this as a theory of the origin of animal color patterns, it suggests that individual dif-
ferences may be due to randomness rather than genetic control, while the overall
characteristics are controlled by the underlying mechanism, which is genetic and
species specific. In this case the particular pattern is not heritable,and even identical
twins would have different patterns. This should not be the case with many other
characteristics.

Question 7.2.1 In the model we have just simulated,patterns appear to
arise in equilibrium. We have argued in Section 1.3 that equilibrium sys-

tems have simple behavior. Why doesn’t this apply in our case?

Solution 7.2.1 The thermodynamic limit discussed in Section 1.3 applies
when we take the limit of large enough system size. The results in this sec-
tion do not apply when we take this limit, since then the system would ap-
pear uniform and homogenous, because the size of the spots that we are dis-
cussing would be so small as to be irrelevant. When this limit is not used,
then the conclusions also do not apply.

A more thorough discussion would note that there are actually two con-
ditions that are not met by these systems, consistent with the discussion in
Section 1.3.6.

First,the ergodic theorem does not apply. This means that the ensemble
of possible states of the system is not being explored. This is apparent when
we consider that the system iterates to a steady state and that this steady state
is a unique state that is unchanging even though there are many such possi-
ble states. Moreover, when the ergodic theorem applies,the initial state is ir-
relevant to the final equilibrium state. The reason that this model breaks the
ergodic theorem in such a direct way is that we are modeling it at zero
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Figure 7.2.5 Changing other parameters in the CA model. Each pattern is the steady state of
a simulation with the parameters indicated, and for all cases J1 = 1 and J2 = −0.1. The left
panels show the variation in the spatial scale of the pattern that results from changing the
range R2 of the antiferromagnetic interaction. Simulations for three different values of R2 are
shown. There is a direct relationship between R2 and the size of the stripes. The right panels
show patterns that arise when the range R1 of the ferromagnetic interaction is increased.
Simulations with three values of h are shown all with the same increased value of R1. The top
right panel should be compared with the top left panel. The other two right panels should be
compared to the panels of Fig. 7.2.4 with the same value of h. The effect of the increase in
R1 is to round the corners of the spots and stripes. ❚
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temperature—the temperature is so low that no random changes occur. The
only changes are those dictated by energy reduction. In a system where tem-
perature causes random changes, there would be a time dependence to the
pattern. If our observations of such a system were averaged over a long time,
we would not see any specific pattern, but only a homogeneous average. If
our observations were averaged over a sho rter time, we would see an indi-
vidual pattern.

Second,in these simulations a correlation length exists that is not small
on the scale of the whole system. The length scale that is relevant is the char-
acteristic length scale of the pattern. In some patterns it may actually be
larger than the size of the stripes or dots,since the positions of stripes can be
correlated with each other. We can see the relevance of the pattern length
scale by considering what would happen if we observed a system that was
much larger than this length scale. Then the pattern would b ecome irrele-
vant and the color would be gray on the scale of our observations.

The relevance of temporal and spatial scale to the complexity of a sys-
tem will be discussed further in Chapter 8. ❚

Question 7.2.2 Consider a model using variables ̄si = 0,1 to represent un-
pigmented and pigmented cells. We will use overbars to indicate all

quantities in this model. Set the update rule to be similar to that in Eq.7.2.4
but with the bias field h̄ = 0. When the effective local field h̄i is negative, the
cell is set to 0; when it is positive the cell is set to 1. This is a more intuitive
representation of activation and inhibition since both are effected by cells
that are ON. Cells that are OFF have no influence on the pigment production
in other cells. It is also assumed that there is no tendency for cells to sponta-
neously become pigment producing. Simulate this model and vary the
strength of the inhibition J̄2 to obtain various patterns. How can this model
be transformed back to that given in the text?

Solution 7.2.2 Using the same parameters as the text except for the value
of J2 and h, the results of simulations are shown in Fig. 7.2.6.

To transform this model to that in the text, we can perform the substi-
tution s̄i →(si + 1)/2 so that 0,1→ –1, +1.Once this substitution is performed
in Eq.(7.2.3) we can recognize the parameters that would give the same pat-
terns in the original model:

(7.2.5) ❚

Question 7.2.3 Consider what will happen if R1 = 0, i.e., there is no
activation in the model of the text and R̄1 = 0 for the model of

Question 7.2.2.

    

J1 = J 1 /2

J2 = J 2 /2

h = J 1 /2 1
rij <R1

∑ + J 2 /2 1
R 1<rij <R 2

∑
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Figure 7.2.6 Using a different parametrization of the CA model for pattern formation with si

= 0, 1 and h = 0 in Eq. 7.2.3, we generate patterns that are similar to Fig. 7.2.3 by varying
the strength of the inhibition 

–
J2. The other parameters were taken to be 

–
R1 = 1, 

–
R2 = 6, 

–
J1 =

1. Left and right panels use different initial random conditions similar to Fig. 7.2.4 (see
Question 7.2.2). ❚
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Figure 7.2.6 (continued)
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Solution 7.2.3 Since the pattern formation seems to depend on local acti-
vation and long-range inhibition, we might think that setting R1 = 0 would
eliminate pattern formation. However, in the case of the model discussed in
the text,patterns still form. In order for the long-range antiferromagnetic in-
teraction to lower the system energy, it is necessary for regions to be locally
ferromagnetic. Another way to understand this is that the long-range inter-
action controls the long-range properties of the pattern while, as seen in
Fig. 7.2.5, only the boundary shapes are controlled by the short-range inter-
action. We could even have a short-range antiferromagnetic interaction and
still have patterns, as long as the short-range interaction is not too strong.
However, when we consider the model of Question 7.2.2 we realize that in
order for cells to turn ON there must be a local activation,otherwise cells can
only turn OFF in the dynamics. From Eq.(7.2.5) because J̄2 < 0, J̄1 = 0 would
correspond to a large negative h in the model discussed in the text. The large
negative h would likewise prevent any cell from turning ON. ❚

The patterns that can be generated using the activation-inhibition CA model
suggest that the variability between different species can be readily achieved by vari-
ations in parameters of such models. However, this particular set of patterns does not
capture the appearance of many of the common animals. One example is the giraffe
(specifically the Uganda giraffe), which has patterns of coloration characterized by re-
gions of pigment separated by relatively narrow and straight lines without pigment.
We will discuss an approach to generating such patterns which il lustrates that there
may be other mechanisms for generating patterns of a certain scale. The method be-
gins by noting (Fig. 7.2.7) that giraffe patterns appear to be similar to patterns gener-
ated in two steps.First we choose a sparse set of initial dots. Then we divide the plane
into regions associated with each dot. The region associated with a dot consists of all
points that are closer to it than any other dot. Then the boundaries of these regions
are not colored, while the interiors are.

To generate this pattern, we use a CA that grows regions of color from isolated
points, which are cells initialized ON. The growing regions then stop when they reach
the proximity of another region that is growing. In this rule,the characteristic size of
the pattern is given by the density of the initial ON cells. This would be similar to a
process of nucleation and growth (Section 1.6.8), where nucleation creates the iso-
lated points that expand rapidly compared to the nucleation time. The CA rule we use
is similar to those described in Sections 1.5.2 and 1.5.3, for the condensation model
and Conway’s Game of Life. We will construct the rule step by step.

To allow regions to grow, a cell is set ON at time t if at time t − 1 there were more
than zero cells ON in its neighborhood. This results in growth from a point expand-
ing into the space in a uniform fashion. Because of our square lattice,there is a prob-
lem in the shape of growth—it is not circular as would be expected in a physiological
system. By expanding the range of influence of a single cell, which corresponds to in-
creasing the size of the neighborhood, we can make it more circular, as illustrated in
Fig. 7.2.8.
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In order to leave uncolored the regions between growing dots, cells must recog-
nize when the two growing regions meet. When the pigment grows from a point, the
shape of the ON region is convex. We can identify a cell in the encounter region be-
cause it has more ON cells around it than a cell at the boundary of the growing region.
A cell that has more than a certain number of neighbors with pigment must be in the
encounter region and should not turn ON. Thus, the CA sets a cell ON if it has some
but not too many ON neighbors. Note that in this model we are not allowing cells that
are ON to turn OFF. This is important, because otherwise cells in the interior of a spot
would turn OFF once we impose the condition that stops the growth.

We start the growth by setting cells ON at random with a probability of 1 in 100.
The result of this simulation,illustrated in Fig. 7.2.9, is not very satisfactory. Some of
the cells at the boundaries of growing regions do not turn ON. However, these do not
form continuous lines. To overcome this problem we need to have wider regions of
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Figure 7.2.7 The patterns of coloration on a giraffe can be understood geometrically. They
appear to be generated by dividing the two-dimensional surface according to their distance
from a sparse selected set of points. In this figure the selected set of points are indicated by
circles. Line segments connecting them are shown as thin lines. By coloring areas that are
close to each of the selected points, but not points that are approximately the same distance
from two or more points, we can generate patterns similar to those found on some species of
giraffe. ❚
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OFF cells. To achieve the desired result, we can take a clue from the previous model of
pattern formation and set up two distances,a distance R1 over which the growth is de-
termined, and a distance R2 over which the stopping is determined. Thus, using bi-
nary variables si = 0,1 we turn a cell ON when the value of Eq.(7.2.3) is positive, with
parameter values of R1 = 2.5, R2 = 4.3, J1 = 1 and J2 = –.5. The values of these parame-
ters can be adjusted by trial and error.

The patterns generated in Fig. 7.2.10 using this approach are reminiscent of the
patterns of giraffes;however, they are not entirely satisfactory. While some of the re-
gions follow the convex shape that we expect,other regions are more convoluted. By
looking carefully at the patterns, we see that this occurs because the separations be-
tween the initial ON cells vary in distance. This would not occur if the starting points
were more regularly spaced. There are many ways to consider placing the points at
more regular intervals. A reasonable approach for this case is to use the previous
method of creating patterns using activation-inhibition to generate a pattern of
spots such as those shown in Fig. 7.2.4 and then to apply the growth starting from
these spots. This is illustrated in Fig. 7.2.11, where the initial pattern is generated
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Figure 7.2.8 Starting from a seed pigment cell we can grow outward using a rule that sets
a cell ON if there are any ON cells in its neighborhood. However, the shape of the growing re-
gion on a square lattice depends on the way we grow it. Here, growth of a region is shown
for various sizes of the neighborhood given by its radius R1. A larger R1 leads to more circu-
lar pigmented areas. ❚
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Figure 7.2.9 A first attempt at forming a color pattern similar to that of a giraffe. The ini-
tial conditions are obtained by setting cells to be ON at random with a small probability, here
taken to be 1 in 100. The algorithm updates the cells synchronously and sets them ON if the
number of cells in a neighborhood of radius R1 = 2.5 is nonzero, but also less than 10. The
color grows out from the initial ON cells. When growing regions meet, there are some cells
that do not turn ON because of the limiting condition on the number of cells in the neigh-
borhood. However, these regions of residual OFF cells are not continuous. ❚
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Figure 7.2.10 Better simulations of the formation of giraffe patterns than those in Fig. 7.2.9
result if we use a larger region to set the condition for stopping growth. The parameters, ad-
justed by hand, are inspired by the activation-inhibition model. The growth results from ac-
tivation of cells adjacent to cells that are ON, while too many ON cells in a larger region (long-
range inhibition) cause cells not to turn ON. Here a particular simulation is shown from its
initial condition for seven updates, and then the final stable result. Three outcomes starting
from other random initial conditions are shown in the rightmost column. All initial conditions
were set with a probability 1 in 100 of cells being ON. These simulations are not entirely sat-
isfactory because many of the spots have unusual shapes. ❚
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Figure 7.2.10 (continued)

from a CA activation-inhibition model, resulting in more regular but still randomly
placed spots. By growing out into the OFF regions we form a pattern that is closer to
the patterns on the giraffe coats. More specifically, this coloration is similar to that of
the Uganda giraffe (Fig. 7.2.1). Two other kinds of giraffe—the reticulated giraffe
and the Masai giraffe—would require additional tuning of parameters. The reticu-
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Figure 7.2.11 The giraffe color patterns generated in Fig. 7.2.10 can be improved by start-
ing from points that are more regularly spaced in the plane. They might be placed more reg-
ularly by several processes, one of which is illustrated here. The initial conditions result from
an activation-inhibition CA model simulation with parameters as indicated on the upper left.
This is the starting conformation for the growth outward of pigmented regions. The subse-
quent frames show updates using the same algorithm as Fig. 7.2.10. This results in a more
regular pattern reminiscent of the Uganda giraffe. Other patterns can be generated by vary-
ing the parameters. ❚
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lated giraffe would be generated by a smaller ratio of the line width to the size of the
spots. This requires a finer mesh of points but could be simulated by the same algo-
rithm. The third kind of giraffe, the Masai giraffe, has spots that are blotches with
fingering. Such fingering can also be achieved by varying the parameters in this
algorithm.

7.2.3 Chemical diffusion
We can add an additional layer of detail in our models by considering more directly
the properties of molecules produced in cells and their motion through the matrix of
cells and intercellular fluid. Molecules generally move by a random walk that is not
directed but results from the random thermal motion of the liquid, mostly water, in
which they are located.A single molecule undergoing a random walk travels a char-
acteristic distance proportional to the square root of the time, or √Dt., where D is the
diffusion constant. The probability distribution of the behavior of a single molecule
also describes what happens to a density of weakly interacting molecules. If there is a
localized density of molecules at one place,it will spread over time and the distribu-
tion will approximate a Gaussian that broadens and flattens over time (Section 1.2).
This molecular motion,diffusion,in the continuum limit is described by a differen-
tial equation (Section 1.4.4) that represents the changes in density n(x;t) with time
when it is sufficiently smooth:

(7.2.6)

This discussion suggests that we consider pattern formation arising from a differen-
tial equation representing the evolution of molecular density. This approach was
taken by Turing, more generally known for the invention of Turing machines dis-
cussed in Section 1.9.4. The resulting color patterns are known as Turing patterns.

The CA approach in the previous section treated diffusion as an incidental
process which was summarized by an effective interaction between the cells. This sim-
plified the study of the process of pattern formation so that the activation and inhi-
bition were readily apparent. In this and the following section we construct two es-
sential parts of the differential equation approach—the diffusion and reaction of
molecules. Then we discuss and simulate specific sets of equations that give rise to
patterns.

We derived the diffusion equation (Eq.(7.2.6)) in Section 1.4.4 from the motion
of a particle in a periodic set of wells. It is more usually derived from the motion of a
low-density “gas” of molecules that have a varying density profile as a function of po-
sition as il lustrated in Fig. 7.2.12(a). We consider the current J(x) of molecules at a
particular position x and relate this current to the variation of the density with posi-
tion n(x). In order to obtain the current, we make use of simplifying assumptions. The
result is more general than the assumptions suggest. We assume that molecules un-
dergo instantaneous collisions with a fluid or matrix in which they are embedded. The
characteristic time between collisions is . In between collisions,particles have a char-
acteristic velocity v and travel a distance l = v . v is determined by thermal motion—

      

dn(x;t)

dt
= D∇2n(x;t)

648 L i f e  I I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 648
Title: Dynamics Complex Systems Short / Normal / Long

07adBARYAM_29412  3/10/02 10:46 AM  Page 648



D i f f e re n ti a t i on :  Pa tt e rn s  i n  an i ma l  c o l o rs 649

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 649
Title: Dynamics Complex Systems Short / Normal / Long

x x+lx–l

n(x−l)v/2

n(x+l)v/2

J(x+dx)

(a)

(b)

x+dxx

J(x)

Figure 7.2.12 We derive the diffusion equation using a model consisting of a weakly inter-
acting nonuniform density of particles embedded in a medium. The derivation relates the
change in density with time to the spatial variation in density. It takes two steps: (a) the
particle current at a point x is related to the spatial variation in density, and (b) the change
in density with time is related to the spatial variation in the current. Consult the text for
details. ❚
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it is controlled by the temperature—and is related to the interactions with the fluid
or matrix, so neither depend on the density n(x).

When we look at a position x we see molecules t raveling to the right and to the
left. These molecules originated a distance l to the left and a distance l to the right re-
spectively. At these locations their density was n(x − l) and n(x + l) respectively. Since
we expect half of the molecules from n(x − l) to be traveling to the right and half at
n(x + l) to be traveling to the left, we infer that the current at x is given by:

(7.2.7)

where we have expanded in a Taylor series keeping the first term,and thus assuming
that l is small compared to distances over which the density varies significantly.

We want to describe the changes in n(x) as a function of time. To do this we also
need the continuity equation that relates the current to the change in density. From
Fig. 7.2.12(b) describing the change of density in a small box in terms of the currents
at two faces, this is given by

(7.2.8)

where is the area of a face and ∆x is the length of the side. Combining Eq. (7.2.7)
and Eq. (7.2.8) we have the diffusion equation:

(7.2.9)

This is generalized to Eq. (7.2.6) when the density varies in three dimensions.
The many assumptions in this derivation can be avoided if we consider

Eq. (7.2.6) as an expansion in the density and its derivatives (Question 7.2.4). The
right side is the lowest-order term that is not excluded by symmetries of the problem.
It controls the longest spatial and temporal behavior. This is the reason for the ap-
plicability of the diffusion equation under a large variety of circumstances.

Question 7.2.4 We want to write a differential equation describing the
time dependence of the density

(7.2.10)

in terms of various spatial derivatives—local properties—of the density.
Consider including terms that involve up to three derivatives (in three di-
mensions) of n(x ;t):

(7.2.11)
    

d

dx
n(x;t),

d 2

dx 2
n(x;t),

d 2

dxdy
n(x;t),

d 3

dx3
n(x;t),

d3

dx2dy
n(x;t),

d 3

dxdydz
n(x;t)

      

dn(x ;t)

dt
= K

      

dn(x ;t)

dt
= v

2 d 2n(x ;t)

dx 2

    
∆x

dn(x;t)

dt
= −J(x + ∆x /2;t) + J(x − ∆x /2;t)( ) = − ∆x

dJ(x;t)

dx

      
J(x) =

v

2
(n(x −l) −n(x +l)) ≈ −l v

dn(x)

dx
= −v

2 dn(x)

dx
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Argue:

a. That of these terms only the second term can be used.

b. There are additional terms involving four derivatives that can be used.

c. That terms of the form

(7.2.12)

become smaller than the second term in Eq. (7.2.11) when the density
is small enough.

d. That terms that do not involve derivatives—a function of n(x;t) itself or
a constant—cannot be included if the number of molecules is
conserved.

Solution 7.2.4
a. d n(x;t) /dt does not ch a n ge wh en we invert any of the spatial coord i n a te s ,

for example by set ting x → −x. Thus any term on the ri ght-hand side of
Eq . (7.2.10) must also not ch a n ge . Si n ce the invers i on of x ch a n ges the
s i gn of dx no odd deriva tives are ad m i s s i ble and on ly the second term is
po s s i bl e .

b. Additional fourth-order terms are of the form:

(7.2.13)

These terms are corrections to the diffusion equation and must be used
if the spatial variations in the density are large enough, or we are con-
cerned about behavior on a small enough length scale.

c. Consider multiplying the density by a factor . The terms listed in
Eq.(7.2.13) vary as 2 while those in Eq.(7.2.11) vary as . Thus at low
enough density these terms are insignificant.

d. Consider the case of a uniform density n(x;t) = n0. Any function of
n(x;t) that does not involve derivatives will give a changing density that
must be the same everywhere. A uniform changing density does not
conserve the number of molecules. Thus we cannot include such terms.
We are implicitly assuming that x itself does not appear in the equa-
tion—points in space are indistinguishable before molecules are placed
there. Otherwise this argument would not be valid. ❚

Diffusion causes molecules on average to move from higher density regions to
lower density regions. This can be readily understood from the random-walk behav-
ior of the molecules and the discussion in Section 1.2. This motion leads to a more
uniform density profile. Thus if there is a nonuniform pattern of molecular density
initially imposed on a system, diffusion leads to a loss of the pattern through the

    

d 4

dx4
n(x;t),

d 4

dx 2dy 2
n(x;t)

    

n(x ;t)
d 2

dx2
n(x;t),

d

dx
n(x;t)

 

 
 

 

 
 

2
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smoothing of the density. The key problem in discussing color patterns is identifying
how we can cause nonuniform densities to arise out of diffusing molecules. As we re-
marked before,this is related to the fundamental problem that equilibration generally
causes uniformity and lack of structure.

The solution to this problem is through the interaction of more than one type of
molecule. Recognizing this was central to the contribution of Turing. The interactions
are chemical reactions that change the local densities of molecules. In addition to the
reacting molecules, the reactions may involve catalysts that accelerate them. Of par-
ticular importance are autocatalyzing reactions where molecules that are reacting are
also catalysts. Autocatalysis causes a nonlinear dependence of the reaction rate on the
densities. Systems of reacting and diffusing molecules are called reaction-diffusion
systems.

7.2.4 Chemical reactions
Chemical reactions cause molecular densities to change with time even when there is
no diffusion. A reaction may combine different molecules, decompose a molecule
into parts or just change the structure of a molecule. We write the general dynamic
behavior of the molecular densities using a set of coupled equations of the form:

(7.2.14)

where Ri({nj(x;t)}) is the rate of change in the concentration of a molecular species i
due to generation or annihilation in reactions that involve other molecular species. In
order to solve such equations,it is necessary to have an expression for R i({nj(x;t)}) in
terms of the densities of the molecules present.

As with diffusion, a discussion of reaction rates requires some simplifying as-
sumptions. In writing Eq.(7.2.14) we have already assumed that the density is not too
rapidly varying in space,so that the local reaction rate depends only on the local den-
sities and not their g radients. We will also assume that the diffusion time of a mole-
cule between reactions is large compared to the time of a reaction. This assumption
implies that the limiting step in the rate of reaction is the rate at which molecules en-
counter each other. In order to satisfy this assumption, we need three conditions: that
interactions between molecules are short range, that the molecular densities are low
and that once the molecules encounter each other the reaction is fast. For simplicity
we can think of this as a low density limit. As in the discussion of diffusion, violations
of the assumptions can be incorporated in the equations when necessary.

Under these assumptions the rate of a reaction involving molecules A, B and C
(with molecular densities nA, nB and nC of the form

(7.2.15)

is proportional to the probability of encounter of the reagents—it is proportional to:

nAnB (7.2.16)

This follows from our assumptions because each molecule diffuses and reacts inde-
pendently of other molecules of the same type. Thus, the probability of a reaction is

  A + B → C

    

dni (x;t)

dt
= D∇2ni (x;t)+ Ri ({n j (x;t)})
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proportional to the reactant concentrations. Since one molecule of A and of B disap-
pears for every reaction,and a molecule of C appears, the rate of change of the den-
sities, due to this reaction, are given by:

(7.2.17)

where k1 is positive, and called a reaction constant.
The reverse reaction

(7.2.18)

has a rate which is proportional to nC . Including this in Eq. (7.3.17) results in the
equations:

(7.2.19)

Thus, reactions give rise to differential equations coupling the densities of different
molecules.

It is important to emphasize that reactions we write in the form of Eq. (7.2.15)
and Eq.(7.2.18) are to be considered elementary reactions that reflect actual molecu-
lar encounters. In chemistry, the same notation is often used to describe the net con-
sequence of many reactions. The reaction then reflects only the proportions of mole-
cules involved (stoichiometry). The rate of the reaction is not proportional to reactant
density, and therefore must be determined separately.

There are three approximations that can be used to simplify the equations re-
sulting from chemical reactions. These are the condition of quasi-equilibrium,the ex-
treme kinetic regime and the quasi-static regime.

If the two reactions Eq.(7.2.15) and Eq.(7.2.18) are in equilibrium,then the den-
sity of A no longer changes with time and we can set Eq. (7.2.19) equal to zero. This
gives a relationship between the densities:

(7.2.20)

where k ′2 = k 2/k1. When a reaction is close to equilibrium and we disturb the condi-
tions by adding one of them, then the reaction will act to change the densities of the
other chemicals to restore equilibrium. If this were the only reaction we were inter-
ested in,then the equilibrium would describe all of the dynamics. However, the mol-
ecules might be involved in additional reactions that are slower. Then the fast reaction

    nBnA = ′ k 2nC

    

dnA

dt
= −k1nBnA +k2nC

dnB

dt
= −k1nBnA + k2nC

dnC

dt
= k1nBnA −k2nC

  A + B ← C

    

dnA

dt
= −k1nBnA

dnB

dt
= −k1nBnA

dnC

dt
= k1nBnA
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that restores equilibrium always maintains the chemicals involved in a quasi-
equilibrium. Under these conditions we may use the relationship of Eq. (7.2.20) to
simplify the system of equations.

The second simplifying circumstance is when the densities of molecules are far
from equilibrium. Then one of the two terms in Eq.(7.2.19) will be much larger than
the other. In this case we may consider a reaction as proceeding only in one direction.
This is the kinetic regime of the reaction, where equilibrium is essentially irrelevant.

The third simplifying circumstance is the quasi-static regime. It is applicable
when a quantity is slowly varying on the time scale of observations. The simplest way
this can occur is for one of the molecules in a reaction to have a much larger density
than the others. Then the change in its density, as compared to the density itself, can
be negligible. For example, if the density of C in Eq. (7.2.19) is very large compared
to the other molecules,and the value of k2 is not too large, we may be able to approx-
imate the second term and write, for example:

(7.2.21)

where k ′′2 = k2nC assumes that nC is approximately constant. This describes a constant
source of the molecule A implicitly originating from molecule C. nC need not be ex-
plicitly written when it is essentially constant.

We will be interested in two sets of chemical reactions. The first is the activator-
inhibitor system. It represents activation and inhibition more directly, and can be de-
scribed by

(7.2.22)

The second is the activator-substrate system. It is simpler and implements the prop-
erties of activation and inhibition in a more indirect way to be explained later, and can
be described by:

(7.2.23)

We discuss simplifications of our treatment of the reactions using the methods dis-
cussed above. The discussion will justify the functional form of the differential equa-
tions used in the next section.

In both sets of reactions, we have used the convention that 0 represents a chem-
ical species whose density is not of relevance to our discussion. When 0 produces a
relevant molecule (e.g., 0 → B) it has a large enough density so that any change is in-
significant over the time of observation. This is the quasi-static approximation. We

    

A → 0

0→ B

2A + B → 3A

    

A → 0

B →0

2A + D →2A +B

2A +C → 3A +C

C + B ↔ E

    

dnA

dt
≈ −k1nBnA + ′ ′ k 2
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also denote by 0 a molecule produced by a reaction that is inert (A → 0). This is one
way the extreme kinetic limit manifests itself in the reactions. Another way it does so
is in all the reactions that have only one direction indicated. The reverse direction is
assumed to be irrelevant. There may be other molecules involved in reactions that are
not indicated at all. For example we could also write the third reaction in Eq.(7.2.23)
as 2A + B + 0 → 3A + 0, where the two 0s indicate molecules whose density is un-
changing (the first) or that are inert (the second). Indeed, one of the reactions would
definitely not make sense without additional reactants. (Which one?) We will also use
the quasi-equilibrium approximation to describe the last reaction in Eq.(7.2.22).Before
we describe this, we will discuss the nonlinear reactions that appear in these systems.

Both activator-inhibitor and activator-substrate systems have reaction rates that
depend in a nonlinear fashion on molecular densities. The simplest example of a non-
linear dependence is a molecule that reacts with itself:

(7.2.24)

which would give rise to two coupled equations of the form:

(7.2.25)

The value of k3 would be twice as large as k4 because of the loss of two molecules of
A per reaction.

More complex examples of nonlinear dependence result from autocatalysis.First
we describe simple catalysis.A catalyst accelerates reactions by creating an additional
pathway for the reaction. An example would be:

(7.2.26)

where D is a catalyst since, regardless of intermediate stages,it reappears at the end of
the reaction. The density of the catalyst affects the rate of the reaction, but the reac-
tion does not affect the density of the catalyst. An example that appears in Eq.(7.2.22)
with A as a catalyst is:

(7.2.27)

This would give rise to two coupled equations of the form:

(7.2.28)

Since there is no change in number of A molecules, there is no effect on dnA/dt.
In autocatalyzed reactions one of the reactants also acts as a catalyst. An example

from Eq. (7.2.23) is:

(7.2.29)    2A + B → 3A

    

dnD

dt
= −k5nA

2 nD

dnB

dt
= k5nA

2nD

    2A + D →2A + B

  A + B + D →C + D

    

dnA

dt
= −k3nA

2

dnB

dt
= k4nA

2

    2A →B
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Each reaction results in the gain of a molecule of A and the loss of a molecule of B. A
also acts as a catalyst. The related differential equations take the form:

(7.2.30)

If two new molecules of A appeared in the reaction, 2A + B → 4A, we would still have
the same functional dependence nA

2nB. However, the coefficients in the two equations
would differ by a factor of 2.

We now consider the last reaction in Eq.(7.2.22) that we will treat using a quasi-
equilibrium condition. Some care must be exercised in simplifying equations based
upon the interplay between fast processes and the dynamics we are observing. This
example is relatively simple because the density of C is only affected by the last reac-
tion. It acts as a catalyst in the second to last reaction. We assume that the last reaction
is rapid and therefore maintains a relationship between nC , nB and nE similar to that
in Eq. (7.2.20):

nBnC = k′2nE (7.2.31)

To simplify matters further, we assume that nE is always very large and effectively con-
stant. Then nC would be inversely proportional to nB.

(7.2.32)

We can use this relationship in other equations. To illustrate this we write an equation
for the time dependence of nA from the first reaction and the second to last reaction
in Eq. (7.2.22):

(7.2.33)

We see that increasing the density of B reduces the rate of the reaction of A through
mediation by C. We can say that B inhibits the reaction that affects the density of A.
The next problem is to describe the rate of change of nB . Since B is affected by sev-
eral reactions in addition to the fast, quasi-equilibrium one, this is more compli-
cated. We can think about the problem as writing a set of equations that no longer
contains the variable nC . While it is not overly difficult to do this, we can simplify
matters further by assuming conditions that decouple the behavior of nB from
the quasi-equilibrium equation. This requires that nB is significantly greater than 
nC (nC << nB). To see how this works we write the complete equations (from
Eq. (7.2.22)) that affect nB and nC :

(7.2.34)
    

dnB

dt
= −k4nBnC +k5nE + (k3nA

2 nD −k2nB)

    

dnA

dt
= −k1nA + k3nA

2nC ≈ −k1nA + ′ k 3nA
2 /nB

    
nC =

′ ′ ′ k 2
nB

    

dnA

dt
= k3nA

2nB

dnB

dt
= −k3nA

2 nB
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(7.2.35)

The density nC changes only through the reaction that is in quasi-equilibrium. nB has
the same terms, but also the terms in parenthesis reflecting the additional reactions
that include B. If nC << nB then any change in nC is also much smaller than nB. Thus
we can neglect the first two terms in the rate of change of nB which are the same as the
rate of change of nC . Then we are left with only the terms in parenthesis:

(7.2.36)

A more complete treatment is discussed in Questions 7.2.5 and 7.2.6.

Question 7.2.5 Write an expression instead of Eq. (7.2.32) for the de-
pendence of nC on nB when we cannot assume that nE is unchanging.

Solution 7.2.5 In order to obtain the more general form of Eq.(7.2.32) we
must recognize that the sum nE + nC is conserved in the reactions of Eq.
(7.2.22). We can define this sum to be n0 and write the quasi-equilibrium
condition Eq. (7.2.31) as:

(7.2.37)

or

(7.2.38)

We see that as long as nB is larger than k ′2 this correction can be ignored. The
correction will be important when we do simulations later because it is un-
physical that the rate of change of nA given in Eq.(7.2.33) diverges when the
density of nB is small. ❚

Question 7.2.6 Derive an equation instead of Eq.(7.2.36) that incorpo-
rates an approximate quasi-equilibrium relationship but doesn’t assume

nC <<nB. Assume nE is essentially constant.

Solution 7.2.6 We start from the quasi-equilibrium relationship
Eq.(7.2.31). To use this relationship we recognize that the equality is not ex-
act, but holds approximately. The difference between the two sides, which ap-
pears in Eq. (7.2.35), ensures that nC changes when nB does. Any change in
nB must be matched by a change in nC to maintain the quasi-equilibrium re-
lationship itself. Thus an incremental change of Eq. (7.2.31) can be written:

(7.2.39)

where we have assumed nE is essentially constant. Dividing by a time incre-
ment dt and using the approximate quasi-equilibrium relationship we relate
the rate of change of nC to that of nB :

    nBdnC + nCdnB ≈ 0

    nC = ′ k 2n0 /(nB + ′ k 2)

    nBnC = ′ k 2(n0 − nC )

    

dnB

dt
= k3nA

2 nD − k2nB

    

dnC

dt
= −k4nBnC + k5nE
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(7.2.40)

We use this expression instead of the first two terms on the right side of
Eq. (7.2.34):

(7.2.41)

or

(7.2.42)

or finally:

(7.2.43)

The precise conditions under which this equation is valid can be understood
by recognizing that Eq.(7.2.40) can be obtained from the time derivative of
Eq. (7.2.35) by neglecting the second time derivative of nC . ❚

7.2.5 Pattern formation in reaction-diffusion systems
The com bi n a ti on of re acti on and diffusion terms in a differen tial equ a ti on can give ri s e
to pattern form a ti on under particular circ u m s t a n ce s . Ul ti m a tely the source of the pat-
tern form a ti on may be the same as that of the CA ru l e s — s h ort - ra n ge activa ti on and
l on g - ra n ge inhibi ti on . However, this is not as tra n s p a rent in the differen tial equ a ti on
form . Th ere are two ways to think abo ut the form a ti on of d i f feren tial equ a ti on pat-
tern s . The first is a con ceptual one that con n ects with activa ti on and inhibi ti on . Th e
s econd is thro u gh the analytic properties of the differen tial equ a ti ons that can give ri s e
to a pattern . To understand the con ceptual approach , we must rel a te the noti on of ac-
ti on at a distance of the CA model to the re acti on - d i f f u s i on model . The influ en ce of
one molecular species over a distance is ach i eved by diffusion . Typ i c a lly, wh en diffu-
s i on is faster the influ en ce is lon ger ra n ge . Si n ce there are two proce s s e s — activa ti on
and inhibi ti on—that occur over different ra n ge s , it makes sense to con s i der the ef fect s
of t wo types of m o l ec u l e s , one with a short - ra n ge influ en ce corre s ponding to a small
d i f f u s i on con s t a n t , and one with a lon g - ra n ge influ en ce corre s ponding to a large dif-
f u s i on con s t a n t . Activa ti on is a process by wh i ch one cell produ ces a signal molec u l e
that causes other cells around it to produ ce the same molec u l e . From the point of vi ew
of the molec u l e s , this is a sel f - c a t a lyzing re acti on that causes a nonlinear increase in the
m o l ecule den s i ty. Thus we ex pect that the molecule with a small diffusion constant au-
toc a t a ly zes a re acti on that increases its own den s i ty. Cell pigm ent is then co u p l ed to its
den s i ty. The second molec u l e , with a lon ger- ra n ge influ en ce , must perform an inhibi-

    

dnB

dt
≈

1

1+ ′ ′ ′ k 2 nB
−2

(k3nA
2 nD − k2nB)

    

1+
′ ′ ′ k 2

nB
2

 

 
  

 

 
  

dnB

dt
≈ (k3nA

2nD −k2nB)

    

dnB

dt
≈ −

′ ′ ′ k 2

nB
2

dnB

dt
+ (k3nA

2nD −k2nB)

    

dnC

dt
≈ −

′ ′ ′ k 2

nB
2

dnB

dt
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ti on of the re acti on that forms the first molec u l e . We wi ll see that the equ a ti ons devel-
oped to dem on s tra te pattern form a ti on have these properti e s .

E f forts have been made to con s tru ct models of actual phys i o l ogical re acti on -
d i f f u s i on proce s s e s . It is to be ex pected that su ch sys tems invo lve more than two type s
of m o l ec u l e s ,t h o u gh qu a s i - s t a ti c ,k i n etic and qu a s i - equ i l i brium approx i m a ti ons may
a ll ow their de s c ri pti on to be simplified . We wi ll discuss two sets of equ a ti ons that are
not spec i f i c a lly obt a i n ed from the phys i o l ogy of p a t tern form a ti on but are used to il-
lu s tra te how the patterns can form . The equ a ti ons have on ly two types of m o l ecules A
and B whose den s i ty nA(x,y ;t) and nB(x ,y ;t) in space and time we wri te for simplicity
as a(x;t) and b(x;t) . The molecules diffuse with different diffusion constants Da a n d
Db. The differen tial equ a ti ons de s c ri bing their beh avi or can be wri t ten gen era lly as

(7.2.44)

The functions f (a,b) and g (a,b) reflect the effects of chemical reactions. They describe
the time dependence of the densities when the density is uniform.

We now write down and simulate two sets of equations that form patterns. The
first set of equations may be obtained from the activator-inhibitor reactions in
Eq. (7.2.22) as discussed in the previous section (see Question 7.2.7). They are de-
scribed by:

f (a,b) = k1a
2/b − k2a

(7.2.45)
g(a, b) = k3a

2 − k4b

The first term k1a2/b describes the autocatalytic formation of the activator A which is
inhibited by the presence of B. The inhibitor B is produced by A in the term k3a2. If
the molecules of B are rapidly diffusing, the creation of B in regions where a is large
causes long-range inhibition of the formation of A. The densities of both A and B are
limited by decay processes responsible for the second term in each equation. Patterns
formed from this set of equations are shown in Figs.7.2.13 and 7.2.14. We will discuss
the methodology of these simulations in greater detail below.

The second set of equations that we use to generate patterns may be obtained
from the activator-substrate reactions in Eq. (7.2.23) (see Question 7.2.8):

(7.2.46)

In this set of reactions,the presence of B is necessary for the autocatalytic reaction that
creates A, as is evident in the expression k1a2b. The same reaction causes the disap-
pearance of B and the formation of A. B is spontaneously created by a process, given
by k3, that is independent of the density of A or B. Finally, the density of A is limited
by decay, as evident in the term –k2a. We can consider the autocatalytic increase of A
as local self-activation. Long-range inhibition arises when the diffusion constant of B

    

f (a,b) = k1a
2b −k 2a

g(a,b) = k3 −k4a 2b

      

da(x ;t)

dt
= Da∇2a(x;t)+ f (a(x ;t),b(x ;t))

db(x ;t)

dt
= Db∇2b(x ;t)+ g(a(x ;t),b(x;t))
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Figure 7.2.13 Simulations of the first set of reaction-diffusion equations, the activator-in-
hibitor system. At each time two panels are shown. The left panel shows the density a of the
activator A. The right panel shows the density b of the inhibitor B. The parameters were cho-
sen as described in the text with k1 = k2 = k3 = k4 = 1. The initial conditions, shown as the
first panel, consist of density values either of 1 or of 1.3 placed randomly with equal proba-
bility. The same initial conditions are used for Figs. 7.2.14 - 7.2.16. Note that since B is cre-
ated by A they both have maxima and minima at the same locations. The more rapid diffu-
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sion of B causes the regions around the maxima to be depleted of A. The plots show the den-
sity using a representation (gray scale) that uses gray values ranging from white for 0 to black
for 2. The figures are labeled by the time in units of updates. Since our convention is that
the time per update is ∆t = 0.01 the frame marked 200 would correspond to t = 2. A steady
state is essentially reached by 10,000 updates. This was verified and used throughout for the
other reaction-diffusion simulations in Figs. 7.2.14–7.2.16. Note the difference between this
and the number of updates (20) necessary for the CA models of Section 7.2.2. ❚
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Figure 7.2.14 Simulations of the activator-inhibitor reaction-diffusion system for different
values of the reaction constants. The left panels show the density a of the activator A. The
right panels show the density b of the inhibitor B. All frames show the steady-state result af-
ter 10,000 updates. The parameters for the frames are k1 = k2 = 1 and k3 = k4 = 1,2,4 re-
spectively. The parameters for the top frames are the same as Fig. 7.2.13 and reproduce the
last time step of that figure. ❚
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is much larger than the diffusion constant of A. Because B moves rapidly and is
consumed by reaction with A, the density of B is depleted not only where A is high in
density, but also in the surrounding region. Since B is necessary for the creation of A,
this inhibits the formation of A in this larger region. Patterns formed from this set of
equations are shown in Fig. 7.2.15. In the activator-inhibitor set of reactions,the max-
ima of b occur at the same locations as the maxima of a. In the activator-substrate sys-
tem, the minima of b are at the maxima of a.

Question 7.2.7 Identify the relevant equations and approximations
from Section 7.2.4 used to obtain Eq. (7.2.45) from the reactions in

Eq. (7.2.22).

Solution 7.2.7 The two most directly relevant equations are Eq. (7.2.33)
and Eq. (7.2.36). The approximations leading to them are relevant, includ-
ing the quasi-equilibrium approximation for the last reaction in Eq.(7.2.22).
The only additional modification is that nD , which plays no real role in the
discussion of the last section, is assumed to be essentially unchanging. ❚

Question 7.2.8 Identify the approximations used to obtain Eq.(7.2.46)
from the reactions in Eq.(7.2.23). There is an inconsistency between the

reactions and the equations. In the activator-substrate system the reaction

(7.2.47)

is the on ly re acti on that is re s pon s i ble for two terms in the differen tial equ a-
ti on s .These two terms in Eq .(7.2.46) have the coef f i c i ents k1 and k4. This wo u l d
mean that k1 = k4, s i n ce one A is ga i n ed and one B is lost. De s c ri be a mod i f i ed
re acti on in wh i ch k1 = 2k4 (easy) and a re acti on in wh i ch k4 = 2k1( h a rd ) . One of
our assu m ed cases in the simu l a ti ons corre s ponds to the latter.

Solution 7.2.8 For the case k1 = 2k4 we produce twice as many A in each re-
action as B is lost, this can be done using:

(7.2.48)

The difficulty in the case k4 = 2k1 is that the left side of the equation must
have only one B, but we want to make twice as many B disappear as A ap-
pears. To do this we need to have A be a composite molecule formed by a fast
reaction from two equivalent parts (ligands) that bind together to form a
complete A. We call each part D, then we have the reactions:

(7.2.49)

where the second is a fast reaction. This combination gives the desired result.
Another possible solution is to use two catalyzed reactions. One causes

A to appear and is catalyzed by B. The second causes B to disappear and is
catalyzed by 2A. Then the coefficients can be set independently. This suggests
some of the subtlety necessary to create actual pattern-forming systems. ❚

    

2A + B → 2A + D + C

2D → A

    2A + B → 4A +C

    2A + B → 3A
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Figure 7.2.15 Similar to Fig . 7.2.14, but for the activator-substrate system. The right panels
show the substrate B, which is consumed by the activator A. B is depleted and has its minima
where A has its maxima. Due to the more rapid diffusion of B, it is depleted in a region around
maxima of A. Thus, the growth of A is inhibited in regions surrounded by maxima of A. ❚
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Eqs. (7.2.45) and (7.2.46) involve many parameters,six different ones including
the two diffusion constants and four reaction constants. Exploring the six-
dimensional parameter space would involve much effort. Exploring large dimen-
sional spaces to discover particular pattern-forming regions of the space can give in-
sight into the difficulty of evolutionary processes that form these systems. However,
we can significantly simplify our problem mathematically by recognizing that each of
the densities a and b and the variables x and t can be measured in convenient units.
By normalizing these variables we do not change the form of the pattern, only its scale.
Full use of this would reduce the number of independent parameters to only two. For
our simulations,the time and length scale must be related to the time step and lattice
size. However, we can conveniently scale the densities a and b.

It is easier to scale the densities if we make use of the observation that these equa-
tions have a solution that is uniform and does not change in time. This solution, ob-
tained by setting f (a,b) = g(a,b) = 0, is unstable in the parameter domain in whic h
patterns form. Adding any small perturbation leads to the formation of a pattern. We
will discuss this in more detail at the end of this section. In the meantime we use the
uniform solution to choose coefficients—patterns typically consist of positive and
negative excursions from the unstable uniform solution. By normalizing the coeffi-
cients, we can set the uniform solution so that it is a = b = 1. For both sets of equa-
tions, this imposes the same relationships between the coefficients:

k1 = k2

k3 = k4

(7.2.50)

Using these relationships also makes it easier to display simulations,since we can use
a consistent scale for all plots of the densities. All of the figures showing density plots
of the patterns are formed using a scale that begins with white at 0 and ends with black
at 2.

In simulating the behavior of these differential equations, we can use a finite dif-
ference representation of the diffusion operator:

(7.2.51)

or in two dimensions:

(7.2.52)

The time derivative is represented as a time difference:

(7.2.53)

where we use t also as the discrete time index. These substitutions return us to a CA
consistent with a random-walk model of molecular motion. It has the form:

    

da(t)

dt
→

1

∆t
a(t)− a(t − 1)( )

      

d 2a(x)

dx 2
+

d 2a(x)

dy2
→

1

∆x 2
a(i +1, j) +a(i −1, j) + a(i, j +1) +a(i, j − 1) − 4a(i , j)( )

    

d 2a(x)

dx 2
→

1

∆x 2
a(i +1) +a(i −1) − 2a(i)( )
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(7.2.54)

The choice of ∆t and ∆x is coupled to the choice of the remaining coefficients—the
reaction constants k1 and k3 and the value of the two diffusion constants Da and Db.
Their value determines the characteristic time to equilibration and the length scale of
the pattern that is found. The time scale must be set so that significant changes do not
happen in a single increment, because otherwise the differential equation is not being
correctly approximated, and oscillatory or chaotic dynamics of iterative maps may
occur. The inherent time scale of the system is set by the amount of time it takes for a
typical molecular density to change significantly. If we assume that our reaction con-
stants k1 and k3 are set approximately equal to one, and we have already chosen the
characteristic density of both reactants to be one,then the time for the characteristic
density to change is also one. We must ensure that this is much larger than the time
interval ∆t so we choose ∆t = 0.01. For the simulations we choose the length scale to
be approximately one lattice constant, so we set ∆x = 1.

How should we choose the values of the diffusion constants Da and Db ? We can
set their relative values by noting that the range of diffusion √Dt is proportional to the
square root of the diffusion constant. In the CA models, we used a ratio of activation
range to inhibition range of 6:1. Thus we would like the diffusion constants Db : Da to
be approximately 36:1 with Da approximately 1. For the simulations, a ratio of 40:1
was used with Da = 0.5 and Db = 20. Db = 20 was used instead of Db = 40, because for
this value the coefficient of b(i,j;t) in Eq. (7.2.54) is greater than 1 (it is −1.6) which
causes numerical instabilities (see also Question 7.2.9).

With most of the parameters determined,the only remaining choice is the rela-
tive values of the reaction constants k1 and k3 with both approximately one. We fix k1

= 1,and vary k3. Not all values of k3 produce patterns. In Fig. 7.2.13 patterns formed
from the activator-inhibitor system are shown for k3 = 1,2,4. For smaller values of k3,
the spots become sparser as is evident already from the behavior at k3 = 1. For higher
values of k3 (k3 = 8),the pattern disappears and a uniform solution of the differential
equation becomes the steady-state result.Simulations for the same values of k3 = 1,2,4
are shown in Fig . 7.2.14 for the activator-substrate system. However, in this case we
see that at low values of k3 the spots become slightly bigger but not significantly
sparser. For still lower values of k3, the simulations, as described above, become un-
stable and do not arrive at a steady-state result. For higher values of k3 (k3 = 8),a uni-
form solution becomes stable. An analytic approach to understanding the pattern-
forming range of k3, and incidentally why both sets of equations have a similar
pattern-forming behavior, is described in Questions 7.2.7 and 7.2.8.

    

a(i, j;t +1) = a(i, j;t) + ∆t f (a(i, j ;t),b(i, j;t))

+ ∆t

∆x 2
Da a(i +1, j;t)+ a(i −1, j;t) +a(i, j + 1;t) +a(i , j − 1;t) − 4a(i , j;t)( )

b(i, j ;t +1) = b(i, j;t) + ∆t g(a(i, j ;t),b(i, j;t))

+
∆t

∆x 2
Db b(i +1, j;t)+ b(i − 1, j;t) +b(i, j + 1;t) +b(i, j −1;t)− 4b(i , j;t)( )
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The finite difference form of the differential equations in Eq. (7.2.54) is a CA.
This CA is both simpler and more elaborate than the CA in Section 7.2.2. Here the in-
teractions between cells are nearest neighbor and the variables at every site are two
real numbers—a major part of the pattern-forming behavior arises from the on-site
part of the rule. In Section 7.2.2 the interactions were longer range and each cell had
only a single binary variable—the pattern formation arose from the interactions. We
note that CA rules that are derived from differential equations are designed to be stud-
ied in the limit where the cell size is small enough that granularity does not affect the
result. This is not necessarily the case with all CA rules;however, in the case of pattern
formation,a similar limit should be taken where the cell size is small compared to the
typical size of the pattern.

Question 7.2.9 The parameters of the differential equations that give
rise to patterns must,in biological systems,arise out of the properties of

the molecules involved. If we assume that simple diffusion applies, the dif-
fusion constant arises largely from the volume of the molecule, so the slow
diffuser must be much larger than the fast diffuser. Discuss the practicality
of the activator-inhibitor or activator-substrate systems simulated here.

Solution 7.2.9 Using Stokes’ law (see also Section 5.2) for spherical mole-
cules,the diffusion constant is inversely proportional to the cube root of the
volume. For simplicity we can assume the volume is approximately propor-
tional to the mass. Since the diffusion constants were set to have a ratio of
40:1,the masses must have a ratio of 64,000 or approximately 105. Recall that
the characteristic distance traveled is proportional to the square root of the
diffusion constant, which is inversely proportional to the cube root of the
mass. Thus the characteristic distance traveled is inversely proportional to
the sixth root of the mass—a very weak function of the mass.

Since the fast diffuser must be complicated enough to participate in
well-defined ways in specific reactions, we can not expect it to be easy to de-
sign a small molecule to do this. If the small molecule is itself large,the large
molecule must be huge. Thus, either the slow diffuser must be a behemoth
or some other approach must be taken.One solution is that the slow diffuser
is actually a cell rather than a molecule (see Section 7.2.7). Another possibil-
ity is that other effects, such as reactions that temporarily bind molecules, re-
duce its diffusion rate. ❚

Using the reaction-diffusion equations and the chosen parameters, the patterns
formed are those of spots. We have seen from the discussion of the CA activation-
inhibition models in Section 7.2.2 that there are several ways to cause such patterns
to form stripes.One way (Question 7.2.2) is to change the relative strength of the in-
hibition compared to the activation. In the reaction-diffusion systems,the same terms
in the differential equations are responsible for both activation and inhibition (k1 in
Eq. (7.2.44) and k1, k4 together in Eq. (7.2.45)). Thus it does not appear possible to
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control separately the activation and inhibition. However, these terms describe acti-
vation when a is large and inhibition when a is small. Thus we can vary their relative
strength by introducing an additional density dependence to these terms that reduces
the activation at high values of a and maintains the inhibition at low values of a. For
the first set of equations (activator-inhibitor):

(7.2.55)

For the second set (activator-substrate):

(7.2.56)

While we do not discuss the possible chemical origins of this modification in detail,
we can understand it as a saturation (effectively an inhibition) of the autocatalytic re-
action in the presence of high densities of the activator. It could be caused by an ad-
ditional inhibitor whose density is tied to a. Patterns formed from these equations in
Fig. 7.2.16 show the formation of stripes.

In summary, we see that the conditions under which patterns can be generated
include cases where there are two types of molecules, one diffusing rapidly and the
other slowly. The slow diffuser A autocatalyzes a reaction that increases its own den-
sity. The fast diffuser B reacts with the slow diffuser and decreases the density of A in
the vicinity of a high-density region of A. This results in patterns like that of the
activation-inhibition CA model in the previous section. The primary difference be-
tween the two sets of differential equations is that the fast diffuser B acts to inhibit in
two distinct ways, in the activator-inhibitor system through its presence, and in the
activator-substrate system through its absence (depletion).

The discussion of these equations in terms of activation and inhibition can be
augmented by a discussion of their analytic properties. Diffusion in the absence of re-
actions causes the density to become uniform and patterns are not possible. What are
the mathematical conditions under which patterns will form when there are reac-
tions? Central to our understanding of the formation of patterns is the recognition
that a uniform solution of the equations continues to exist even when patterns are
formed. However, this uniform solution is unstable. This means that adding a small
nonuniform density (perturbation) to the uniform solution will cause the system to
evolve to a pattern such as those shown in the figures. An analytic study of the stabil-
ity of the uniform solution is known as linear stability analysis. Using a linear expan-
sion of the equations around the uniform solution, we can determine if it is stable.
When it is not stable then the quadratic terms become important in determining the
solution, which may be a nonuniform pattern.

We can take the analysis one step further by recalling that a key aspect of the pat-
tern is the existence of a length scale characteristic of the distance between spots. This
length scale arises even though a differential equation (unlike the CA) has no cellular
length scale;it is also independent of the size of the system. The characteristic length

    

f (a,b) = k1a
2b /(1+k5a2) −k2a

g(a,b) = k3 −k4a 2b /(1+ k5a2)

    

f (a,b) = k1a
2 /b(1+ k5a2) −k 2a

g(a,b) = k3a
2 −k4b
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Figure7.2.16 The addition of a parameter that causes the rate of growth of A to be decreased
at high density of A and increased at low density causes the formation of stripes in both the
activator-inhibitor (this page) and activator-substrate (p. 670) systems. The parameter val-
ues shown are: for all cases k1 = k2 = 1, for top k3 = k4 = 1, k5 = 0.2, for middle 
k3 = k4 = 1, k5 = 0.3 and for bottom k3 = k4 = 2, k5 = 0.2. ❚
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Figure 7.2.16 (continued)
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scale arises because of the nature of the instability of the uniform solution. Instead of
being unstable to all perturbations, the system is only unstable to perturbations of a
range of length scales that characterize the patterns. Using the linear expansion
around the stable solution, we can identify the range of length scales over which it is
unstable to perturbations,and thus identify whether a pattern will form (or for what
range of parameters a pattern may be expected to form), and what its characteristic
length scale should be. This analysis is discussed in Questions 7.2.10 and 7.2.11.

Question 7.2.10 Patterns are generated when a differential equation has
a uniform steady-state solution that is unstable to perturbations at the

length scale of the pattern. The instability means that a small addition to the
uniform solution grows in time until it is stopped by a process that limits the
continued growth. To perform an analytical investigation of the reaction-
diffusion equations, expand the reaction part of the reaction-diffusion equa-
tions f (a,b), g (a,b) around the uniform solutions in the form

a = 1 + u
(7.2.57)

using the –(+) sign for the activator-inhibitor (activator-substrate) system of
equations. Then write differential equations for the time evolution of u and
v. It is only necessary to keep the linear terms.

Solution 7.2.10 We expand f (a,b), g(a,b) to second order. We use only the
first-order terms, but the second-order terms will illustrate a point. Inserting
Eq. (7.2.57) and expanding the activator-inhibitor set of equations gives:

(7.2.58)

For the activator-substrate set of equations, we have:

(7.2.59)

        

f (1+ u,1+v) =k1(1 + u)2(1+ v)− k1(1+ u)

= −k1(1+ u) +k1(1+ 2u + u2 + v + 2uv + u2
v)

= k1(u + v) +k1(u
2 + 2uv)+K

g(1+ u,1+v) =k3 − k3(1+u)2(1+ v)

= −k3(2u + v) −k3(u2 + 2uv) +K

        

f (1+ u,1−v) =k1(1 + u)2 /(1−v) −k1(1+ u) +

= −k1(1+ u) +k1(1+ 2u + u2)(1+ v + v
2 +K)

= −k1(1+ u) +k1(1 + 2u + u2 + v + 2uv + v
2 +K)

= k1(u + v) +k1(u +v)2 +K

g(1+ u,1−v) =k3(1+ u)2 −k3(1− v)

= k3(2u + v) +k3u
2

        b = 1m v
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The differential equations for u and v are obtained by inserting Eq.(7.2.57)
and Eq.(7.2.58) or Eq.(7.2.59) into Eq.(7.2.44). After substitution we switch
signs in the second equation, when necessary, to obtain:

(7.2.60)

We have written only the first-order terms, which are the same in both sets
of equations. The second-order terms are not the same. The equivalence of
the first-order terms in part explains the similarity in the results obtained by
simulating the two sets of equations. The inequivalence of the second-order
terms is responsible in large part for the differences. ❚

Question 7.2.11 Eq. (7.2.60) consists of two coupled linear differential
equations. For a uniform solution where u and v are independent of x,

the solution must either be a growing exponential or a decaying exponential.
The two possibilities correspond to an unstable or stable uniform solution
of the original equations. We can also consider nonuniform solutions by us-
ing the trial solutions:

u(x;t) = u0e
t sin( x + )

v(x;t) = v0e
t sin( x + )

(7.2.61)

A one-dimensional spatial variation has been assumed,since there is no y de-
pendence. Substitute and find possible values of . Plot the real part of as
a function of for the parameter values used in the simulations above. When
the real part of is positive,the uniform solution is unstable; when the real
part is negative, the uniform solution is stable.

Solution 7.2.11 Substituting Eq. (7.2.61) into Eq. (7.2.60) we have:

(7.2.62)

To determine the solutions, we must find eigenvectors and eigenvalues of the
matrix:

(7.2.63)

The eigenvalues, which are the possible values of can be obtained with
some algebra:

(7.2.64)
    

± =
1

2
(− 2(Da + Db) +k1 −k3)± (− 2(Da − Db )+ k1 +k3)2 − 8k1k3

 
 
 

 
 
 

    

−Da
2 +k1 k1

−2k3 −Db
2 − k3

 

 
  

 

 
  

      

u0 = − 2Dau0 +k1(u0 + v0) = (−Da
2 +k1)u0 +k1v0

v0 = − 2Dbv0 −k3(2u0 + v0) = −2k3u0 +(−Db
2 − k3)v0

          

du(x;t)

dt
= Da ∇2u(x ;t)+ f (1+ u(x;t),1mv(x ;t)) ≈ Da∇2u(x ;t) +k1(u(x;t)+ v(x;t))

dv(x ;t)

dt
= Db∇2

v(x ;t) m g(1 +u(x ;t),1m v(x;t)) ≈ Db∇2
v(x ;t) −k3(2u(x;t)+ v(x;t))
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We could find the solutions (values of u0 and v0).Our objective,however, is
only to consider the eigenvalues ±. Their real part determines whether the
solutions grow or decay. If they decay, then the uniform solution of the orig-
inal equations a = b = 1 is stable and no pattern will form. If one of the so-
lutions grows,then the system will form a pattern. Without analyzing these
eigenvalues in great detail, we can plot their values for the parameters used
in the simulations to form patterns as a function of 1/ , which is propor-
tional to the length scale of the perturbation. This is done in Fig. 7.2.17. We
see that the real part of + is positive for a range of values around unity but
is negative both at 1/ = 0 and 1/ = ∞. This means there is a limited range
of length scales at which the equations are unstable, and this range deter-
mines the size of the pattern that is formed. ❚

7.2.6 Cellular switches
The patterns of molecular density discussed in the previous two sections may describe
the behavior of patterns of pigment. More generally, in developmental biology it is
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Figure 7.2.17 Plots of the real part of the eigenvalue + as a function of 1/ as obtained in
Question 7.2.8. The real part of – is always negative for the parameters chosen. The plots
are for parameter values: Da = 0.5, Db = 20, and k1 = 1. The value of k3 = 1,2,4,8 is indicated
on each curve. We see that the range of length scales over which the uniform solution is un-
stable decreases with increasing k3 and eventually vanishes, causing the uniform solution to
become stable at k3 = 8. This is consistent with the simulations for k3 = 1,2,4 shown in
Figs. 7.2.14 and 7.2.15. The uniform solution (not shown in Figs. 7.2.14 and 7.2.15) was in-
deed found to be the result of simulations at k3 = 8. ❚
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necessary to use such patterns to activate certain cells to perform specific functions,
change shape or initiate another stage of pattern formation. For any of these to occur,
a chemical process inside a cell must be initiated. The chemical process should persist
independent of the original pattern of molecular density. Then the pattern itself need
not persist as the system further develops. This requires a one-way chemical switch
that can then activate additional cellular functions.

In order to realize the behavior of a one-way switch, what is needed is a chemical
system that has two stable states and can be switched from one to the other by a pre-
specified concentration of the patterned molecule. The prespecified concentration is
genetically encoded to achieve the desired control. We require a new reaction equa-
tion that depends on the concentration a of the patterned substance A and controls
the concentration c of a substance C :

(7.2.65)

h(a,c) must have the property that as a function of c it can have at least two solutions
c−1 and c1 (in a moment we will see that it must have three) of

h(a,c) = 0 (7.2.66)

which are the steady-state conditions in which c does not change. These solutions are
functions of a, and can be assumed to vary smoothly with a. However, above a speci-
fiable density of a, one of the two solutions,say c−1, disappears. This causes the den-
sity of C to switch to c1.

We can analyze the properties o f h(a,c) that are necessary and suggest specific
forms it might take. In order for c−1 and c1 to be stable solutions of Eq. (7.2.66), the
derivative of h(a,c) must be negative at these values:

(7.2.67)

This means that a small positive increment results in a negative dc/dt (see Eq.(7.2.65))
while a small negative increment leads to a positive dc/dt. In either case c = c±1 is
restored.

The burden of creating a switch is on the density c, so we represent simply the ef-
fect of A on C as direct production (A→C), or catalysis of production (A→A+C)
leading to the form:

(7.2.68)

We can now design h̃(c) with the desired properties and consider how it can be gen-
erated using chemical reactions. For simplicity, we set h̃(c) to have its first steady state
at c−1 = 0 so that there is no constant term in h̃(c). Since it must have a negative de-
rivative at c−1 = 0 we have h̃(c) = −k2c +. . . where the ellipsis represents higher-order
terms.

In order to have two solutions of Eq.(7.2.66) with negative derivatives, h̃(c) must
have a form like that illustrated in Fig. 7.2.18(a). In particular, there must also be a

    h(a,c) = k1a + ˜ h (c)

    

dh(a,c)

dc
c ±1

< 0

    

dc(t)

dt
= h(a,c)
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h̃ (c) = −0.8c + 2c2 − c3
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Figure 7.2.18 (a) Plots of two possible forms h̃(c). This function describes the rate of change
of the density c used to create a chemical switch. There are two stable solutions (low and
high density) and one unstable solution of h̃(c) = 0. (b) When a is added to the system the
curve is displaced upward, as shown by the dashed lines. For a high enough value of a only
the high density solution is left. If we start with the low-density solution and raise the den-
sity of a the density of c will rise gradually and then switch to the high-density value. When
a is lowered back down, c stays at the high-density solution. This sequence describes turn-
ing the switch ON. ❚
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third solution of Eq. (7.2.66) with a positive derivative. This can be achieved using a
polynomial of the form:

(7.2.69)

For the last term, we can use any power of c that is greater than 2.Writing down reac-
tions that in principle would lead to this form is not difficult. However, they may ap-
pear overly contrived.

Another way to satisfy the conditions is to make use of a system that has the
structure:

(7.2.70)

The third term has the interpretation that it consists of a molecule produced in a sig-
moidal fashion—it increases quadratically by autocatalysis and then saturates at a
maximum value. In both Eq. (7.2.69) and Eq. (7.2.70) the second term represents a
process of molecular decay. Fig. 7.2.18(b) shows the switching action when there is a
change in the concentration of a.

7.2.7 Pigment cell diffusion
The study of the formation of patterns in Sections 7.2.2 and 7.2.5 considered systems
where the initial conditions provided pigment placed at random throughout the
space. The dynamics then caused these pigment molecules to bunch together to form
the pattern. Experiment suggests,however, that vertebrates create pigment patterns by
the migration of pigment-producing cells (melanophores). Early in fetal develop-
ment, the melanophores are formed on the line that eventually becomes the spinal
cord and from there migrate across the surface and aggregate into a pattern that be-
comes the pigment pattern. The number of these pigment-producing cells need not
be conserved during this process,however, they must arise in most regions by migra-
tion, rather than by initial seeding or by spontaneously being produced by other cells.

Thus, we must consider a model where the initial conditions place pigment only
in a limited part of the space,and from there the pigment diffuses through the space
to form the pattern. We consider this process in the context of the reaction-diffusion
systems described in Section 7.2.5. The slow diffusing species is the melanophore,
while the fast species is assumed to be a molecule (Question 7.2.9). In both the acti-
vator-inhibitor and activator-substrate systems, the slow-diffusers (A) are not spon-
taneously generated—some of A is required in order to make more of A—consistent
with the properties of melanophore reproduction. However, both of the models must
be modified to allow the initial conditions to consist of only a single initial band of A
and B (Fig. 7.2.19 (top)).

For the activator-inhibitor set of equations, the problem with the initial condi-
tions arises in regions where b is zero. The first term in Eq.(7.2.45) diverges. This oc-
curs not just because of the initial conditions but also because B is generated by the

    

h(a,c) = k1a − k2c +
k3c2

1 +k4c 2

    h(a,c) = k1a − k2c +k3c
2 −k 4c

3
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presence of A, which is limited in space by our assumptions. Thus, as discussed in
Question 7.2.5 (Eq. 7.2.38), we introduce an additional constant k6:

(7.2.71)

The results of simulations are not very sensitive to the value of k6, which was chosen
to be 0.1.

For the activator-substrate equations (Eq.(7.2.45)),the problem arises from the
uncontrolled growth of B in the regions where A has not yet reached. This eventually
causes the simulation to break down as the gradients in B become too large to be in-
tegrated using the parameters chosen. It makes sense to limit the spontaneous gener-
ation of B using an additional parameter k6 in the following way:

(7.2.72)

A quadratic term rather than a linear term was used so that the first-order expansion
of the function would not be affected. The first-order terms, as discussed in
Questions 7.2.7 and 7.2.8, play an essential role in the existence of patterns, while the
higher-order terms are less crucial. A value of k6 = 0.1 was found to be reasonable and
was used for the simulations. It limits the growth of b to no more than √10.

The simulations of these two systems are quite distinct. Simulations of the
activator-inhibitor system are shown in Figs. 7.2.19 and 7.2.20. For certain values of
the parameters, the pigment does not expand out of the region in which it started.
This can be understood when we think about how this system functions. The pigment
cells A produce the fast diffuser B which inhibits the formation of A. Since the high-
est concentration of B is in the immediate vicinity of high concentrations of A, it be-
comes difficult if not impossible for A to move into additional areas.For other values
of the parameters,the initial line of pigment is unstable to bending, and the pigment
expands to fill the space in spots or stripes, or combinations of spots and stripes. An
example is shown in Fig. 7.2.20.

In contrast, pigment in the activator-substrate system (Figs. 7.2.21 and 7.2.22)
generally expands to fill the space. This occurs because the fast diffuser B, which en-
ables A to increase in concentration,is readily available in regions away from regions
of high concentration of A. The melanophores A diffuse outward and increase in
numbers due to the availability of B. It is helpful to recall that inhibition in the growth
of A arises only when regions of high density of A surround a region of low density.
In the central region, A cannot grow because the density of B is maintained at a low
level due to reaction with the surrounding A.

One of the patterns that appears in these simulations are stripes that run parallel
to each other. In the activator-inhibitor model (Fig. 7.2.20),they form by extension of
each stripe and they are essentially perpendicular to the originating line (spine). In
contrast, the stripes in the activator-substrate system (Fig. 7.2.22) are formed

    

f (a,b) = k1a
2b /(1+ k5a

2 ) − k2a

g(a,b) = k3(1− k6b
2 ) − k4a

2b /(1+ k5a
2 )

    

f (a ,b ) = k1a
2 /(b + k6 )(1+ k5a

2 ) − k2a

g(a ,b ) = k3a
2 − k4b
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sequentially and are parallel to the originating line. Depending on the parameters,the
whole space may become stripes, or stripes may give way to spots.

Many animals have stripes that are better described by these results than by the
patterns formed from random initial conditions of Sections 7.2.2 and 7.2.5. Some
have stripes that run head to tail. These are more easily accounted for by the activator-
substrate model. In particular, patterns with two stripes along the spine and dots be-
low are found (e.g., genets) similar to Fig. 7.2.22. In other animals, such as the zebra,
stripes run perpendicular to the spine. This could be generated by a version of the
activator-inhibitor model where the stripes originate along the spine. Alternatively, if
the pigment cells only originate at the skull,the activator-substrate model might form
the stripes sequentially. We can identify which model is reasonable from the pattern
by noting whether the stripes are continuous across the spine. In the activator-
substrate model the stripes would be continuous across the spine, while in the
activator-inhibitor model the stripes would be broken at the spine.

Developmental Tool Kit

In this chapter we have focused on the modeling of pattern formation as a funda-
mental aspect of developmental biology. In this section we briefly describe other
processes that are important or essential for the process of development. The ability
to cause these processes to occur provides a tool kit for the formation of organisms
with functioning interdependent organs and physical structures designed for partic-
ular tasks.

The formation of physical structures including organs,limbs and tissues involves
various processes that occur both inside and between cells that change the number,
shape and location of cells. Growth in absolute size of the system occurs by cellular
replication (growth and division). Once cells have differentiated in function due to
patterning, diffusion or directed motion of cells in chemical gradients plays an im-
portant role in the relative location of cell types. Programmed cell death also plays a
role in the formation of structures. Changes in external and internal structure of the
organism also arise from changes in the structure of individual cells, particularly the
cell membrane.Oriented adhesion of cells also results from cell membrane behavior.
These processes involve changes at the molecular level in the cellular membrane and
cytoplasm. They are developmental processes within the cell that contribute to the de-
velopment of the whole organism. Among the physiological structures that are
formed are spheroids, balls, membranes, tubes and branching systems. In some areas
intercellular spaces also become filled with various excretions of cells to form support
structures for the cells and the whole organism.

For the study of patterns in growth, the formation of treelike branching struc-
tures (Section 1.10.2) is particularly interesting. In plants, these include external
structures—branches and roots. Internal branching structures occur in plants (veins
in leaves) and animals (veins, nerves, air passages in lungs, and duct systems in cer-
tain organs). Most of these are multicell systems that may be formed by elongation of
tubelike structures through cellular division and growth,then a periodic or occasional

7.3
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(a)

(b)

(c)

Figure 7.2.19 The reaction diffusion activator-inhibitor system simulated starting from ini-
tial conditions of a single linear strip of A (left frame) and B (right frame). (a) illustrates the
initial conditions which are similar to that used in Fig. 7.2.13–7.2.16 but are restricted to a
linear strip as shown. (b) shows the steady-state result of a simulation with parameter val-
ues k1 = k2 = 1, k3 = k4 = 1, k5 = 0, and k6 = 0.1. (c) shows a simulation with the same para-
meters except k5 = 0.1. For the parameter values of both (b) and (c) the pigment remains con-
fined to its initial line. ❚
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Figure 7.2.20 Frames of a simulation of the activator-inhibitor system with parameter val-
ues k1 = k2 = 1, k3 = k4 = 2, k5 = 0.3, and k6 = 0.1. The results are unlike the simulations
shown in Fig. 7.2.19, for the same system but using different parameter values. In this case
the initial line becomes unstable and the pattern of pigment expands to fill the space. Note
that the lines of pigment are extended at their ends into the empty space. They are largely
perpendicular to the line found in the initial conditions. Note also the long simulation time.
The activator-substrate model has different behavior, as shown in Figs. 7.2.21 and 7.2.22. ❚
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Figure 7.2.20 (continued)
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Figure 7.2.21 Frames of a simulation of the activator-substrate system with parameter val-
ues k1 = k2 = 1, k3 = k4 = 2, k5 = 0, and k6 = 0.1. The pigment expands to fill the space with
spots using a process of spot splitting and diffusion. Compare Fig. 7.2.19 for the activator-
inhibitor system. This model may also be relevant to evolution and trait divergence as dis-
cussed in Section 7.6. ❚
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Figure 7.2.21 (continued)
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Figure 7.2.22 Similar to Fig. 7.2.21 except for the parameter k5 = 0.2. We see that spots are
formed when the original stripe diffuses outward. Then new stripes form parallel to the ini-
tial stripe of pigment by merging of the spots. For these parameter values, the spots continue
to form into lines until the lines fill the whole space (not shown). All lines formed run par-
allel to the initial line of pigment. Compare Fig. 7.2.20 for the activator-inhibitor system. ❚
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Figure 7.2.22 (continued)
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initiation of branching. Some networks, such as the plant leaf veins, may also be
formed by direct chemical patterning similar to the patterns shown in section 7.2.
Branching nerve cells discussed in Chapter 2 are an example of individual cells that
branch using molecular changes. Cell elongation and branching must be controlled
through the addition of molecules to the cell membrane. Both multicellular and sin-
gle-cell branching structures also, in general, must include a form of target tracking
that imposes some overall systematic behavior on the branching system. This target
tracking may cause the network to fill space more or less uniformly so that all regions
are served (veins or ducts). Alternatively, a directional bias to growth may be impor-
tant, such as provided by sunlight on tree branches, or chemical gradients causing a
bias in growth direction that results in interconnection of organs inside an animal.

The mathematical modeling of branching structures would seem to be natural,
since it is only necessary to specify an algorithm by which the branching occurs.
However, there is a conceptual difficulty in representing such systems, because we
generally think about the storage of information about a system in terms of storage
locations that are themselves given by a linear string—a nonbranching data structure.
When a branching st ructure grows, cells replicate at many sites, forming new cells
whose existence and state must be specified. A better approach for describing tree
structures,known as L-systems,has been developed by Lindenmayer based upon con-
cepts originating in treelike hierarchies in linguistics. This approach uses a character
string representation, but there are delimiters that indicate branching. Moreover, the
dynamics allows the insertion of multiple characters at any site. These dynamics are
specified by operators that act upon all the characters in a string. Each character can
be considered as representing the state of a particular cell. We will illustrate this using
a very simple example of a tree-generating algorithm.

We assume there are three states of a cell indicated by A, B and C. The update al-
gorithm is specified by state transitions of cells that include the possibility of replica-
tion to two cells. Branchings are indicated by delimiters (brackets). A simple state
transition table is:

(7.3.1)

The first few updates of a string are as follows:

(7.3.2)

This il lustrates the representation of a tree with binary branches. The nongrowing
part of the tree are cells in the state A. Cells in the state B replicate to extend the length
of their branch, and cells in state C replicate to form two new branches. By further

    

[B]

[AC]

[A[B][B]]

[A[AC][AC]]

[A[A[B][B]][A[B][B]]]

    

A → A

B → AC

C →[B][B]
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elaborating such an algorithm,it is possible to specify geometric information that can
fully describe a treelike structure. Various natural structures have been modeled in
this way.

The formation of limbs through budding (including arms,legs,tail,head and fin-
gers) may appear to be similar in many ways to the formation of branching structures.
It may also be related to the formation of pigment patterns that specify the location
of limbs to be formed. However, there is an essential difference between limb forma-
tion in animals and the other types of patterns. Both color patterns and branching
structures can be treated primarily as a statistical process that allows significant vari-
ation between specific realizations. However, limb budding must be a reproducible
process with definite outcome so that the number and type of limbs is consistent and
directly controlled by the developmental process. Small-scale patterns involving only
a few limbs would be much more reproducible and controllable than the large num-
ber of spots in patterns discussed in Section 7.2. The precise form of small-scale pat-
terns is controlled by the boundary conditions that are imposed through the size (or
number of cells) of the organism or the internal system in which the pattern is being
formed.Our discussion in Chapter 2 of the 7±2 rule may be relevant here as well, sug-
gesting a limit to the number of limbs that can be created reliably through such
patterns.

Strictly repeating patterns such as faceted eyes of certain insects are another class
of patterns that are different from those discussed in Section 7.2.Such patterns can be
formed by sequential addition of elements. It is less reasonable to use a chemical pat-
terning as a template to achieve strictly periodic order extending over a large number
of elements. The main difference between periodic patterns and limb budding is not
that there are few or many, but that in limb budding there are differences between the
limbs that are important and the total number is well defined, while in a periodic
structure all of the components are essentially the same and a few less or more doesn’t
really matter.

There are several other processes in addition to pattern formation and physical
changes in cells that are important. These processes control the timing or order of de-
velopmental stages. We have already discussed in Section 7.2.6 the operation of one-
way chemical switches that can serve to couple different processes. The presence of
one chemical density above a threshold causes a second chemical to be produced. The
second chemical continues to be produced even when the first is removed. Irreversible
processes like chemical switches are an important component of timing mechanisms
that count regularly spaced events. Timing mechanisms may be used for processes
within a cell, including setting the time between cell divisions. Timing mechanisms
are also necessary across several cell divisions. For this purpose, one way to monitor
time is to count the number of cell divisions. This would require a sequential process
(such as chemical switches) that can serve as a counter. It is believed that a certain
number of bases at one end of DNA chains do not replicate in normal cell division
(telomere shortening). The bases may be added later; alternatively, the progressive
shortening of the chain may serve as a counter of cell divisions to control develop-
ment and aging.
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Our discussion of cellular processes in developmental biology is far from com-
prehensive,though a few of the important processes have been mentioned.A further
level of detail could be added to the internal cellular processes. This level would in-
clude: the transmission of signals through membranes via cellular receptors, the
transfer of such signals from the cellular membrane to the cell nucleus, the coupling
of chemical processes to the activity of gene expression,the production of various en-
zymes,and the transmission of signals from their production sites out of the cell and
into the intercellular fluid. Discussions of these processes are relevant to considering
the cell as a complex system in its own right.

Theory, Mathematical Modeling and Biology

We have used various techniques to model pattern formation in biological systems.
The primary tools were simulations of CA and differential equations. There is a need
to develop some perspective on the utility of mathematical models for the study of bi-
ological systems. Biology is largely a phenomenological science.It is dominated by the
experimental study of systems,their description and classification. This is to be con-
trasted with the physical sciences, where theory and mathematical modeling play a
more integral role.At least for some biologists,the use of mathematical models misses
the essence of the study of biological systems. Aside from the usual political/socio-
logical issues that can affect such perspectives, there is validity to the concern that
mathematical modeling may not capture the processes that are important in biologi-
cal systems. It is important, therefore, to understand more systematically the objec-
tives of theory in general and mathematical modeling in particular.

The role of theory in science rests on three legs—description, explanation and
prediction. Description implies that a theory has the ability to describe the existing
observations and phenomena. Explanation implies that the theory has a compara-
tively simple set of concepts and relationships that capture the system behavior more
concisely than the phenomena that are described. This is tied to the notion of sim-
plicity of scientific theory and Occam’s razor, which requires a theory to be as simple
as possible. Prediction is linked to the ability to describe existing phenomena but de-
mands that clear and testable predictions be possible. In particular, a theory is con-
sidered poor if it cannot be falsified by direct experimental test. In essence the theory
must distinguish between possible outcomes of an experiment whose implications
would not otherwise be known. In a certain sense, the more unanticipated (surpris-
ing) are its predictions, the more useful is the theory.

From the point of view of experimentalists interested in further elucidating the
phenomena of biological systems,the most important role of theory is the suggestion
and prediction of the results of experiments. Indeed, every experiment that is per-
formed is based upon some concept of what phenomena are important to measure,
and therefore reflects a conceptual theoretical framework in which the experiment is
performed. In biology, much of this theoretical framework is not based upon quanti-
tative theory. As a consequence,there has been little expectation that significant quan-
titative predictions are possible. Recent efforts have demonstrated that constructive
and predictive theories are possible, and the role of theory in biology is expanding.

7.4
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In order to clarify the role of theory further, it is important to distinguish it from
that of experiment. Experiment has a responsibility to uncover truths in the mea-
surement of actual systems. Theorists are often assumed to have the role of proving
truths through inference. However, their actual role is to propose assumptions—the
theory itself—and correctly derive from these assumptions various predictions.Only
when experiment tests the predictions can the assumptions themselves be tested and
truth be determined. Because of the different objectives of theory and experiment,it
is not appropriate to evaluate the contribution of theory by the goals of experiment.
This is just as true about the evaluation of experiment by its contribution to the goals
of theory. For example, in most cases experiment does not provide a general under-
standing, only an understanding of specific phenomena.

Increasingly, two additional roles of theory have arisen that cause more confu-
sion about its ultimate responsibility. The first of these is the appearance of ab-initio
calculations of system properties. This approach is most often applied to the study of
solid or molecular systems. These studies extend the traditional objective of provid-
ing theoretical predictions for experimental results.However, the assumption in these
studies is that the underlying theory has been so fully tested that the result of a proper
calculation is as correct as an experiment that is performed on the same system. The
challenge for the theorist is to ensure that the calculation is correct, if this is satisfied
then the results are assumed valid. In this way it is like an experiment. The concept of
ab-initio calculations has limitations in that there are no calculations that have per-
fect accuracy, and their implementation always requires assumptions about the rela-
tionship of the computer model with actual systems. Such limitations also apply to
laboratory experiments and the relationship of the experimental condition to other
circumstances. The objective of developing ab-initio methodologies is a positive one.
However, it should not be confused with the more traditional objective of proposing
fundamental simplifications and their experimental consequences.

The second ad d i ti onal role of t h eory is the mathem a tical modeling of ex peri m en t a l
ph en om en a . This is known as ph en om en o l ogical theory and repre s ents a sign i f i c a n t
p a rt of t h eoretical work in bi o l ogy as well as in the physical scien ce s . Mu ch of this ch a p-
ter is roo ted in ph en om en o l ogical theory. While su ch theory is gen era lly strong on de-
s c ri pti on , it is weak on ex p l a n a ti on and pred i cti on . The re a s on for these difficulties is
that a particular ob s erva ti on may be de s c ri bed by many disti n ct ph en om en o l ogi c a l
t h eori e s . Thus we have seen that co l or patterns can be obt a i n ed from several differen t
s ets of d i f feren tial equ a ti ons and from CA. The gen eral term for this fe a tu re of m od-
eling is univers a l i ty. The con cept of u n ivers a l i ty implies that in many sys tems on ly a
few aspects of the properties of a sys tem are important in determining its ch a racteri s-
tic (simple) beh avi or. The re a s on for this should be app a ren t : a simple beh avi or ari s-
ing from a com p l ex sys tem cannot depend on all of the properties of the com p l ex sys-
tem . If it did, it would in tu rn be com p l ex . Thus on ly a few fe a tu res of the underlyi n g
s ys tem must be rel eva n t , and many models should give rise to the same beh avi or.

A phenomenological model can be expanded to a more complete theoretical ef-
fort in order to provide additional information.One possible approach is to study di-
rectly the universality of the models. This means that we develop an understanding of
the essential properties of models that can give rise to a particular phenomenology.
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This approach takes us beyond the particular model and toward a general framework
(theory) that provides a more systematic understanding of the origins of a phenom-
enon.One step in this direction is the articulation in this chapter of the principles of
(a) activation and inhibition, and (b) fast and slow diffusers. Another is the analytic
expansion of the differential equations in Questions 7.2.10 and 7.2.11. More formal
approaches to universality are also possible (see Section 1.10.5).

A second possible approach is to discuss distinctions between different phenom-
enological models in order to provide contrasting predictions that can then be tested
by experiment. This enables the phenomenological model to become more predictive
and suggest experiments that can increase our understanding of the underlying
causes of a phenomenon. The underlying causes themselves may not be readily ac-
cessible to experiment. For example, the discussion of diffusing melanophores and
the difference between the activator-inhibitor and activator-substrate models in
Section 7.2.7 provides a mechanism for distinguishing between the two models of
pattern formation without direct knowledge of the actual processes involved. Without
such a discussion there would be no way to tell which of the models applied for a par-
ticular animal except to study the molecular processes, and little would be gained
from the theory. In general,the more independent tests are performed on a phenom-
enological model (or theory),the more it can be relied upon to describe new circum-
stances.

Most important for the consideration of the success or failure of theoretical mod-
eling in biology is the recognition that complex phenomena require, by their nature,
a complex model to generate them. This means that we cannot expect simple models
to generate truly complex behavior. Thus, a basic skepticism about the ability of the-
ory to describe biological phenomena can be justified. What is missing, however, is an
ability to know, a priori, what are truly complex phenomena and what properties of
complex organisms can be attributed to simple universal behaviors. Through a num-
ber of examples in this text, various approaches to the description of aspects and at-
tributes of complex systems have been illustrated using relatively simple concepts and
models. This is ultimately an important objective of the field of complex systems.

We conclude this section with a discussion of the relative utility of the CA,
reaction-diffusion and other models of pattern formation as an illustration of the use
of simulations in the study of biological systems. There are various biases regarding
the use of particular forms of equations and this discussion is designed to illustrate
that the form to be used should be dictated by the nature of the question that is to be
addressed. We have seen that the CA models introduced in Section 7.2.2 were conve-
nient for developing a basic understanding of activation and inhibition as a simplest
model of pattern formation. The differential equation models in Section 7.2.5 pro-
vided a more microscopic view of these same processes in the sense that they mod-
eled the chemical processes that might underlie the activation and inhibition. It would
be important to recognize,however, that the particular differential equations used are
not necessarily indicative of the actual processes in a biological system. They are thus
only particular realizations of systems that embody the activation and inhibition phe-
nomenon. These equations show us that reaction-diffusion systems can form pat-
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terns. To achieve a yet more microscopic view of the processes, we might turn to an-
other type of CA—the lattice gas—that would describe the diffusive motion of mol-
ecules directly rather than using the average density of the molecules as its essential
variable. To be even more microscopic, we could use a particle model that includes
Newtonian mechanics. This would require modeling the medium in which the parti-
cles are located. These examples are designed to suggest that there should be no in-
herent bias toward one approach. The bias is generated by the nature of the questions
and answers that are desired.

Principles of Self-Organization as Organization
by Design

In previous sections we discussed the dynamics of systems that achieve a complex
structure through the interaction of their components. The context is our effort to un-
derstand developmental processes that are involved in the reproduction of multicel-
lular biological organisms. There are, however, other processes that can result in re-
production. When a cell reproduces, it recreates itself by direct duplication. Each of
the components is duplicated or simply divided in two parts and they are grouped to
form two daughter cells. Does direct duplication play a role in the reproduction of
multicellular organisms? Many plants can reproduce by growing new plants directly
from a mature plant. Despite the connection to the parent plant, and its provision of
nourishment, this is not duplication. Instead, differentiation and pattern formation
occur in the creation of roots, stem and leaves. The other mode of reproduction,
through a seed,is essentially independent of the parent plant. Thus the entire process
is developmental. In animals,the interaction between parents and offspring is also sec-
ondary to the inherent developmental process. Fertilized eggs may be warmed by birds
and the young may be fed and trained. Mammals have a more direct relationship, ini-
tially through a controlled uterine environment,then through nurture. Nevertheless,
the specification of the process of physiological development is understood to be
largely self-contained in the initial cell. It would be remarkable if it were found that
some structures are transmitted directly from mother to fetus in-utero by migration
of differentiated cells. However, the basic developmental phenomenology appears in-
dependent. The question that arises is,Why do biological multicellular organisms re-
produce using a process of development? What benefit is there in this process?

In order to understand why a developmental process is desirable we should con-
sider the general task of creating a complex system,and specifically the problems with
duplication. The first aspect of duplication that we might consider is rooted in the dif-
ference between individual cells and multicellular organisms—the existence of more
levels of structure. In order to duplicate a multicellular system, we would duplicate
each cell and then we would have to disentangle the two resulting organisms. This
problem is linked to the spatial structure of the organism. An essentially two-
dimensional organism in three dimensions would not have this problem. Individual
cells are able to overcome this problem when organelles in the cell are replicated and
separated, though this is a complex process. By lining up DNA strands along a single 
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two-dimensional plane, this part of the system is reduced to two dimensions. We
might consider whether there are ways to do this for multicellular organisms. Instead,
we will look for other reasons for a developmental process that are also fundamental.

Another mechanism for duplicating a system would involve a process that is
more akin to our manufacturing processes, where many copies of a system are pro-
duced. Note that for many multicellular organisms there actually is mass production
of offspring, so that this is not an unreasonable model. Starting from a prototype or
a description (representation) of the whole system, we create a process that produces
and then places each of the components in its proper location. There are various
problems with this for an interdependent complex system.One of these is that the sys-
tem must be maintained in partial form. Sustaining the various components sepa-
rately creates an additional burden on the manufacturing process. This problem ex-
ists in actual manufacturing, since structures that become self-supporting must be
maintained during construction. Extrinsic supportive structures (scaffolding) may be
necessary during construction that are later removed. For a very complex interde-
pendent system such scaffolding would be much more difficult to design. Even for a
developmental process, the problem exists. It is manifest in the support systems in a
reptile or bird egg, and in a mammalian uterus. However, the internal organs are still
largely maintained by self-consistent systems that develop into the mature systems of
the multicellular organism.

While the two problems discussed in the previous paragraphs are important,
there is another way to understand the reason for a developmental process, which will
be particularly relevant for our understanding of the design of complex systems. It re-
lates not to the structure itself but to the problem of specifying the structure. Any de-
sign process implicitly assumes that a description of the system exists before the sys-
tem itself does. This description, generically called a blueprint, is in many ways like a
model of the system.We can better appreciate how science and engineering are related
when we recognize that the relationship between system and description plays an im-
portant though different role in both. Ultimately, it is the interplay between system
and description that science is investigating. A key difference between science and en-
gineering is that science can advance by using partial descriptions, while for engi-
neering a useful description must be sufficiently complete.Our concern here is to un-
derstand the relevance of representation to developmental biology. In particular,
What is the advantage of a representation that describes the developmental process of
formation rather than the final system itself? This reformulation of our question sug-
gests an answer: the developmental process can be more concisely described.

We can understand this answer when we think about the existence of various re-
lationships between different parts of a complex system as well as the different activ-
ities of the parts. If we take advantage of these relationships, we can reduce the
amount of information necessary to describe the whole system. More correctly, we use
the relationship when we create the program of development that constructs the sys-
tem. The program of development allows us to have less duplication of information.
If the same basic structure is relevant to several components, we have them undergo
the same developmental processes and then modify them later to accommodate dif-
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ferences. Even after two components are different, the same developmental process
may be used to achieve incremental modifications that are common to the two parts.
The process that we are describing is the creation of an algorithm from which the sys-
tem is to arise. The reason it is useful is because the explicit blueprint is inherently
compressible. The algorithm appears to contain fewer pieces of information than the
final form, even though they both ultimately contain the same information. We will
enter further into a discussion of system representation and information theory in
Chapter 8 (See also Section 1.8 and 1.9). The ideas articulated here are parallel to the
idea of algorithmic complexity, where the notion of reducing the length of a descrip-
tion to its smallest possible representation (compressing a character string) is investi-
gated. Here we are considering the applications of these ideas to design.

When we consider developmental biology in this context, we must expand our
understanding of compression from the usual notion that allows only deterministic
compression algorithms. Randomness or noise is available from molecular motion in
biological systems. Information that is essentially arbitrary can be provided from this
randomness. An example may be found in the pattern formation discussed in this
chapter. To describe the patterns formed in all of their detail would require many pieces
of information. However, for the animal skins, the specific details of the pattern are
not essential—we can vary them and still have patterns with the same properties. As
long as we are interested in the generic properties, such as size and overall shape of
dots,then the details can be provided by randomness. In the simulations, this is pro-
vided either by the initial conditions or in the update process when there is a random
selection of cells to update. To think about this more clearly we must recognize that
the eventual state of the system is selected from an ensemble which results from the
influence of randomness. As long as we are interested in properties that are generic in
the ensemble,this is satisfactory. However, if we want to select a particular feature that
is rare in the ensemble then we must specify it a priori as part of the design.

There is another source of information that may be used in the process of form-
ing the system. This is the existence of specific well-defined influences of the envi-
ronment. The environmental influences are in addition to the support structures and
nutrition provided in the seed, egg or uterine development environment. We can il-
lustrate this by another example.As mentioned in Chapter 3,the development of ba-
sic neural connections in the visual system of mammals is influenced by stimulation
by light. This is not really a form of adaptation to the environment, it is instead the
use of specific external stimuli as part of the developmental process. The algorithm is
taking advantage of persistent information about the external environment—the ex-
istence of light.

We thus find that the process of development is convenient because it allows the
system design to be more concisely represented. This answer is not complete.We must
still explain why it is advantageous to have a more concise description of the complex
system. The advantages of a concise design become particularly meaningful when the
design is to be modified. Modifications should preserve many of the essential rela-
tionships encoded in the description. This reduces the possibility of design errors. In
a complex system, a major source of errors is inconsistencies in the design. By
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definition, an inconsistency reflects the violation of a constraint or relationship that
is necessary in the final system. If the design automatically incorporates the required
relationship in its compressed form, then the inconsistency cannot arise. More di-
rectly, if the description is shorter, there are fewer places errors can be made—the
space of possible systems is reduced. This advantage is readily apparent when we con-
sider the range of sizes and structures of mammals that contain similar internal or-
gans with mutually consistent function and interconnections. It is also apparent when
we consider the variety of cars that are produced and realize that systematic (algo-
rithmic) relationships exist in the structure and placement of different components.
A drawn blueprint cannot describe the interrelationships of engine size to car mass.
Instead,the burden of applying such relationship is typically placed on human beings
who know them as design rules.A developmental approach would incorporate these
rules in an algorithm that could be modified to produce cars with various features and
sizes. If the algorithmic description is sufficiently concise,then even random changes
will still lead to viable designs. The importance of modification of design in biology
is apparent in our discussions in Chapter 6 about sexual reproduction and the im-
portance of random variation in evolution.

There are also disadvantages of a concise design.One arises when the design must
be precisely duplicated. Without any redundancy in the information, copying errors
may be introduced. We can see that the advantages of a developmental approach are
most important when a design is to be modified frequently, and less so when it is to
be duplicated many times without modification.Still,the problem of duplication can
be largely overcome. This is done through compression with a limited number of re-
dundancies that enable error detection.

Without further elaboration of these matters we can recognize the central issues
that have been raised.The connections that we want to make in this discussion are be-
tween the biological developmental process, the design of complex systems, and the
field of information and computation theory which is more commonly discussed in
the context of computer algorithms.

There are various ways in which interrelationships or algorithms are used in the
design of man-made products, whether these are physical entities such as cars and air-
planes or computer programs.One common methodology is the use of modular de-
sign. For example, in the construction of apartment buildings or housing develop-
ments,identical units need not be individually described. If modules differ, however,
they must generally be separately described. In order to execute the design, it is not
sufficient to describe only the modifications. In software design, compilers or inter-
preters translate from a more concise, higher-level language into a form suitable for
execution. We could also consider human elaboration of a design in a similar manner.
The various stages in design development elaborate a concise specification. The first
design might be an overall concept which is very concise. This concise description is
elaborated in a process that can involve many human beings. Such a process is a kind
of development when we include the human beings as part of the system. Thus we see
that there are various ways in which algorithmic relationships are incorporated into
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the design of man-made systems. However, it is apparent that the systematic use of al-
gorithms is not yet well developed.

How can we further incorporate the concept of self-organization or algorithmic
description in the design of man-made products? It is hard to imagine a develop-
mental process that could create houses. However, it is not hard to imagine a
computer-aided design system that can apply various modifications to a design and
automatically incorporate design rules. Computer aided design in general can be un-
derstood as a process of elaboration of concise descriptions. In its present form it is
not developmental in approach. Because the design description in a developmental
process is more concise,the application of these concepts to design is a strategy for re-
ducing the complexity of the design and engineering task. Our discussion of devel-
opmental biology suggests that it will become progressively important as the systems
that are being designed become more complex and are modified more frequently.

Pattern Formation and Evolution

In Chapter 6 we considered various models of evolution as an undirected process that
can give rise to complex systems. The essential concepts are the formation of diversity
and selection from this diversity. In this chapter we considered models for pattern for-
mation in developmental biology. The types of models we used are quite different.
Here we point out that the mathematical models of pattern formation may also be rel-
evant to the problem of evolution. Contact between these two problems arises from
the pattern of organism populations in genomic or phenomic space and in physical
space. The existence of a particular organism corresponds to a density n(s) in this
space. Species or trait groups correspond to patches of high density that are sur-
rounded by regions that do not contain organisms. We assume that the pattern of
populations is formed by evolution.

Evo luti on con s i dered as diffusion in gen omic space , i n cluding interacti on s , h a s
re s em bl a n ce to a re acti on - d i f f u s i on sys tem with some important mod i f i c a ti on s . We
con s i der first the ori gin of s h ort - ra n ge activa ti on and lon g - ra n ge inhibi ti on that may
h ave given rise to the pattern of s pots sep a ra ted by unocc u p i ed regi on s . This was al-
re ady discussed in Ch a pter 6; we su m m a ri ze here on ly a few poi n t s . Th ere are va ri o u s
m echanisms for activa ti on . The most direct is reprodu cti on . Va rious social beh avi ors
su ch as flocking are also mechanisms of s h ort - ra n ge activa ti on . Lon g - ra n ge inhibi ti on
must have a ra n ge that is ref l ected by the gaps bet ween spec i e s . An important cause of
i n h i bi ti on is the con su m pti on of re s o u rce s . Similar or ganisms typ i c a lly con sume sim-
ilar re s o u rce s . Thus the ex i s ten ce of an or ganism causes inhibi ti on of or ganisms over
a ra n ge of gen omes or ph en om e s . We can re a s on a bly assume that the ra n ge of or ga n-
isms that con sume similar re s o u rces is larger than the ra n ge of or ganisms that are en-
h a n ced by reprodu cti on . Th ere may also be even lon ger- ra n ge interacti on s , but these
we might inclu de in a mean field tre a tm ent for the pattern - forming model .

With this motivation, we consider evolution modeled by a reaction-diffusion sys-
tem with two components formed from the organism and its resource. The second set
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of reaction-diffusion equations (Eq.(7.2.45)) is a natural model where the substrate
b is the resource and the activator a is the organism. Organism diffusion is a conse-
quence of mutation if s represents genomic or phenomic space. It is physical migra-
tion if s represents physical space. Resource diffusion need not be taken literally—the
same effect (long-range inhibition) may be achieved due to organism behavior in
consuming resources of various related types, or at various physical locations in the
vicinity of its domicile.

For plant evolution we consider resources to be sun, water, nutrients and space.
For herbivore evolution we consider plants and space to be the primary resources. For
carnivore evolution we consider herbivores to be the primary resource. According to
Eq. (7.2.45), the resource g rows sp ontaneously but the organism reproduces when
consuming the resource. The quadratic dependence of reproduction on organism
population a in the terms k1a2b and k4a

2b is a nonlinear or cooperative effect in con-
sumption and reproduction. Sexual reproduction by itself only gives rise to a nonlin-
ear dependence if the probability of mate encounter is small. If the probability of en-
counter is not small then reproduction is linear, since organisms are often limited to
a certain number of offspring. The nonlinear dependence is suggestive of the cooper-
ativity of effective consumption (e.g., a wolf pack or a lion pride) and resulting re-
production. The other term k2a is the rate of organism death. From our studies of the
behavior of reaction-diffusion systems,there are various modifications of this system
that would still give rise to pattern formation, however, not all systems will result in
patterns, and the pattern character varies.

Th ere are two ad d i ti onal differen ces bet ween an evo luti on a ry model and the
p a t tern - forming model : f i rs t , the ex i s ten ce of a fitn e s s , or fitn e s s - rel a ted para m eters ,
that con trol the growth of pop u l a ti on at a particular gen om e , and secon d , the ex i s-
ten ce of a high er- d i m en s i onal space than the two - d i m en s i onal space that we con s i d-
ered for pattern s .To implem ent these mod i f i c a ti ons the equ a ti ons would take the form :

(7.6.1)

where we have just included the state dependence of all of the constants. They are all
genome or phenome and location dependent, because the resources appropriate for
a particular organism have their own dynamics, as do the organisms.

The essential behavior of this model without the species dependence of the pa-
rameters has already been simulated in the context of the pattern formation through
diffusion of pigment cells. The modeling of diffusion of the pigment from a line in
Section 7.2.7 is particularly relevant. We saw how patterns of spots can be formed that,
in a model of evolution, would be interpreted as species or trait groups. The species
closer to the starting line would correspond to simpler and more primitive organisms,
while those far away would correspond to more complex organisms formed at a later
stage of evolutionary history. We could readily imagine that such patterns will form
in higher-dimensional spaces and with various species-dependent parameters. The
degree to which variability of parameters would affect the relevance of such a model
is still to be studied.

    

f (a(s),b(s)) = k1(s)a(s)2b(s) −k2(s)a(s)

g(a(s),b(s)) = k3(s)− k4(s)a(s)2b(s)
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There are several advantages of a reaction-diffusion model for evolution that are
appealing when contrasted with the models used in the previous chapter.The reaction-
diffusion model gives insight into the reason that organisms continue to exist at dif-
ferent scales and at different stages of the evolutionary tree,including the coexistence
of simple and complex organisms.We find this in the pattern-forming model, because
the pattern continues to have populations in all regions of the space. The underlying
reason for this is that the model inherently assumes that there is a variety of resources
that are consumed by different organisms.A more complex organism that occurs later
in evolution does not consume the same resources that a simpler organism does. To
return to a mo del of the competition for a single resource, we would simply replace
the many variables b(s) with a single variable b. Or, more properly, we would expand
the range of inhibition (by increasing Db) to include the whole space. This would be
similar to the renewable-resource model with only one resource. In this case, we have
argued in Chapter 6 that only one type of organism would survive.

The model of a pattern-forming evolutionary process is also interesting in that
competition is no longer the primary reason for the creation of complex organisms.
Instead, the creation of complex organisms is due to the existence of resources that
cannot be consumed by simple organisms. We might call these complex resources.
Through mutation, organisms are formed that can consume the complex resources.
Competition for resources causes the pattern of species or trait groups, but is not re-
sponsible for the existence of complex organisms.

We can modify this model to incorporate competition more fully by considering
the space of resources and the space of organisms to be related in a more elaborate
manner. Specifically, that organisms that are far apart in genome or phenome might
consume the same resource. In order to know which organisms would be in compe-
tition, we consider the phenome space as projecting onto the resource space in a
many-to-one map. As evolution proceeded,there would come instances in which or-
ganisms at different phenome locations but the same resource location would coex-
ist, and the fitter organism would survive while the less fit would become extinct.
However, there would still be a variety of resources giving rise to a variety of organ-
isms at any stage of evolution.

In summar y, the phenomenological existence of diverse species suggests that a
reaction-diffusion model of pattern formation, with distinct resources for different
organisms,is more realistic than a model that assumes a single resource for all organ-
isms. The persistence of organisms over varied periods of evolutionary history and
particularly the continued existence of organisms that originally appeared at much
earlier stages of evolutionary history is suggestive of such a model. It is also consistent
with the wide variety of resources found in nature.

The notion that the pattern of species is analogous to a developmental process of
pattern formation also brings into focus the recognition that all life on earth is inter-
related and in some sense is a single complex system. Loosely, by analogy, we might
consider the collection of organisms on earth to be a collective organism similar to
the collection of cells in a particular organism. This is relevant to the study of ecosys-
tems and their behavior. We will address this from a more specific point of view in
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Chapter 9 when we discuss the possibility that the collection of human beings on
earth should be considered as a single complex system. This discussion will also have
consequences for our understanding of the relationship between evolution and d e-
velopmental biology. Before we do so we introduce and discuss in greater detail the
concept of complexity in order to better evaluate the complexity of the global system
of organisms on earth.Our focus, for various reasons, will be the global human civi-
lization, but extending this discussion to include other organisms on earth is natural.
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