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8
Human Civilization I:
Defining Complexity

Conceptual Outline

Our ultimate objective is to consider the relationship of a human being to
human civilization, where human civilization is considered as a complex system. We
use this problem to motivate our study of the definition of complexity.

The mathematical definition of the complexity of character strings follows
from information theory. This theory is generalized by algorithmic complexity to allow
all possible algorithms that can compress the strings. The complexity of a string is de-
fined as the length of the shortest binary input to a universal Turing machine, such
that the output is the string.

The use of mappings from strings onto system states allows us to apply the
concepts of algorithmic complexity to physical systems. However, the complexity of
describing a microstate of the system is not really what we mean by system com-
plexity. We define and study the complexity profile, which is the complexity of a sys-
tem observed with a certain precision in space and time.

We estimate the complexity of various systems, focusing on the complexity
of a human being. Our final estimate is based upon a combination of the length of de-
scriptions in human language, genetic information in DNA, and component counting.

Motivation

8.1.1 Human civilization as a complex system
The subject of this and the next chapter is human civilization—the collection of all
human beings on earth. Our long-term objective is to understand whether and how
we can treat human civilization as a complex system and,more particularly, as a com-
plex organism. In biology, collections of interacting biological organisms acting to-
gether are called superorganisms. At times, we will adopt this convention and refer to
civilization as the human superorganism. Much of what we discuss is in early stages
of development and is designed to promote further research.
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This subject is distinct from the others we have considered. The primary distinc-
tion is that we have only one example of human civilization. This is not true about the
systems we have discussed in earlier chapters, with the exception of evolution consid-
ered globally. The uniqueness of the human superorganism presents us with ques-
tions of fundamental interest in science, related to how much we can know about an
individual system. When there are many instances, we can use information provided
by various examples and the statistics of their properties. When there is only one sys-
tem, to understand its properties or predict its behavior we must apply fundamental
principles that are valid for all complex systems. Since the field of complex systems is
dedicated to uncovering such principles, the subject of the human superorganism
should be considered a premiere area for application of complex systems research.
Central questions are:How can we characterize this complex system? How can we de-
termine its properties? What can we tell about its dynamics—its past and future? We
note that as individuals we are elements of the human superorganism, thus our spa-
tial and temporal experience may very well be more limited than that appropriate for
analyzing the human superorganism.

The study of human civilization is guided by historical records and contempo-
rary news. In contrast to protein folding , neural networks, evolution and develop-
mental biology there are few reproducible laboratory experiments. Because of the ir-
reproducibility of historical or contemporary events,these sources of information are
properly not considered part of conventional science. While this can be a limitation,
it is also apparent that there is a large amount of information available.Our task is to
develop systematic methods for considering this kind of information that will enable
us to approach questions about the nature of human civilization as a complex system.
Various aspects of these problems have been studied by historians, anthropologists
and sociologists.

Why consider human civilization as a single complex system? The recently dis-
cussed concept of a global economy, and earlier the concept of a global village, sug-
gest that we should consider the collective economic behavior of human beings and
possibly the global social behavior as a single system. Considering civilization as a sin-
gle entity we are motivated to ask various questions about it. These questions relate to
all of the topics we have covered in the earlier chapters: spatial and temporal struc-
ture, evolution and development. We would also like to understand the interaction of
human civilization with its environment.

In developing an understanding of human civilization, we recognize that a
widespread view of human civilization as a single entity is relatively new and dr iven
by contemporary developments. At least superficially, the historical epoch described
by the dominance of nation-states appears to be quite different from the present
global economy. While recent events appear to be of particular significance to the
global view, our questions must be addressed in a historical context. Thus we should
include a discussion of the transition to a global economy. We postpone this histori-
cal discussion to the next chapter because of the groundwork that we would like to
build in order to target a particular objective f or our analysis—that of complexity
classification.
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We are motivated to understand complexity in the context of our effort to un-
derstand the nature of the human superorganism, or the nature of the global econ-
omy. We would like to identify the type of complex system it is—to classify it. The first
distinction that we might make is between a complex material or a complex organism
(see Section 1.3.6). Could part of the global system be modified without affecting the
whole? From historical evidence discussed in the next chapter, the answer appears to
be no. This indicates that human civilization is a complex organism. The next ques-
tion we would like to ask is: What kind of complex organism is it? By analogy we could
ask: Is it like a protein, a cell, a plant, an insect, a frog, a human being? What do we
mean by using such analogies? At least in part the problem is to describe the com-
plexity of an entity’s behavior. Intuitively an insect is a simpler organism than a hu-
man being, and this is of qualitative importance for our understanding of their dif-
ferences. The degree of complexity should provide a scale that can distinguish
between the many different complex systems we are familiar with.

Our objective in this chapter is to develop a quantitative definition of complex-
ity and behavioral complexity. We then apply the d efinition to various complex sys-
tems. The focus will be on the complexity of an individual human being. Once we
have established our complexity scale we will be in a position to apply it to human civ-
ilization. We will understand formally why a collection of complex systems (human
beings) may be, but need not be, complex. Beyond recognizing human civilization as
a complex system,it is far more significant to identify the degree of its complexity. In
the following brief sections we establish some additional context for the importance
of measuring complexity using both unconventional and conventional examples of
organisms whose complexity should be evaluated.

8.1.2 Scenario: alien encounter
The possibility of encountering alien life has been debated within the scientific com-
munity. In popular literature, such encounters have been portrayed in various forms
ranging from benevolent to catastrophic. The scientific debate has focused thus far on
topics such as the statistics of planet formation and the likelihood that planets con-
tain life. The presence of organic molecules in meteorites and interstellar gasses has
been interpreted as suggesting that alien life is likely to exist.Efforts have been made
to listen for signs of alien life in radio communications and to transmit information
to aliens using the Voyager spacecraft, which is leaving the solar system marked with
information about human beings. Thus far there has been no scientifically confirmed
evidence for the existence of alien life. Even a single encounter would change the hu-
man perspective on humanity’s  place in the universe.

Let us consider one possible scenario for an encounter. An object that flashes
light intermittently is found in orbit around one of the planets of the solar system.
The humans encountering this object are faced with the question of determining
whether the object is: (a) a signal device—specifically a recording, (b) a communica-
tion device, or (c) a living organism. The central problem can be seen to revolve
around determining whether, and in what way, the device is responsive to external
phenomena. Do the flashes of light occur without regard to the external environment
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in a predetermined sequence? Are they random? If the flashes are sensitive to the en-
vironment,then what are they sensitive to? We will see that these questions are equiv-
alent to the question of determining the complexity of the object’s behavior.

The concept of life in biology is often defined, or better yet, characterized, in
terms of consumption, excretion and reproduction. As a definition, these character-
istics are well known to be incomplete, since there are life-forms that do not repro-
duce, such as the mule. Furthermore, a particular individual is still considered alive
even if it/he/she does not reproduce. Moreover, there are various physical systems
such as crystals and fire that have all these characteristics in one form or another.
Moreover, there does not appear to be a direct connection between these biological
characteristics and other characteristics of life such as sentience and self-awareness.
When considering behavior, the biological perspective emphasizes the survival in-
stinct as characteristic of life. There are exceptions to this,since there exist life-forms
that are at times suicidal, either individually or collectively. The question of whether
an organism actively seeks life or death does not appear to be a characterization of life
but rather o f life-forms that are likely to survive. In our discussions, we may be de-
veloping an additional characterization of life in terms of behavioral complexity.
Definitions of life are often considered in speculating about the rights of and treat-
ment of real or imagined organisms—injured or unconscious humans, robots, or
aliens. The degree of behavioral complexity is a characterization of life-forms that
may ultimately play a role in informing our ethical decisions with respect to various
biological life-forms, whether terrestrial or (if found) alien, and artificial life-forms
that we create.

8.1.3 Scenario: blood cells
One of the areas bri ef ly to u ch ed upon in Ch a pter 6, wh i ch is at the foref ront of com-
p l ex sys tems re s e a rch , is the stu dy of the immune sys tem . Bl ood cell s ,u n l i ke other cell s
in the body, a re mobile on a length scale that is large com p a red to their size . In this
ch a racteri s tic they are more similar to indepen dent or ganisms than to the other cell s
of the body. By their migra ti on they might be said to “ch oo s e” to assoc i a te with other
cells of the body, or with forei gn ch emicals and cell s . It is fair to say that our under-
standing of the beh avi or of i m mune cells remains pri m i tive . In parti c u l a r, the va ri ety
of po s s i ble ch emical interacti ons bet ween cells has on ly begun to be mapped out . Th e s e
i n teracti ons invo lve a va ri ety of ch emical messen gers . More direct cell - to - cell interac-
ti ons wh ere parts of the mem brane or cellular fluid are tra n s ferred are also po s s i bl e .

One of the interesting questions that can be asked is whether, or at what level of
complexity, the interactions become identifiable as a form of language. It is not diffi-
cult to imagine, for example, that a chemical communication originating from one
cell might be transferred through a chain of cell interactions to a number of other
cells. In the context of the discussion in Section 2.4.5, the question of existence of a
language might be formulated as a question about the possibility of messages with a
grammar—a combinatorial composition of parts that are categorized like parts of
speech. Such combinatorial mechanisms are known to exist even at the molecular
level in the DNA coding of antibody receptors that are a composite of different parts
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of the genome. It remains to be seen whether intercellular communication is also gen-
erated in this fashion.

In the context of this chapter we can reduce the questions about the immune cells
to a single one—What is the degree of complexity of the behavior of the immune
cells? By its very nature this question can only be answered once a complete under-
standing of immune cell behavior is reached. A limited understanding establishes a
lower bound for the complexity of the behavior. It should also be understood that dif-
ferent types of cells will most likely have quite different levels of behavioral complex-
ity, just as different animals and man have differing levels of complexity. Our objec-
tive in this chapter is to show that it is possible to quantify the concept of complexity
in a way that is both natural and useful. The practical application of these definitions
is a central challenge for the field of complex systems.

8.1.4 Complexity
Mathematical definitions of the complexity of systems are based upon the theories of
information and computation discussed in Sections 1.8 and 1.9. In Section 8.2 they
will be used to treat complexity in the context of mathematical objects such as char-
acter strings. To develop our understanding of the complexity of physical systems re-
quires that we relate these concepts to those of thermodynamics (Section 1.3) and
various extensions (e.g.,Section 1.4) that enable the treatment of nonequilibrium sys-
tems. In Section 8.3 we discuss relevant concepts and tools that may be used for this
purpose. In Section 8.4 we use several semiquantitative approaches to estimate the
value of the complexity of specific systems.

Our use of the word “complexity”is specified as an answer to the question, How
complex is it? We say, Its complexity is <number><units>. Intuitively, we can make a
connection between complexity and understanding. When we encounter something
new, whether personally or in a scientific context, our objective is to understand it.
The understanding enables us to use,modify, control or appreciate it.We achieve un-
derstanding in a number of ways, through classification, description and ultimately
through the ability to predict behavior. Complexity is a measure of the inherent dif-
ficulty to achieve the desired understanding. Simply stated, the complexity of a system
is the amount of information necessary to describe it.

This is descriptive complexity. For dynamic systems the description includes the
changes in the system over time. We will also discuss the response of a dynamic sys-
tem to its environment. The amount of information necessary to describe this re-
sponse is a system’s behavioral complexity. To use these definitions of complexity we
will introduce mathematical expressions based upon the theory of information.

The qu a n ti t a tive def i n i ti on of i n form a ti on (Secti on 1.8) is rel a tively abstract .
However, it can be measu red in familiar terms su ch as by the nu m ber of ch a racters in a
tex t . As a prel i m i n a ry exercise in the discussion of com p l ex i ty, the re ader is invi ted to
exercise intu i ti on to esti m a te the com p l ex i ty of a nu m ber of s ys tem s .Q u e s ti on 8 . 1 . 1
i n clu des a list of s ys tems that are de s i gn ed to sti mu l a te some thought abo ut com p l ex-
i ty as a qu a n ti t a tive measu re of the beh avi or of a sys tem . The re ader should devo te
s ome thought to this qu e s ti on before proceeding with the rest of the tex t .
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Question 8.1.1 Estimate the complexity of some of the systems in the
following list. For this question use an intuitive definition of complex-

ity—the amount of information that would be required to describe the sys-
tem or its behavior. We use units of bits to measure information. However,
to make it easier to visualize, you may use other convenient units such as
words or pages of text. So, we can paraphrase the question as, How much
would you have to write to describe the system behavior? A rough conver-
sion factor of 1 bit per character can be used to convert these estimates to
bits. It is not necessary to estimate the complexity of all the systems on the
list. Considering even a few of them is sufficient to develop an understand-
ing of some of the issues that arise. Indeed, for some of these systems a rough
estimate is far from trivial. Answers to this question will be given in the text
in the remainder of this chapter.

Hint You may find that you would use different amounts of informa-
tion depending on what aspects of the system you are describing. In such
cases try to give more than one estimate or a range of values.

Physical Systems:

Ideal gas (1 mole at T = 0°K, P = 1atm)

Water in a glass

Chemical reaction

Brownian particle

Turbulent flow

Protein

Virus

Bacterium

Immune system cell

Fish

Frog

Ant

Rabbit

Cow

Human being

Radio

Car

IBM 360

Personal Computer (PC/Macintosh)

The papers on your desk

A book

704 H uma n  C i v i l i z a t io n  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 704
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamChap8.pdf  3/10/02 10:52 AM  Page 704



A library

Weather

The biosphere

Nature

Mathematical and Model Systems:

A number

Iterative maps (growth, bifurcation to chaos)

1-D random walk

short time

long time

Ising model (ferromagnet)

Turing machine

Fractals

Sierpinski gasket

3-D random walk

Attractor neural network

Feedforward neural network

Subdivided attractor neural network ❚

Complexity of Mathematical Models

Complexity is a property of the relationship between a system and various represen-
tations of the system.Our objective is to understand the complexity of systems com-
posed of physical entities such as atoms,molecules or cells. Abstract representations
of such systems are described in terms of characters or numbers. It is helpful to pref-
ace our discussion of physical systems with a discussion of the complexity of the char-
acters or numbers that we use to represent them.

8.2.1 Information, computation and algorithmic complexity
The discussion of Shannon information theory in Section 1.8 was based on strings of
characters that were generated by a source. The source generates each string, s, by se-
lecting it from an ensemble. The information from a particular string was defined as

I = −log(P(s)) (8.2.1)

where P(s) is the probability of the string in the ensemble. If all strings have equal
probability then this is the logarithm of the number of distinct strings. The source it-
self (or the ensemble) was characterized by the average information of a large num-
ber of strings

(8.2.2)
    
< I > = − P(s)log(P(s))

s
∑

8.2
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It was also possible to consider a more general source that selected characters to form
a Markov chain.The probabilistic coupling between sequential characters reduced the
information content of the string. It was possible to compress the st ring using a re-
versible coding algorithm (computation) that would enable the same information to
be represented in a more compact form. The length of the shortest binary compact
form is equal to the average information in a string.

Information theory suggests that we can define the complexity of a string of char-
acters by the information content of the string. The information content is the same
as the length of the shortest binary encoding of the string. This is intuitive—since the
original string can be obtained from its shortest representation,the same information
must be present in both. Within standard information theory, the encodings would
be limited to compression using a Markov chain model. However, more generally, we
could use any possible algorithm for encoding (compressing) the string. Questions
about all possible algorithms are precisely the domain of computation theory. The de-
finition of Kolmogorov (algorithmic) complexity of a string makes use of computa-
tion theory to describe what we mean by “any possible algorithm.” Allowing all algo-
rithms is the same as allowing more general models for the string than a Markov
chain. Our objective in this section is to develop an understanding of algorithmic
complexity beginning from the theory of computation.

Computation theory (Section 1.9) describes the operations of logic and compu-
tation on symbols.All the operations are deterministic and are expressible in terms of
a few elementary operations. The concept of universality of computation is based on
the understanding that a particular type of conceptual machine/computer—the uni-
versal Turing machine (UTM)—can perform all possible computations if the in-
structions are properly encoded as a finite string of characters serving as the UTM in-
put. Since we have no absolute definition of computation,there is no complete proof.
The existing proof shows that the UTM can perform all computations that can be
done by a much larger class of machines—the Turing machines (TM). Other models
for computation have been shown to be essentially equivalent to these TM.A TM is
defined by a table of elementary operations that act on the input string. The word
“program” can be used either to refer to the TM table or to its input and so its use is
best avoided in this context.

We would like to define the algorithmic complexity of a string, s, as the length of
the shortest possible binary TM input, such that the output is s. The relationship of
this to the encoding and decoding of Shannon should be apparent. In order to use this
as a definition,there are several matters that must be cleared up. To summarize: There
are actually two sources of information when we use a TM, the input string and the
table. We need to take both of them into account to define the complexity. There are
many ways to define complexity; however, we can prove that any two definitions of
complexity differ by no more than a constant. We will also show that no matter what
definition we use, most strings cannot be compressed.

In order to motivate the logic of the following discussion, it is helpful to think
about how we might approach compressing various strings of characters. The short-
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est compression should then be the complexity o f the string. One string might be
formed out of a long substring of zeros followed by a long substring of ones. This is
convenient to write by indicating how many zeros followed by how many ones: N0N1.
We would make a binary string notation for N0N1 and write a program that would
read this input and then output the original string. Another string might be a repre-
sentation of the Fibonacci numbers (1,1,2,3,5,8,…), starting from the N0st number
and ending at the N1st number.We could write this using a similar notation as the pre-
vious one, but the program that we would write to generate the string is quite differ-
ent. Both programs would be quite simple. Now imagine that we want to communi-
cate one of the original strings to someone else. If we want to communicate it in
compressed form, we would have to send the program as well as the input. If there
were many strings, we might be clever and send the programs only once. The prob-
lem is that with only the input string, the recipient would not know which program
to apply to obtain the o riginal string. We need to send an additional piece of infor-
mation that indicates which program to apply. The simplest way to do this is to assign
numbers to each of the programs and preface the program input with the program
number. Once we do this, the string that we send uniquely determines the string we
wish to communicate. This is necessary, because if the interpretation of the transmit-
ted string is not unique,then it would be impossible to guarantee a correct interpre-
tation. We now develop these thoughts using a more formal notation.

In what follows, the operation of a TM or a UTM will be indicated by functional
notation. The st ring that results from its application to a tape is indicated by U(s)
where s is the nonblank portion of the tape (input string), U is the identifier of the
TM,and the initial position of the TM head is assumed to be at the leftmost nonblank
character.

In order to define the complexity of a string, we identify a particular UTM U.
Then the complexity CU(s) of the string s is defined as the length of the shortest string
r such that U(r) = s. We call an input string r to U that generates s a representation of
s. Thus the length of the shortest representation is CU(s). The central theorem of al-
gorithmic complexity relates the complexity according to one UTM U and another
UTM U ′. Before we state and prove the theorem, we discuss several incidental mat-
ters.

We first ask whether we need to use a UTM and not just any TM in the defini-
tion. The answer is that the use of a UTM is convenient,and we cannot significantly
improve the ability to compress strings by allowing the larger class of TM to be used
in the definition. Let us say that we have a UTM U and a TM V, we define a new
UTM W by:

W(0s) = V(s)

W(1s) = U(s)
(8.2.3)

—the first character indicates whether to use the TM V or the UTM U on the rest of
the input.Since the complexity according to the UTM W is at most one more than the
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complexity according to the TM V, CW (s) ≤ CV(s) + 1, we see that using the larger class
of TM to define complexities can not improve our results for any particular string by
more than one bit, which is not significant for long complex strings.

We may be disturbed that the definition of complexity does not indicate that the
complexity of an incompressible string is the same as the string length itself. Indeed
the definition does not require it. However, if we wanted to impose this as an auxil-
iary condition, we could define the complexity of a string using a slightly different
construction. Given a UTM U, we define a new UTM V such that

V(0s′) = s′

V(1s′) = U(s ′)
(8.2.4)

—the first character indicates whether the string is compressed. We then define the
complexity CU(s) of any string s as one less than the length of the shortest string r such
that V(r) = s. This is not quite a fair definition, because if we wanted to communicate
the string s we would have to indicate all of r, including its first bit. This means that
we should define the complexity as the length of r, which would be a sacrifice of at
most one bit for incompressible strings. Limiting the complexity of a string to be no
longer than the string itself might seem a natural idea. However, we note that the
Shannon information, Eq. (8.2.1), is related only to the probability of a string, and
may be larger than the original string length for a particular string.

Returning to our basic definition of complexity, we have described the existence
of a shortest possible representation of any string s, and a single machine U that can
reconstruct each s from this representation. The key theorem that we need to prove
relates the complexity defined using one UTM U to the complexity defined using an-
other UTM U ′. The theorem is: the complexity CU based on U and the complexity
CU ′ based on U ′ satisfy:

CU (s) ≤ CU ′(s) + CU (U ′) (8.2.5)

where CU (U ′) is independent of the string s. The proof of this expression results from
the ability of the UTM U to simulate U ′. To prove this we must improve slightly our
definition of complexity, or equivalently, we have to limit the UTM that are allowed.
This is discussed in Questions 8.2.1–8.2.3. It is shown there that we can preface binary
strings input to the UTM U′ with a prefix that will make them generate the same out-
put when input to U. We might call this prefix rU,U ′ a translation program,it satisfies
the property that for any string r, U(rU,U ′r) = U ′(r). Let rU ′ be a minimal representa-
tion for U ′ of the string s. Then rU,U ′rU ′ is a representation for U of the string s. The
length of this string must be greater than or equal to the length of the minimum string
rU necessary to produce the same output:

CU (s) = |rU | ≤ |rU,U ′rU ′| = |rU ′| + |rU,U ′| = CU ′(s) + CU(U ′) (8.2.6)

CU(U ′) = |rU,U ′ | is the length of the translation program. We have proven the in-
equality in Eq. (8.2.5).

Question 8.2.1 Show that there exists a UTM U0 such that for any TM U
that accepts binary input, there is a string rU so that for all s and r

satisfying s = U(r), we have that s = U0(rUr) .
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Hint One way to do this is to use a modified form of the construction
given in Section 1.9. The new construction requires modifying the nature of
the UTM—i.e., a trick.

Solution 8.2.1 We call the UTM described in Section 1.9, Ũ0. We can sim-
ulate the UTM U using Ũ0; however, the form of the input string would not
quite satisfy the conditions of this theorem. Ũ0 has an input that looks like
rUrt (r), where the right part is only a function of the input string r and the
left part is only a function of the UTM U. However, the tape part of the rep-
resentation rt (r) uses a doubled binary form for characters and markers be-
tween them so that it is not the same as the original tape. We must replace
the tape part of the representation with the original string in order to have
an input string of the form rUr.

Both Ũ0 and U have binary input strings. This means that we might try
to use the tape of U without modification in the tape part of the representa-
tion given in Section 1.9. Then there would be no delimiters between char-
acters and no doubled binary representation. There is, however, one diffi -
culty. The UTM U0 must keep track of where the current position of the
UTM U would be during the same calculation. This was accomplished in
Section 1.9 by converting one of the M1 markers to M6 at the current loca-
tion of the UTM U. There are a number of ways to overcome this problem,
but all require us to introduce something new. We will do this by allowing
the UTM U0 to have a counter that can keep track of the current position of
the UTM U. There are two ways to argue this.One is to allow, by proclama-
tion, a counter that can reach arbitrarily high numbers. The other is to rec-
ognize that the longest string we might conceivably encounter is smaller
than the number of particles in the known universe, or very roughly
1090 = 2300. This means that we can use an internal memory of 300 bits to rep-
resent such a counter. This counter is initialized to 0 and set to the current
location of the UTM U at every step of the calculation. This construction
gives us the desired UTM U0. ❚

Question 8.2.2 Using the result of Question 8.2.1, prove Eq.(8.2.5). See
the text for a hint.

Solution 8.2.2 The problem is that Eq.(8.2.5) is not actually correct for all
UTM (see Question 8.2.3) so we need to modify our conditions. In a sense,
the modification is minor because we only improve the definition slightly.
We do this by defining the complexity CU (s) for an arbitrary UTM as the
minimum length of r such that W(r) = s where W is defined by:

W(0s) = U0(s)

W(1s) = U(s)
(8.2.7)

—the first bit specifies whether to use U or the special UTM U0 constructed
in Question 8.2.1. CU (s) defined this way is at most one bit more than our
previous definition, for any particular string. It might be significantly
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smaller. This should not be a problem, because our objective is to find short
representations of strings. By using our special UTM U0 in this definition, we
guarantee that for any two UTM U and U ′, whose complexity is defined in
terms of W and W ′ by Eq.(8.2.7), we can write W(rWW ′rW ′) = W ′(rW). This
is possible because W inherits the properties of U0 when the first character
of its input string is 0. ❚

Question 8.2.3 Show that some form of qualification of Eq. (8.2.5) is
necessary by demonstrating that there exists a UTM that does not satisfy

this inequality. Therefore, Eq. (8.2.5) cannot be extended to all UTM.

Solution 8.2.3 One possibility is to have a UTM that uses only certain char-
acters in its input string. Specifically, define a UTM U that acts the same as a
UTM U ′ but uses only every other character in its input string: U(r) = U ′(r ′)
if r is any string whose odd characters are the characters of r ′. The complex-
ity of a string according to U is twice the complexity according to U ′ and
therefore Eq. (8.2.5) is invalid in this case. With the modified definition of
complexity given in Question 8.2.2 this is no longer a problem. ❚

Switching U and U ′ in Eq. (8.2.5) gives a similar inequality with a constant
CU ′(U ). Defining the larger of the two translation program lengths to be

CU,U ′ = max(CU(U ′),CU ′(U)) (8.2.8)

we have proven that complexities defined by the UTM differ by no more than CU,U ′:

|CU(s) − CU ′(s)| ≤ CU,U ′ (8.2.9)

Since this constant is independent of the complexity of the string s, it becomes in-
significant for large enough complexities. Thus, for strings that are complex enough,
it doesn’t matter which UTM we use to define its complexity. The complexity defined
by one UTM is the same as the complexity defined by another UTM. This consis-
tency—universality—in the complexity of a string is essential in order for it to be well
defined. We will use a few examples to illustrate the nature of universality provided by
this definition.

The first example illustrates the relationship of algorithmic complexity to string
compression.Given a string s we can ask what methods of compression are useful for
the string. A useful compression algorithm corresponds to a pattern in the characters
of the string. A string might have many repetitive digits, or cyclically repeating digits.
Alternatively, it might be a sequence that can be generated using simple mathemati-
cal operations such as the Fibonacci series, or the digits of . There are many such pat-
terns that are relevant to the compression of strings. We can choose a finite set of N
algorithms {Vi}, where each one is represented by a TM that reconstructs a string s
from a shorter string r by taking advantage of properties of the pattern. We now con-
struct a new TM U which is defined by:

U(rir ′) = Vi(r ′) (8.2.10)
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where ri is a binary representation of the number i, having log(N) bits. This is a UTM
if any of the Vi is a UTM or it can be made into a UTM by Eq. (8.2.3). We use U to
define the complexity CU (s) of any string as described above. This complexity in-
cludes both the length of r ′ and the number of bits (log(N)) in ri that together con-
stitute the length of the input r to U. Once it is defined,this complexity is a measure
of the complexity of all strings. We do not use different TM to define the complexity
of each string; one UTM is used to define the complexity of all strings.

Despite the message of the last example,let us assume that we are evaluating the
complexity of a particular string s. We define a new UTM Us by:

Us(0s′) = s

Us(1s′) = U(s)
(8.2.11)

—the first character tells Us if the string is s. We can use this new UTM to define the
complexity of all strings and for this definition the complexity of s is one. How does
this relate to our theorem about the universality of complexity? The point is that in
this case the translation program between U and Us contains the complete informa-
tion about s and therefore must be at least as long as CU (s). What we have done is to
take the particular string s and insert it into the table of Us . We see in this example
how universality is tied to an assumption that the complexities that are discussed are
longer than the TM translation programs or, equivalently, the information in their ta-
bles. Conceptually, we would say that universality of complexity is tied to an assump-
tion of lack o f specific knowledge on the part of the recipient (represented by the
UTM) of the information itself. The choice of a particular UTM might be dictated by
an implicit understanding of the set of strings that we would like to represent, even
though the complexity of a string is defined without reference to an ensemble of
strings. However, this apparent relativism of the complexity is limited by our basic
theorem that relates the complexity of distinct UTM,and by additional results about
the impossibility of compressing most strings discussed in the following paragraphs.

We have gained an additional result from the construction of a single UTM that
generates all strings from their compressed forms. This is that a representation r only
represents one string s. We can now prove that the probability that a string of length
N can be compressed is very small. The proof proceeds from the observation that the
number of possible strings decreases very rapidly with decreasing string length. A
string s of length |s | = N compressed by k bits is represented by a particular string r of
length |r | = C(s) = N − k. Since there are only 2N−k strings of length N − k, at most 2N−

k strings of length 2N can be compressed by k bits. The fractional compression is k/N.
For example,among all st rings of length 106 bits,at most 1 string in 2100 = 1030 can be
compressed by 100 bits or .01% of the string length.This is not a very significant com-
pression. Even so, this estimate of the average number of strings that can be com-
pressed is much too large, because strings that are not of length N, e.g., strings of
length N − 1 N − 2, …, N − k, would also be represented by strings of length N − k.
Thus most strings are incompressible. Moreover, selecting a string at random will
yield an incompressible string.
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Question 8.2.4 Calculate a strict lower bound for the average complex-
ity of strings of length N.

Solution 8.2.4 We assume that strings of length N are compressed so that
they are represented by all of the shortest strings. One string is represented
by the null string (length 0), two strings are represented by a single bit
(length 1), and so on. The relationship:

(8.2.12)

means that we will fill all of the possible strings up to length N − 1 and then
have one string left of length N. The average representation length for any
complexity measure must then satisfy:

(8.2.13)

The sum can be evaluated using a table of sums or:

(8.2.14)

giving:

(8.2.15)

Thus the average complexity o f strings of length N cannot be reduced by
more than two bits. This strict lower bound applies to all measures of
complexity. ❚

We can also interpret this discussion to mean that the best UTMs to use to define
complexity are those that are invertible—they have a one-to-one mapping of strings
to representations. In this case we have a mapping r(s) which gives the unique repre-
sentation of a string. The reason that such UTM are better is that there are only a lim-
ited number of representations shorter than N ; if we use up more than one of them
for a particular string, then we will have fewer representations to use for others. Such
UTM are closely analogous to our understanding of encoding and decoding as de-
scribed in information theory. The UTM is the decoder and the mapping of the string
onto its representation is the encoding.

Because most strings are incompressible, we can also prove that if we have an en-
semble of strings defined by the probability P(s), then the average algorithmic com-
plexity of these strings is essentially the same as the Shannon information. In partic-
ular, the ensemble of all of the strings of length N have a Shannon information of N
bits and an average algorithmic complexity which is the same. The catch is recogniz-
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ing that to specify P(s) itself requires an algorithm whose complexity must enter into
the discussion. The proof follows from the discussion in Section 1.8. An ensemble de-
fined by a probability P(s) can be encoded in such a way that the average string length
is given by the Shannon information. We now realize that to define the st ring com-
plexity we must include the description of the decoding operation:

(8.2.16)

where the expression C(P) represents the complexity of the decoding operation for
the universal computer U for the ensemble given by P(s). C(P) depends in part on the
algorithm used to specify the ensemble probability P(s). For the average ensemble
complexity to be essentially equal to the average Shannon information,the specifica-
tion of the ensemble must itself be simple.

For Markov chains a similar result applies—the Shannon information of a string
representing a Markov chain is the same as the algorithmic complexity of the same
string, as long as the algorithm specifying the Markov chain is simple.

A general consequence of the definition of algorithmic complexity is a limitation
on what TM can do. No TM can generate a string more complex than the input string
that it is provided with, plus the information in its table—otherwise we would have
redefined the complexity of the output string to take this into consideration. This is a
key limitation of TM: TM (and computers that are realizations of this model) cannot
generate new information. They can only process information they are given. As dis-
cussed briefly in Section 1.9.7, this limitation can be overcome by a TM that is given
a string of random bits as input. The infinitely complex input means the limitation
does not apply. It remains to be demonstrated what tasks such a TM can perform that
are not possible for a conventional TM. If such tasks are identified,there will be im-
portant implications for computer design. In this context, it may also be suggested
that some forms of creativity might be linked to the availability of randomness (see
Section 1.9.7). We will return to this issue at the end of the chapter.

While the definition of complexity using UTM is appealing, there is a profound
difficulty with this proof. It is nonconstructive. No method is given to determine the
complexity of a particular string. Indeed, it can be proven that this is a fundamen-
tally difficult task—the time necessary for a TM to determine C(s) grows exponen-
tially with the length of s. At least this is true when there is a bound on the complex-
ity, e.g., by Eq. (8.2.4). Otherwise the complexity is noncomputable. We find the
complexity of a string by trying all input strings in the UTM to see which one gives
the necessary output. If the complexity is not bounded, then the halting problem
implies that we cannot tell if the UTM will halt on a particular input,thus it is non-
computable. If the complexity of the string is bounded, then we only try strings up
to this bound, and it is possible to determine if the UTM will halt for members of
this bounded set of strings. Nevertheless, trying each string requires a time that
grows exponentially with the bound, and therefore is not practical except for a few
very simple strings. The process of finding the complexity of a string is akin to a
process of trying models for the string. A model is a TM that might, when given the

    

P(s)C(s)
s

∑ = P(s)I s

s

∑ + C(P)

C o m p l e x i t y  of  m a t hem at i c a l  m o de l s 713

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 713
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamChap8.pdf  3/10/02 10:52 AM  Page 713



proper input, generate the string. It is possible to try many models. However, to de-
termine the actual compressed string may not be practical in any reasonable time.
With any particular set of models, we can, however, find an upper bound on the
complexity of a string. One of the possible models is that of a Markov chain as used
by Shannon information theory. Algorithmic complexity allows more general TM
models. However, by our discussion it is improbable that a randomly chosen string
will be compressible by any algorithm.

In summary, the universality of complexity is a statement that the use of differ-
ent UTMs in the definition of complexity affects the result by no more than a con-
stant. This constant is the length of the program that translates the input of one UTM
to the other. Significantly, the more complex the string is, the more universal is the
value of its complexity. This follows because the length of translation programs be-
comes less and less relevant for longer and longer descriptions/representations. Since
we are interested in properties of complex systems whose descriptions are long, we
can, with caution, rely on the universality of their complexity. This is not the case with
simple systems whose descriptions and therefore complexities are “subjective”—they
depend on the conventions for description. These conventions, in our mathematical
definition,are represented by the choice of UTM used to define complexity. We also
showed that most strings are not compressible and that the Shannon information
measure is the same as the average algorithmic complexity for all concisely describ-
able ensembles. In what follows,unless otherwise mentioned, we assume a particular
definition of complexity C(s) using the UTM U.

8.2.2 Mathematical systems: numbers and functions
One of the difficulties in discussing complexity is that many elementary mathemati-
cal constructs have unusual properties when considered from the point of view of
complexity. Philosophers have been troubled by these points,and they have been ex-
tensively debated over the centuries. Most o f the problems revolve around various
forms of infinity. Unlimited numbers and infinite precision often simplify symbolic
mathematical discussions;however, they are not well behaved from the point of view
of complexity measures.There appears to be a paradox here that will be clarified when
we distinguish between the complexity of a set of numbers and the complexity of an
element of the set.

Let us consider the complexity of specifying a single integer. The difficulty with
integers is that there are infinitely many of them. Using an information theory point
of view, assigning equal probability to all integers would imply that any particular in-
teger would have no probability of occurring. If I ask you to give me a positive inte-
ger, from 1 to infinity with equal probability, there is no chance that you will give me
an integer below any particular cutoff value,say N. This means that you will need ar-
bitrarily many digits to specify the integer, and there is no limit to the information re-
quired. Thus the complexity of specifying a single integer is infinite. However, if we
allow only integers between 1 and a large positive number—say N = 1090, roughly the
number of elementary particles in the known universe—the complexity of specifying
one of the integers is only log(N),about 300 bits. The drastic difference between the
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complexity of specifying an arbitrary integer (infinite) and the complexity of an enor-
mously large number of integers (300 bits) suggests that systems that are easy to de-
fine may be highly complex. The whole field of number theory has shown that inte-
gers are not as simple as they first appear. The measure of complexity of specifying a
single integer may appear to be far from more abstract discussions like those of the
halting problem or Gödel’s theorem (Section 1.9.5),however, they are related. This is
apparent since these theorems do not apply to finite sets.

In what sense are integers simple? We can consider the length of a UTM input
string that can generate all the posit ive integers. As discussed in the last section, this
is similar to the definition of their Kolmogorov or algorithmic complexity. The pro-
gram would, starting from zero and keeping a list, progressively add one to the pre-
ceding integer. The problem is that such a program ne ver halts, and the task is not
complete. We can generalize our definition of a Turing machine to allow for this case
by saying that, by definition, this simple program is generating all integers. Then the
algorithmic complexity of the integers is quite small. Another way to do this is to con-
sider the complexity of recognizing an integer—the recognition complexity.
Recognizing an integer is trivial if we are considering only binary strings, because all
of them represent integers. The point,however, is that we can expand the space of pos-
sible characters to include various symbols:letters,punctuation, mathematical oper-
ations, etc. The mathematical operations might act upon integers. We then ask how
long is a TM program that can recognize any integer that appears as a combination of
such characters. The length of such a program is also small.

We see that we must distinguish between the complexity of elements of a set and
the set itself. A program that recognizes integers is concerned with the attributes of
the integers required to define them as a set, rather than the specification of a partic-
ular integer. The algorithmic complexity of the set of all integers is small even though
the information contained in a single integer can be arbitrarily large. This distinction
between the information contained in an element of a set and the information neces-
sary to define the set will also be important when we consider the complexity of phys-
ical systems.

The complexity of a single real number is also infinite. Specifying an arbitrary
real number requires infinitely many digits. However, if we confine ourselves to any
reasonable precision, the complexity becomes very manageable. For example, the
most accurately known fundamental constant in science is the electron magnetic mo-
ment in Bohr magnetons

e / B = 1.001159652193(10) (8.2.17)

where the parenthesis indicates the error estimate, corresponding to 11 accurate
decimal digits or 37 binary digits. If we consider 1 − e / B we immediately lose 
3 decimal digits. Thus, similar to integers, the practical complexity of a real number
is not very large.

The discussion of integers and reals suggests that under practical circumstances
a single number is not a highly complex object.Generally, the complexity of a system
arises because of the presence of a large number of parameters that must be specified.
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However, there is only reason to consider them collectively as a system if they are cou-
pled to each other.

The next category of mathematical objects that we consider are functions. To
specify a function f (s) we must either describe its operation by a formula or specify
its action on each possible argument.We consider Boolean functions (functions with
binary output, see Section 1.9.2), f (s) = ±1, of a binary string, s = (s1s 2 . . . sNe

). The
number of arguments of the function—input bits—is Ne . There are 2Ne possible
values of the input string. For each of these there are two possible outcomes (output
values). All Boolean functions may be specified by listing the binary output for each
possible input state. Each possible output is independent. The number of different
Boolean functions is the number of possible sets of outputs which is 22Ne

. Assuming
that all of the possible Boolean functions are equally likely, the complexity of a
Boolean function (the amount of information necessary to specify it) is the logarithm
of this number or C( f ) = 2Ne. The representation of a Boolean function in terms of
C(f ) binary variables can also be made explicit as a string representing the presence
or absence of terms in the disjunctive normal form described in Section 1.9.2.

A binary function with Na outputs is the same as Na independent Boolean func-
tions. If we assume that all possible combinations of Boolean functions are equally
likely, then the total complexity is the sum of the complexity of each, or 

(8.2.18)

The asymmetry between input and output is a fundamental one. It arises because we
need to specify for each possible input which of the possible outputs is output.
Specifying “which” is a logarithmic operation in the number of possibilities, and
therefore the influence of the ou tput space on the complexity is logarithmic com-
pared to the influence of the input. This discussion will be generalized later to con-
sider a physical system that acts in response to its environment. The environment will
be specified by a number of binary variables (environmental complexity) Ne , and its
actions will be specified by a number of binary variables (action complexity) Na.

Complexity of Physical Systems

In order to apply our understanding of the complexity of mathematical constructs to
physical systems, we must develop a fundamental understanding of representations.
The complexity of a physical system is to be defined as the length of the shortest
string s that can represent its properties—the results of possible measurements/
observations. In Section 8.3.1 we discuss the relationship between thermodynamics
and information theory. This will enable us to define the complexity of ergodic and
nonergodic systems. The resulting information measure is essentially that of Shannon
information theory. When we c onsider algorithmic complexity, we can ask whether
this is the smallest amount of information that might be used. This is discussed in
Section 8.3.2. Section 8.3.3 introduces the complexity profile, which measures the
complexity as a function of the scale of observation. Implications of the time scale of
observation, for chaotic dynamics, are discussed in Section 8.3.4. Section 8.3.5

8.3

    C( f ) = Na 2N e
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discusses examples and properties of the complexity profile. Sections 8.3.1 through
8.3.5 are based upon descriptive complexity. To better account for the behavior of a
system in response to its environment we consider behavioral complexity in
Section 8.3.6. This turns out to be closely related to descriptive complexity. Other is-
sues related to the role of the observer are discussed in Section 8.3.7.

8.3.1 Entropy and the complexity of physical systems
The definition of complexity of a system requires us to develop an understanding of
the relationship of information to the physical properties of a system. The most direct
relationship is the relationship of entropy and information. At the outset,it should be
understood that these are very different concepts.Entropy is a specific physical prop-
erty of systems that are in equilibrium, or are in well-defined ensembles. Information
is not a unique physical property. Instead it is related to representations of digits.
Information can be a property of a time sequence or any other set of degrees of free-
dom. For example, the information content of a set of characters written on a piece
of paper can be given. The entropy, however, would be largely a property of the paper
or the ink. The entropy of paper is difficult to determine precisely, but simpler sub-
stances have entropies that have been determined and are tabulated at specific tem-
peratures and pressures. We also know that entropy is conserved in reversible adia-
batic processes and increases in irreversible ones.

Despite the significant conceptual difference between information and entropy,
the formal definition of information discussed in Section 1.8 appears very similar to
the definition of entropy discussed in Section 1.3. Thus, it makes sense that the two
are related when we develop an understanding of complexity. It is helpful to review
the definitions. The entropy was defined first for the microcanonical ensemble,which
specifies the macroscopic energy U, number of particles N, and volume V, of the sys-
tem. We assume that all states (microstates) of the system with this energy, number of
particles and volume are equally likely in the ensemble. The entropy was written as

S = k ln (U, N,V ) (8.3.1)

where (U,N,V ) is the number of such states. The coefficient k is defined so that the
units of entropy are consistent with units of energy and temperature for the thermo-
dynamic relationship T = dU /dS.

In form a ti on was def i n ed for a string of ch a racters . G iven the prob a bi l i ty of t h e
s tring of ch a racters , the inform a ti on is def i n ed by Eq . ( 8 . 2 . 1 ) . The loga rithm is taken
to be base 2 so that the inform a ti on is measu red in units of bi t s . We see that the infor-
m a ti on con tent is rel a ted to sel ecting a single state out of an en s em ble of po s s i bi l i ti e s .

We can relate the two definitions in a mathematically direct but conceptually sig-
nificant way. If we want to specify a particular microstate of a thermodynamic system,
we must select this microstate from the whole ensemble. The probability of this par-
ticular state is given in the microcanonical ensemble by P = 1/ . If we think about
the state of the system as a message containing information, we can use Eq.(8.2.1) to
give the amount of information as:

I({x,p}|(U,N,V )) = S(U,N,V )/(k ln2) (8.3.2)
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This expression should be understood as the amount of information contained in a
microstate {x,p}, when the system is in the macrostate specified by U,N,V—it is also
the information necessary to describe precisely the microstate.This is the fundamen-
tal relationship we are looking for. We review its meaning in terms of the description
of a particular idealized physical system.

If we want to describe the microstate of a system, like a gas of particles in a box,
classically we must specify all of the positions and momenta of the particles {xi ,pi}. If
N is the number of particles, then there are 6N coordinates, 3 position and 3 mo-
mentum coordinates for each particle. To specify exactly the position of each particle
appears to require arbitrary precision in these coordinates. If we had to specify even
a single position exactly, it would take an infinite number of binary digits. However,
quantum mechanics is inherently granular, thus there is a smallest distance ∆x within
which we do not need to specify one position coordinate of a particle. The particle lo-
cation is uniquely given once it is within a region ∆x. More correctly, the particle must
be located within a region of position and momentum of ∆x∆p = h, where h is
Planck’s constant. The granularity defines the precision necessary to specify the posi-
tions and momenta, and thus also the amount of information (number of bits)
needed in order to describe completely the microstate. The definition of the entropy
takes this into account, otherwise the counting of possible microstates of the system
would be infinite. The complete calculation of the entropy (which also takes into ac-
count the indistinguishability of the particles) is given in Question 1.3.2. We now rec-
ognize that the calculation of the entropy is precisely a calculation of the information
necessary to describe the microstate.

There is another way to think about the relationship of entropy and information.
It follows from the recognition that the number of states of a string of
I({x,p}|(U,N,V )) bits is the same as the number of states of the system. If we consider
a mapping of system states onto strings, the strings enumerate or label the system
states. If there are I({x,p}|(U,N,V )) bits in each string, then there is a one-to-one map-
ping of system states onto the strings, and a string uniquely identifies a system state.
We say that a string represents a system microstate.

We thus identify the entropy of a physical system as the amount of information
necessary to identify a single microstate from a specified macroscopic ensemble. For
an ergodic macroscopic system, this definition is a robust one. It does not matter if
we consider a typical or an average amount of information. What happens if the sys-
tem is nonergodic? There are two kinds of nonergodic systems we will discuss: a
magnet with a well-defined magnetization below its ordering phase transition (see
Section 1.6), and a glass where there are many frozen coordinates describing the lo-
cal arrangements of atoms (see Section 1.4). Many of these coordinates do not
change during the time of a typical experiment. Should we include the information
necessary to specify the frozen variables as part of the entropy? We would like to sep-
arate the discussion of the frozen variables from the fast ones that are in equilib-
rium. We use the entropy S to refer to the fast ensemble—the enumeration of the ki-
netically accessible states of the system. The same function of the frozen variables we
will call C.
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For the magnet, the amount of information contained in frozen variables is
small. For the Ising model of a magnet (Section 1.6), below the magnetization transi-
tion only a single binary variable is necessary to specify if the system magnetization is
UP or DOWN. We treat the magnet by giving the information about the magnetization
explicitly as part of the ensemble description. The amount of information is insignif-
icant compared to the information in the microstate of a system,and therefore is gen-
erally ignored.

In contrast, for a glass,the amount of information that is included in the frozen
variables is large. How does this information relate to the thermodynamic treatment
of the system? The conventional thermodynamic theory of phase transitions does not
consider the existence of frozen information. It is designed for systems like the mag-
net, where this information is insignificant, and thus it does not apply to the glass
transition.A different theory is necessary which includes the change from an ergodic
to a nonergodic system, or a change from information in fast variables to information
in frozen variables. Is there any relationship between the frozen information and the
entropy? If they are related at all, there are two intuitive possibilities. One is that we
must specify the frozen variables as part of the ensemble, and the amount of infor-
mation necessary to describe the fast variables is just as large as ifthere were no frozen
variables. The other is that the frozen variables balance against the fast variables so
that when there is more frozen information there is less information in the fast vari-
ables. In order to determine which is correct, we will need to consider an experiment
that measures both. As long as an experiment is being performed in which the frozen
variables never change, then the amount of information in the frozen variables is
fixed. Thermodynamic experiments only depend on entropy differences. We will need
to consider an experiment that changes the frozen variables—for example,heating up
a glass until it becomes a liquid or cooling it from a liquid to a glass. In such an ex-
periment the frozen information must be accounted for. The difficulty with a glass is
that we do not have an independent way to determine the amount of frozen infor-
mation. Fortunately, there is another system where we do.

There is an intermediate example between a magnet and a glass that is of con-
siderable interest. The structure of ice has a glasslike frozen disorder of its hydrogen
atoms below approximately 100°K. The simplest way to think about this disorder is
that it arises from a choice of orientations of the water molecule around the position
of the oxygen atom. This means that there is a macroscopic amount of information
necessary to specify the static structure of ice. The amount of information associated
with this disorder can be calculated directly using a model for the structure of ice that
takes into account the correlations between molecular orientations that are needed to
form a self-consistent hydrogen structure within the oxygen lattice.A first estimate is
based on an average o f 3/2 orientations per molecule or C = Nk ln(3/2) = 0.806
cal/moleK. A review of better calculations is given in a book by Fletcher. The best is
C = 0.8145 ± 0.0002 cal/mole°K. The other calculation we need is the amount of en-
tropy in steam. This can be obtained using a slight modification of the ideal gas cal-
culation,that takes into account the rotational and internal vibrational motion of the
water molecule.
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The key experiment is to measure the change in the entropy of the system as a
function of temperature as it is heated from ice all the way to steam. We find the en-
tropy using the standard thermodynamic relationship (Section 1.3)

q = TdS (8.3.3)

where q is the heat added to the system. At close to a temperature of zero degrees
Kelvin (T = 0K) the entropy is zero because all motion stops, and there is only one
possible state of the system. Thus we would expect

(8.3.4)

—the total amount of entropy added to the system as it is heated up should be the
same as the entropy of the gas. However, experimentally there is a difference of 0.82 ±
0.05 cal/moleK between the two. This is the amount of entropy in the gas that was not
added to the system as it was heated. The coincidence of two numbers—the amount
of entropy missing and the calculation of the information in the frozen structure of
the hydrogen atoms, suggests that the missing entropy was present in the original state
of the ice.

(8.3.5)

This in turn implies that the information in the frozen degrees of freedom was trans-
ferred (but conserved) to the fast degrees of freedom. Eq.(8.3.5) is not consistent with
the standard thermodynamic relationship in Eq. (8.3.3). Instead it should be modi-
fied to read:

q = Td(S + C ) (8.3.6)

This should be understood as implying that adding heat to a system increases the in-
formation either of the fast or frozen variables. Adding heat (e.g., to ice) increases the
temperature of the system,so that fewer variables are frozen. In this case C decreases
and S increases more than would be given by the conventional relationship o f Eq.
(8.3.3). When heat is not added to a system, we see that there can be processes that
change the number of fast degrees of freedom and the number of static degrees of free-
dom while leaving their sum the same. We will consider this further in later sections.

Eq. (8.3.6) is important enough to present it again from a different perspective.
The discussion will help demonstrate its validity by using a theoretical argument
(Fig. 8.3.1). Rather than considering it from the point of view of heating ice till it be-
comes steam, we consider what happens either to ice or to a glass when we cool it
down through the transition where degrees of freedom become frozen. In a theoreti-
cal description we start,above the freezing-in transition, with an ensemble of systems.
As we cool the system we remove heat,and this is reflected in a decrease in the num-
ber of possible states of the system. We think of this as a shrinking of the number of
elements of the ensemble. However, as we go through the freezing-in transition, the

    
S(T) = C(T = 0) +

q

T0

T

∫

    

S(T) = q /T
0

T

∫
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ensemble breaks up into disjoint pieces that can not make transitions to each other.
Any particular material must be in one of the disjoint pieces. Thus for a particular ma-
terial we must track only part of the original ensemble. For an incremental decrease
in temperature due to an incremental removal of heat, the information needed to
identify (describe) a particular microstate is the sum of the information necessary to
describe which of the disjoint parts of the ensemble the system is in, plus the infor-
mation needed to specify which of the microstates the system is in once its ensemble
fragment has been specified. This is the meaning of Eq. (8.3.6). The information to
specify the ensemble fragment was transferred from the entropy S to the ensemble in-
formation C. The reduction of the entropy, S, is not reflected in the amount of heat
that is removed.

We are now in a position to give a first definition of complexity. In order to de-
scribe a system and its behavior over time,we must describe the ensemble it is in. This
information is given by C/k ln(2). If we insist on describing the microstate of the sys-
tem, we must add the information contained in the fast degrees of freedom S /k ln(2).
The question is whether we should insist on describing the microstate. Typically, the
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Figure 8.3.1 Schematic illustration of the effect on motion in phase space of cooling through
a glass transition. Above the glass transition (T1,T2 and T3) the system is ergodic — it ex-
plores the entire phase space. Cooling the system causes the phase space to shrink smoothly.
The entropy, the logarithm of the volume of phase space, decreases. Below the glass transi-
tion, T4, the system is no longer ergodic and the phase space breaks up into pieces. A par-
ticular system explores only one of the pieces. The total amount of information necessary to
specify a particular microstate (e.g. indicated by the *) is the sum of C/k ln(2), the infor-
mation necessary to specify which piece, and S/k ln(2), the information necessary to specify
the particular state within the piece. ❚
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whole point of describing an ensemble is that we don’t need to specify the particular
microstate. We will return to address this question in greater detail later. However, for
now it is reasonable to consider describing the system to be specifying just the en-
semble. This implies that the information in the frozen variables C /k ln(2) is the com-
plexity. For a thermodynamic system in the microcanonical ensemble, the complex-
ity would be given by the (small) number of bits in the specification of the three
variables (U,N,V ) and the number of bits necessary to specify the type of element
(atom,molecule) that is present. The actual amount of information seems not to be
precisely defined. For example, we have not identified the number of bits to be used
in specifying (U, N,V ). As we have seen in the discussion of algorithmic complexity,
this is to be expected, since the conventions of how the information is sp ecified are
crucial when there is only a small amount.

We have learned from this discussion that for a nonergodic system, the com-
plexity (the frozen ensemble information) is bounded by the sum over the number
of fast and static degrees of freedom (C + S > C). For material systems, we know in
principle how to measure this. As in the case of ice, we heat up the system to the va-
por phase where the entropy can be calculated,then subtract the entropy added dur-
ing the heating process. This gives us the value of C + S at the temperature from
which the heating began. If we know that C >> S, then the result is the complexity it-
self. In order for this technique to work at all, the complexity must be large enough
so that experimental accuracy can enable its measurement. Estimates we will give
later imply that complexities of biological organisms are too small to be measured in
this way.

The concept of frozen degrees of freedom immediately raises the question of the
time scale in which the experiment is performed. Degrees of freedom that are frozen
on one time scale are not on sufficiently longer ones. If our time scale of observation
would be arbitrarily long, we would always describe systems in equilibrium. The en-
tropy would then be large and the complexity would be negligible.On the other hand,
if our time scale of observation was extremely short so that microscopic motions were
detected, then our complexity would be large and the entropy would be negligible.
This motivates the introduction of the complexity profile in Section 8.3.3.

Question 8.3.1 Calculate the information necessary to specify the mi-
crostate of a mole of an ideal gas at T = 0°C and P = 1atm. Use the mass

of a helium or neon atom for the mass of the ideal gas particle. This requires
a careful investigation of units.A table of fundamental physical constants is
given on the following page.

Solution 8.3.1 The entropy of an ideal gas is found in Section 1.3 to be:

S = kN[ln(V/N (T)3) + 5/2] (8.3.7)

(T) = (h 2/2 mkT )1/2 (8.3.8)

The information content of a microstate is given by Eq. (8.3.2).
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Each of the quantities must be evaluated numerically from appropriate
tables. A mole of particles is

N0 = 6.0221367 × 1023 /mole (8.3.9)

At the temperature

T0 = 0 °C = 273.13 °K (8.3.10)

kT0 = 0.0235384 eV (8.3.11)

and pressure

P0 = 1atm = 1.01325 × 105 Pascal = 1.01325 × 105 Newton/m2 (8.3.12)

the volume (of a mole of particles) of an ideal gas is:

V = N0kT /P0 = 22.41410 × 10−3 m3/mole (8.3.13)

the volume per particle is:

V /N = 37219.5 Å3 (8.3.14)

At the same temperature we have:

(T) = (2 mkT /h2)−1/2 = m[AMU]−1/2 × 1.05633 °A (8.3.15)

This gives the total information for a mole of helium gas at these conditions
of

I = N0 (18.5533 + 3/2 ln(m[AMU])) = 1.24 × 1025 (8.3.16)

Note that the amount of information per particle is only of order 10 bits. ❚
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hc = 12398.4 eV Å
k = 1.380658x10-23 Joule/°K
R = kN0 = 8.3144 Joule/°K/mole
c = 2.99792458 108 Meter/second
h = 6.6260755 10-34 Joule second
e = 1.60217733 10-19 Coulomb
ProtonMass = 1.6726231x10-27 kilogram
1 AMU = 1.6605402x10-27 kilogram = 9.31494x109 eV
M [Helium] = 4.0026 AMU
M [Neon] = 20.179 AMU
M [Helium] c2 = 3.7284x109

M [Neon] c2 =1.87966x1010

Table 8.3.1 Fundamental constants ❚
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8.3.2 Algorithmic complexity of physical systems
The complexity of a system is designed to measure the amount of information neces-
sary to describe it, or its behavior. In this section we address the key word “necessary.”
This word suggests that we are after the minimum amount of information. The min-
imum amount of information depends on our capabilities of inference from a smaller
amount of information. As discussed in Section 8.2.2, logical inference and compu-
tation lead to the definition of algorithmic complexity. However, for an ensemble that
can be described simply, the algorithmic complexity is no different than the Shannon
information.

Since we have established a connection between the complexity of physical sys-
tems and representations in terms of character strings, we can apply these results di-
rectly to physical systems.A physical system in equilibrium is represented by an en-
semble. At any particular time, it is in a single microstate. The specification of this
microstate can be compressed by encoding in certain rare cases. However, on average
the compression cannot lead to an amount of information significantly different from
the entropy (divided by k ln(2)) of the system. This conclusion follows because the
microcanonical (or canonical) ensemble can be concisely described. For a nonergodic
system like a glass,the microstate description has been separated into two parts. It is
no longer true that the ensemble of dynamically accessible states of a particular sys-
tem is concisely describable. The information in the frozen degrees of freedom is pre-
cisely the information necessary to specify the ensemble of dynamically accessible
states. The total information, (C + S)/k ln(2), represents the selection of a microstate
from a simple ensemble (microcanonical or canonical). Since the total information
cannot be compressed, neither can either of the two parts of the information—the
frozen degrees of freedom that we have identified with the complexity, or the addi-
tional information necessary to specify a particular microstate. Thus the algorithmic
complexity is the same as the information for either part.

We can now, finally, explain the experimental observation that an adiabatic
process does not change the entropy of a system (Section 1.3). The algorithmic de-
scription of an adiabatic process requires only a few pieces of information, e.g., the
size of a force applied over a specified distance. If a new microstate of the system can
be described by the original microstate plus the process of adiabatic change,then the
amount of information in the microstate has not been changed, and the adiabatic
process does not change the microstate algorithmic complexity—the entropy of the
system.Like other aspects of statistical mechanics (Section 1.3),this should not be un-
derstood as a proof but rather as an explanation of the relationship of the thermody-
namic observation to the microscopic properties. Using this explanation, we can iden-
tify the nature of an adiabatic process as one that is described microscopically by a
small amount of information.

This becomes clearer when we compare adiabatic and irreversible processes.Our
argument that an adiabatic process does not change the entropy is based on consid-
ering the information necessary to describe an adiabatic process—slowly moving a
piston to expand the space available to a gas. An irreversible process could achieve a
similar expansion, but would not be thermodynamically the same. Take, for example,
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the removal of a partition that separates the gas from a second,initially empty, cham-
ber. The irreversible process of expansion of the gas results in a final state which has
a higher entropy (see Question 1.3.4). The removal of a partition in itself does not ap-
pear to require a lot of information to describe.One moment after the partition is re-
moved, the entropy of the system is the same as before. To understand how the en-
tropy increases, we must consider the nature of irreversible dynamics.

A key ingredient in our understanding of physical systems is that the time evolu-
tion of an isolated system can be obtained from the simple laws of mechanics (classi-
cal or quantum). This means that the dynamics of an isolated system conserves the
amount of information as well as the energy. Such dynamics are called conservative.
If we consider an ensemble of systems starting in a particular region of phase space,
the phase space position evolves in time, but the volume of the phase space that is oc-
cupied—the entropy—does not change. This conservation of phase space can be un-
derstood from our discussion of algorithmic complexity: since the deterministic dy-
namics of a system can be computed, the algorithmic complexity of the system is
conserved. Where does the additional entropy come from for the final equilibrium
state after the expansion?

There are two parts to the process of proceeding to a true equilibrium state. In
the first part the distinction between the nonequilibrium and equilibrium state is ob-
scured. At first there is macroscopically observable information—the particles are in
one half of the chamber. This information is converted to microscopic correlations
between atomic positions and momenta. The conversion occurs when the gas ex-
pands to fill the chamber, and various currents that follow this expansion become
smaller and smaller in extent. The microscopic correlations cannot be observed on a
macroscopic scale,and for standard observations the system is indistinguishable from
an equilibrium state. The transfer of information from macroscopic to microscopic
scale is related to issues of chaos in the dynamics of physical systems, which will be
discussed later.

The second part to the process is an actual increase in the entropy of the system.
The additional entropy must come from outside the system. In macroscopic physical
processes, we are not generally concerned with isolating the system from information
transfer, only with isolating the system from energy transfer. Thus we can surmise that
the expansion of the gas is followed by an information transfer that enables the en-
tropy to increase to its equilibrium value without changing the energy of the system.
Many of the issues related to describing this nonequilibrium process will not be ad-
dressed here. We will,however, begin to address the topic of the scale of observation
at which correlations appear using the complexity profile in the following section.

8.3.3 Complexity profile
General approach In this section we discuss the relationship of microscopic and
macroscopic complexity. Our objective is to develop a consistent language for dis-
cussing complexity as a function of length scale. In the following section we will dis-
cuss the complexity as a function of time scale, which generalizes the discussion of
frozen and fast degrees of freedom in Section 8.3.1.
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When we describe a system, we are not generally interested in a microscopic de-
scription of the positions and velocities of all of the particles. For a thermodynamic
system there are only a few macroscopic parameters that we use to describe the sys-
tem. This is indeed the reason we use entropy as a summary of the many hidden pa-
rameters of the system that we are not interested in. The microscopic parameters
change too fast and over too small distances to matter for our macroscopic measure-
ments/experience. The same is true more generally about systems that are not in equi-
librium: a macroscopic description does not require specifying the position of each
atom. This implies that we must develop an understanding of complexity that is not
tied to the microscopic description, but is relevant to observations at a particular
length and time scale.

This point lies at the root of a con ceptual probl em in thinking abo ut the com-
p l ex i ty of s ys tem s . A gas in equ i l i brium has a large en tropy wh i ch is its micro s cop i c
com p l ex i ty. This is co u n ter to our understanding of com p l ex sys tem s . Sys tems in equ i-
l i brium are intu i tively simpler than non equ i l i brium sys tems su ch as a human bei n g. In
Secti on 8.3.1 we started to ad d ress this probl em by iden ti f ying the com p l ex i ty of a non-
er godic sys tem as the inform a ti on nece s s a ry to specify the frozen degrees of f reedom .
We now discuss a more sys tem a tic approach to dealing with mac ro s copic ob s erva ti on s .

In order to consider the macroscopic complexity, we have to define what we mean
by macroscopic in a formal sense. The concept of macroscopic must be understood
in relation to a particular observer. While we often consider experimental results to be
independent of the observer, there are various ways in which the observer is essential
to the observation. In this context, in which we are concerned with the meaning of
macroscopic, considering the observer is essential.

How do we ch a racteri ze the differen ce bet ween a micro s copic and a mac ro s cop i c
ob s erver? The most crucial differen ce is that a micro s copic ob s erver is able to disti n-
guish bet ween all inheren t ly disti n g u i s h a ble states of the sys tem , while a mac ro s cop i c
ob s erver cannot. For a mac ro s copic ob s erver, m a ny micro s cop i c a lly disti n ct states ap-
pear the same. This is rel a ted to our understanding of com p l ex i ty, because the mac ro-
s copic ob s erver need on ly specify wh i ch of the mac ro s cop i c a lly disti n ct states the sys-
tem is in. The micro s copic ob s erver must specify wh i ch of the micro s cop i c a lly disti n ct
s t a tes the sys tem is in. Thus the mac ro s copic com p l ex i ty must alw ays be small er than
the micro s copic com p l ex i ty of a sys tem . In s te ad of con s i dering a unique mac ro s cop i c
ob s erver, we wi ll con s i der a sequ en ce of ob s ervers with a progre s s ively poorer abi l i ty
to distinguish micro s t a te s . Using these ob s ervers , we wi ll define the com p l ex i ty prof i l e .

Ideal gas These ideas can be direct ly app l i ed to the ideal ga s .We gen era lly think abo ut
a mac ro s copic ob s erver as having an inabi l i ty to distinguish fine-scale distance s . Thu s
we ex pect that the usual uncert a i n ty in parti cle po s i ti on ∆x wi ll increase for a mac ro-
s copic ob s erver. However, we learn from qu a n tum mechanics that a unique micro s t a te
of the sys tem is def i n ed using an uncert a i n ty in both po s i ti on and mom en tu m , ∆x∆p
= h.Thus for the mac ro s copic ob s erver to confuse disti n ct micro s t a te s , the produ ct ∆x∆p
must be larger than its minimum va lue—an ob s erva ti on of the sys tem provi des mea-
su rem ents of the po s i ti on and mom en tum of e ach parti cl e , whose uncert a i n ty has a
produ ct gre a ter than h. We can label our ob s ervers by this uncert a i n ty, wh i ch we call h̃.

726 Hu man  C i v i l i z a t i on  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 726
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamChap8.pdf  3/10/02 10:52 AM  Page 726



If we retrace our steps to the calculation of the entropy of an ideal gas
(Question 1.3.2), we can recognize that essentially the same calculation applies to the
complexity with the uncertainty h̃. An observer with the uncertainty h̃ will determine
the complexity of the ideal gas according to Eq.(8.3.7) and Eq.(8.3.8), with h replaced
by h̃. Thus we define the complexity profile for the ideal gas in equilibrium as:

(8.3.17)

This equation describes a complexity that decreases as the ability of the observer to
distinguish states decreases. This is as we expected. Despite the weak logarithmic de-
pendence on h̃ , C(h̃) decreases rapidly because the coefficient of the logarithm is so
large. By the time h̃ is about 100 times h the complexity profile has become negative
for the ideal gases described in Question 8.3.1.

What does a negative complexity mean? It actually means that we have not done
the calculation quite right. The counting of states we did for the ideal gas assumed that
the particles were well separated from each other. If they begin to overlap then we
must count the possible states differently. This overlap is significant precisely when
Eq.(8.3.17) becomes negative. If the particles really overlapped then quantum statis-
tics becomes important; the gas is said to be degenerate and satisfies either Fermi-
Dirac or Bose-Einstein statistics. In our case the overlap arises only because the ob-
server cannot distinguish different particle positions. In this case, the counting of
states is appropriate to a classical ideal gas, as we now explain.

To calculate the complexity as a function of h̃ for an equilibrium state whose en-
tropy is S, we start by calculating the number of microstates that the observer cannot
distinguish. The logarithm of this number of microstates, which we call S(h̃)/k ln(2),
is the amount of information necessary to specify a microstate, if the macrostate is
known. Thus we have that:

(8.3.18)

To count the number of microstates that the observer cannot distinguish,we note that
the possible microstates of a particular particle are grouped together by the observer
into bins (regions or cells of position and momentum) of size (∆x∆p)d = h̃d, where
d = 3 is the dimensionality of space. The observer determines only that a particle is
within a certain region. In the classical ideal gas each particle moves independently,
so more than one particle may occupy the same microstate. However, this is unlikely.
As h̃ increases it becomes increasingly likely that there is more than one particle in a
region. If the number of particles in a certain region is ni , then the number of distinct
microstates of the bin that the observer does not distinguish is:

(8.3.19)

where g = (h̃ /h)d is the number of microstates within a region. This is the product of
the number of states each particle may be in, corrected for particle indistinguishabil-
ity. The number of microstates of the whole system that appear to the observer to be
the same is the product of such terms for each region:

    

gni

n i !

    C( ˜ h ) = S −S( ˜ h )

    ̃  h > h    C( ˜ h ) = S − 3kN ln(˜ h /h)
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(8.3.20)

From this we can determine the complexity of the state determined by the observer
as:

(8.3.21)

If we consider this expression when g = 1—a microscopic observer—then ni is almost
always either zero or one and each term in the product is one (a more exact treatment
requires treating the statistics of a degenerate gas). Then C (h̃) is S, which means that
the microstate complexity is just the entropy. For g > 1 but not too large, ni will still
be either zero or one, and we recover Eq. (8.3.17). On the other hand, using this ex-
pression it is possible to show that for a large value of g, when the values of ni are sig-
nificantly larger than one, the complexity goes to zero.

We can understand this by recognizing that as g increases, the number of parti-
cles in each bin increases and becomes closer to the average number of particles in a
bin according to the macroscopic probability distribution. This is the equilibrium
macrostate. By our conventions we are measuring the amount of information neces-
sary for the observer to specify its observation in relation to the equilibrium state.
Therefore, when the average number of particles in a bin becomes close enough to this
distribution,there is no information that must be given. To write this explicitly, when
ni is much larger than one we apply Sterling’s approximation to the factorial in
Eq. (8.3.21) to obtain:

(8.3.22)

where Pi = ni /g is the probability a particle is in a particular state according to t h e ob-
s erver. It is shown in Questi on 8.3.2 that C (h̃) is zero wh en Pi is the equ i l i briu m
prob a bi l i ty for finding a parti cle in regi on i ( n o te that i stands for both po s i ti on and
m om en tum (x,p) ) .

There are additional smaller terms in Sterling’s approximation to the factorial
that we have neglected. These terms are generally ignored in calculations of the en-
tropy because they are not proportional to the number of particles. They are, how-
ever, relevant to calculations of the complexity:

(8.3.23)

The additional terms are related to fluctuations in the density. This will become ap-
parent when we analyze nonuniform systems below.

We will discuss additional examples of the complexity profile below. First we sim-
plify the complexity profile for observers that measure only the positions and not the
momenta of particles.
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Question 8.3.2 Show that Eq.(8.3.22) is zero when Pi is the equilibrium
probability of locating a particle in a particular state identified by mo-

mentum p and position x. For simplicity assume that all g states in the cell
have essentially the same position and momentum.

Solution 8.3.2 We calculate an expression for Pi → P(x,p) using
Boltzmann probability for a single particle (since all are independent):

(8.3.24)

where Z is the one particle partition function given by:

(8.3.25)

We evaluate the expression:

(8.3.26)

which, by Eq.(8.3.22), we want to show is the same as the entropy. Since all
g states in cell i have essential ly the same position and momentum, this is
equal to:

(8.3.27)

which is most readily evaluated by recognizing it as:

(8.3.28)

which is S as given in Eq. (8.3.7). ❚

Position without momentum The use of the scale parameter ∆x∆p in the above
discussion should trouble us, because we do not generally consider the momentum
uncertainty on the macroscopic scale. The resolution of this problem arises because
we have assumed that the system has a known energy or temperature. If we know the
temperature then we know the thermal velocity or momentum:

∆p ≈ √mkTi (8.3.29)

It does not make sense to have a mom en tum uncert a i n ty of a parti cle that is mu ch
gre a ter than this. Using ∆x∆p = h this means there is also a natu ral uncert a i n ty in po-
s i ti on wh i ch is the thermal wavel ength given by Eq . ( 8 . 3 . 8 ) . This is the maximal
qu a n tum po s i ti on uncert a i n ty, unless the ob s erver can distinguish the thermal mo-
ti on of i n d ivi dual parti cl e s . We can now think abo ut a sequ en ce of ob s ervers who do
not distinguish the mom en tum of p a rti cles (they have a larger uncert a i n ty than the
t h ermal mom en tum) but have increasing uncert a i n ty in po s i ti on given by L =∆ x, or
g = (L / )d. For su ch ob s ervers the equ i l i brium mom en tum prob a bi l i ty distri buti on

    

kN + kNZ −1 ln(V /N 3)−
1 d

d

 

 
 

 

 
 Z =kN ln(V /N 3) + 5/2 

 
 
 

    

−k
x ,p

∑ P(x, p)ln(P(x, p))+kN =k ln(V / N 3) + p 2 /2mkT 
 

 
 

x ,p

∑ N 3 /V 
 

 
 e

− p
2

/ 2mkT

    

−k g
i

∑ P(x, p)ln(P(x, p))+ kN

    

Z = e − p
2

/ 2mkT

x ,p

∑ =
d 3xd 3p

h3
e −p

2
/2mkT∫ =

V
3

    P(x, p) = NZ −1e − p
2

/ 2mkT

C o m p l ex it y  of  p hys i c a l  sy s t e m s 729

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 729
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamChap8.pdf  3/10/02 10:52 AM  Page 729



is to be assu m ed . In this case the nu m ber of p a rti cles in a cell ni con tri butes a term
to the en tropy that is equal to the en tropy of a gas with this many parti cles in the vo l-
ume Ld. This gives a total en tropy of :

(8.3.30)

and the complexity is:

(8.3.31)

which differs in form from Eq. (8.3.22) only in the constant.
While we generally do not think about measuring momentum, we do measure

velocity. This follows from the content of the previous paragraph. We consider ob-
servers that measure particle positions at different times and from this they may infer
the velocity and indirectly the momentum. Since the observer measures ni , the deter-
mination of velocity depends on the observer’s ability to distinguish moving spatial
density variations. Thus we consider the measurement of n(x ,t), where x has macro-
scopic meaning as a granular coordinate that has discrete values separated by L . We
emphasize,however, that this description of a space- and time-dependent density as-
sumes that the local momentum distribution of the system is consistent with an equi-
librium ensemble. The more fundamental description is given by the distribution of
particle positions and momenta, ni = n(x ,p). Thus, for example, we can also describe
a rotating disk that has no macroscopic changes in density over time, but the rotation
is still macroscopic. We can also describe fluid flow in an incompressible fluid. In this
section we continue to restrict ourselves to the description of observations at a par-
ticular time. The time dependence of observations will be considered in Section 8.3.5.

Thus far we have considered systems that are in generic states selected from the
equilibrium ensemble. Equilibrium systems are uniform on all but very microscopic
scales, unless we are exactly at a phase transition. Thus, most of the complexity dis-
appears on a scale that is far smaller than typical macroscopic observations. This is
not necessarily true about nonequilibrium systems. Systems that are in states that are
far from equilibrium can have nonuniform densities of particles.A macroscopic ob-
server will see these macroscopic variations. We will consider a couple of different ex-
amples of nonequilibrium states to illustrate some properties of the complexity pro-
file. Before we do this we need to consider the effect of algorithmic compression on
the complexity profile.

Algorithmic complexity and error To discuss macroscopic complexity more com-
pletely, we turn to algorithmic complexity as a function of scale. The complexity of a
system,particularly a nonequilibrium system,should be defined in terms of the algo-
rithmic complexity of its description. This means that patterns that are present in the
positions (or momenta) of its particles can be used to simplify the description.

Using this discussion we can reformulate our understanding of the complexity
profile. We defined the profile using observers with progressively poorer ability to dis-
tinguish microstates. The fraction of the ensemble occupied by these states defined
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the complexity. Using an algorithmic perspective we say, equivalently, that the ob-
server cannot distinguish the true state from a state that has a smaller algorithmic
complexity. An observer with a value of g = 2 cannot distinguish which of two states
each particle occupies in the real microstate. Let us label the single particle states us-
ing an index that enumerates them. We can then imagine a checkerboard (in six di-
mensions of position and momentum) where odd indexed states are black and even
ones are white. The observer cannot tell if a particle is in a black or a white state. Thus,
no matter what the real state is,there is a simpler state where only odd (or only even)
indexed states of the particles are occupied, which cannot be distinguished from the
real system by the observer. The algorithmic complexity of this state with particles in
odd indexed states is essentially the complexity that we determined above, C(g = 2)—
it is the information necessary to specify this state out of all the states that have par-
ticles only in odd indexed states. Thus,in every case, we can specify the complexity of
the system for the observer as the complexity of the simplest state that is consistent
with the observations—by Occam’s razor, this is the state that the observer will use to
describe the system.

We note that this is also equivalent to defining the complexity profile as the length
of the description as the error allowed in the description increases. The total error as
a function of g for the ideal gas is

(8.3.32)

where N is the number of particles in the system. The factor of 1/2 arises because the
average error is half of the maximum error that could occur. This approach is helpful
since it suggests how to generalize the complexity profile for systems that have differ-
ent types of particles. We can define the complexity profile as a function of the num-
ber of errors that are made. This is better than using a particular length scale, which
implies a different error for particles of different mass as indicated by Eq.(8.3.8). For
conceptual simplicity, we will continue to write the complexity profile as a function
of g or of length scale.

Nonequilibrium states Our next objective is to consider nonequilibrium states.
When we have a nonequilibrium state,the microstate of the system is simpler than an
equilibrium state to begin with. As we mentioned at the end of Section 8.3.2,there are
nonequilibrium states that cannot be distinguished from equilibrium states on a
macroscopic scale. These nonequilibrium states have microscopic correlations. Thus,
the microscopic complexity is lower than the equilibrium entropy, while the macro-
scopic complexity is the same as in equilibrium:

C(g) < C0(g) = S0 g = 1

C(g) = C0(g) g >> 1
(8.3.33)

where we use the subscript 0 to indicate quantities of the equilibrium state. We illus-
trate this by an example. Using the indexing of single par ticle states we just intro-
duced, we take a microstate where all particles are in odd indexed states. The mi-
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2
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crostate complexity is the same as that of an equilibrium state at g = 2, which is less
than the entropy of the equilibrium system:

C(g = 1) = C0(g = 2) < C0(g = 1)

However, the complexity of this system for scales of observation g ≥ 2 is the same as
that of an equilibrium system—macroscopic observers do not distinguish them.

This scenario, where the complexity of a nonequilibrium state starts smaller but
then quickly becomes equal to the equilibrium state complexity, does not always hold.
It is true that the microscopic complexity must be less than or equal to the entropy of
an equilibrium system, and that all systems have the same complexity when L is the
size of the system. However, what we will show is that the complexity of a nonequi-
librium system can be higher than that of the equilibrium system at large scales that
are smaller than the size of the system. This is apparent in the case, for example, of a
nonuniform density at large scales.

To illustrate what happens for such a nonequilibrium state, we consider a system
that has nonuniformity that is characteristic of a particular length scale L 0, which is
significantly larger than the microscopic scale but smaller than the size of the sys-
tem. This means that ni is smooth on finer scales,and there is no particular relation-
ship between what is going on in one region of length scale L 0 and another. The val-
ues of ni will be taken from a Gaussian distribution around the equilibrium value n0

with a standard deviation of . We assume that is larger than the natural density
fluctuations, which have a standard deviation of 0 =√n0 . For convenience we also as-
sume that is much smaller than n0 .

We can calculate both the complexity C(L), and the apparent entropy S(L) for
this system. We start by calculating them at the scale L0 . C(L0) is the amount of in-
formation necessary to specify the density values. This is the product of the number
of cells V /Ld times the information in a number selected from a Gaussian distribution
of width . From Question 8.3.3 this is:

(8.3.34)

The number of microstates consistent with this macrostate at L 0 is given by the sum
of ideal gas entropies in each region:

(8.3.35)

Since is less than n0 , this can be evaluated by expanding to second order in ni =
ni − n0 :

(8.3.36)

where S0 is the entropy of the equilibrium system, and we used < n2
i > = 2. We note

that when = 0 the logarithmic terms in the complexity reduce to the extra terms
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found in Eq. (8.3.23). Thus, these terms are the information needed to describe the
equilibrium fluctuations in the density.

We can understand the beh avi or of the com p l ex i ty profile of this sys tem . By con-
s tru cti on , the minimum amount of i n form a ti on needed to specify the micro s t a te is
C( ) = S(L0) + C(L 0) . This is the sum over the en tropy of equ i l i brium gases with den-
s i ties ni in vo lumes Ld

0,p lus C(L 0) . Si n ce S(L 0) is linear in the nu m ber of p a rti cl e s ,wh i l e
C(L 0) is loga rithmic in and therefore loga rithmic in the nu m ber of p a rti cl e s , we con-
clu de that C(L 0) is mu ch small er than S(L 0) . For L > the com p l ex i ty profile C(L) de-
c reases like that of an equ i l i brium ideal ga s . The term S(L 0) is el i m i n a ted at a micro-
s copic length scale larger than but mu ch small er than L 0. However, C(L0) rem a i n s .
Due to this term the com p l ex i ty crosses that of an equ i l i brium gas to become larger.
For length scales up to L0 the com p l ex i ty is essen ti a lly constant and equal to Eq .( 8 . 3 . 3 4 ) .
Above L 0 it dec reases to zero as L con ti nues to increase by vi rtue of the ef fect of com-
bining the different ni i n to fewer regi on s . Com bining the regi ons re sults in a Gaussian
d i s tri buti on with a standard devi a ti on that dec reases as the squ a re root of the nu m ber
of terms → (L0/L)d / 2. Thu s , the com p l ex i ty and en tropy profiles for L > L0 a re :

(8.3.37)

This expression continues to be valid until there is only one region left,and the com-
plexity goes to zero. The precise way the complexity goes to zero is not described by
Eq. (8.3.37), since the Gaussian distribution does not apply in this limit.

There are several comments that we can make that are relevant to understanding
complexity profiles in general. First we see that in order for the macroscopic com-
plexity to be higher than that in equilibrium, the entropy at the same scale must be
reduced S(L) < S0. This is necessary because the sum S(L) + C(L)—the total informa-
tion necessary to specify a microstate—cannot be greater than S0. However, we also
note that the reduction in S(L) is much larger than the increase in C(L). The ratio be-
tween the two is given by:

(8.3.38)

For > 0 = √n0 this is greater than one. We can understand this result in two ways.
First, a complex macroscopic system must be far from equilibrium, and therefore
must have a much smaller entropy than an equilibrium system. Second, a macro-
scopic observer makes many errors in determining the microstate,and therefore if the
microstate is similar to an equilibrium state,the observer cannot distinguish the two
and the macroscopic properties must also be similar to an equilibrium state.For every
bit of information that distinguishes the macrostate, there must be many bits of dif-
ference in the microstate.
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In calculating the com p l ex i ty of the sys tem at a particular scale, we assu m ed that
the ob s erver was in error in obtaining the po s i ti on and mom en tum of e ach parti cl e .
However, we assu m ed that the nu m ber of p a rti cles within each bin was determ i n ed ex-
act ly.Thus the com p l ex i ty we calculated is the inform a ti on nece s s a ry to specify the nu m-
ber of p a rti cles precise to the single parti cl e . This is why even the equ i l i brium den s i ty
f lu ctu a ti ons were de s c ri bed . An altern a tive , m ore re a s on a bl e , a pproach assumes that
p a rti cle co u n ting is also su bj ect to error. For simplicity we can assume that the error is
a fracti on of the nu m ber of p a rti cles co u n ted . For mac ro s copic sys tems this fracti on is
mu ch larger than the equ i l i brium flu ctu a ti on s , wh i ch therefore need not be de s c ri bed .
This approach also modifies the form of the com p l ex i ty profile of the nonu n i form ga s
in Eq .( 8 . 3 . 3 7 ) . The error in measu rem ent increases as n0(L) ∝ Ld with the scale of ob-
s erva ti on . Let ting m0(L) be the error in a measu rem ent of p a rti cle nu m ber, we wri te :

(8.3.39)

The consequence of this modification is that the complexity decreases somewhat
more rapidly as the scale of observation increases. The expression for the entropy in
Eq. (8.3.37) is unchanged.

Question 8.3.3 What is the information in a number (character) se-
lected from a Gaussian distribution of standard deviation ?

Solution 8.3.3 Starting from a Gaussian distribution (Eq. 1.2.39),

(8.3.40)

we calculate the information (Eq. 8.2.2):

(8.3.41)

where the second term in the integral can be evaluated using < x 2 > = 2.
We note that this result is to be interpreted as the information in a dis-

crete distribution of integral values of x, like a random walk,that in the limit
of large gives a Gaussian distribution. The units that are used to measure

define the precision to which the values of x are to be described. It thus
makes sense that the information to specify an integer of typical magnitude

is essentially log( ). ❚

8.3.4 Time dependence—chaos and the complexity profile
General approach In describing a system, we are interested in macroscopic obser-
vations over time, n(x , t). As with the uncertainty in position,a macroscopic observer
is not able to distinguish the time of observation within less than a certain time in-
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terval T = ∆t. To define what this means, we say that the system is represented by an
ensemble with probability PL,T(n(x ; t)), or more generally PL,T (n(x , p ; t)). The differ-
ent microstates that occur during the time interval T are all part of this ensemble.This
may appear different than the definition we used for the spatial uncertainty. However,
the definitions can be restated in a way that makes them appear equivalent. In this re-
statement we recognize that the observer performs measurements that are, in effect,
averages over various possible microscopic measurements. The average measure-
ments over space and time represent the system (or system ensemble) that is to be de-
scribed by the observer. This representation will be discussed further in Section 8.3.6.
The use of an ensemble is convenient because the observer may only measure one
quantity, but we can consider various quantities that can be measured using the same
degree of precision. The ensemble represents all possible measurements with this de-
gree of precision. For example, the observer can measure correlations between parti-
cle positions that are fixed over time.If we averaged the density n(x , t) over time,these
correlations could disappear because of the movement of the whole system. However,
if we average over the ensemble,they do not. We define the complexity profile C(L, T )
as the amount of information necessary to specify the ensemble PL,T (n(x , t)). A de-
scription at a finer scale contains all of the information necessary to describe the
coarser scale. Thus, C(L, T ) is a monotonic decreasing function of its arguments. A
direct analysis is discussed in Question 8.3.4. We start,however, by considering the ef-
fect on C(L,T ) of prediction and the lack of predictability in chaotic dynamics.

Predictability and chaos As discussed earlier, a key ingredient in our understand-
ing of physical systems is that the time evolution of an isolated system (or a system
whose interactions with its environment are specified) can be obtained from the sim-
ple laws of mechanics starting from a complete microscopic description of the posi-
tion and momenta of the particles. Thus, if we use a small enough L and T, so that
each particle can be distinguished, we only need to specify PL,T (n(x , t)) over a short
period of time (or the simultaneous values of position and momentum) in order to
predict the behavior over all subsequent times. The laws of mechanics are also re-
versible. We describe the past as well as the future from the description of a system at
a particular time. This must mean that information is not lost over time. Systems that
do not lose information over time are called conservative systems.

However, when we increase the spatial scale of observation, L, then the informa-
tion loss—the complexity reduction—also limits the predictability of a system. We
are not guaranteed that by knowing PL,T (n(x , t)) at a scale L we can predict the sys-
tem behavior. This is true even if we are only concerned about predicting the behav-
ior at the scale L. We may need additional smaller-scale information to describe the
time evolution of the system. This is precisely the origin of the study of chaotic sys-
tems discussed in Section 1.1. Chaotic systems take information from smaller scales
and bring it to larger scales. Chaotic systems may be contrasted with dissipative sys-
tems that take information from larger scales to smaller scales. If we perturb (disturb)
a dissipative system,the effect disappears over time.Looking at such a system at a par-
ticular time, we cannot tell if it was perturbed at some time far enough in the past.
Since the information on a microscopic scale must be conserved, we know that the
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information that is lost on the macroscopic scale must be preserved on the micro-
scopic scale. In this sense we can say that information has been transferred from the
macroscopic to the microscopic scale. For such systems, we cannot describe the past
from present information on a particular length scale.

The degree of predictability is manifest when we consider that the complexity of
a system C(L,T ) at a particular L and T depends also on the duration of the descrip-
tion—the limits of t ∈[t1, t2]. Like the spatial extent of the system, this temporal ex-
tent is part of the system definition. We typically keep these limits constant as we vary
T to obtain the complexity profile. However, we can also characterize the dependence
of the complexity on the time limits t1,t 2 by determining the rate at which informa-
tion is either gained or lost for a chaotic or stable system. For complex systems, the
flow of information between length scales is bidirectional—even if the total amount
of information at a particular scale is preserved, the information may change over
time by transfer to or from shorter length scales. Unlike most theories of currents,in-
formation currents remain relevant even though they may be equal and opposite. All
of the information that affects behavior at a particular length scale,at any time over
the duration of the description, should be included in the complexity.

It is helpful to develop a conceptual image of the flow of information in a system.
We begin by considering a conservative, nonchaotic and nondissipative system seen
by an observer who is able to distinguish 2C(L)/k ln(2) = eC(L)/k states. C(L)/k ln(2) is the
amount of information necessary to describe the system during a single time interval
of length T. For a conservative system the amount of information necessary to de-
scribe the state at a particular time does not change over time. The dynamics of the
system causes the state of the system to change over time among these states. The se-
quence of states could be described one by one. This would require

NT C(L)/k ln(2) (8.3.42)

bits, where NT = (t2 − t1)/T is the number of time intervals. However, we can also de-
scribe the state at a particular time (e.g.,the initial conditions) and the dynamics. The
amount of information to do this is:

(C(L) + Ct(L ,T ))/k ln(2) (8.3.43)

Ct(L,T )/k ln(2) is the information needed to describe the dynamics. For a nonchaotic
and nondissipative system we can show that this information is quite small.We know
from the previous section that the macrostate of the system of complexity C(L) is con-
sistent with a microstate which has the same complexity. The microstate has a dy-
namics that is simple,since it follows the dynamics of standard physical law. The dy-
namics of the simple microstate also describes the dynamics of the macrostate, which
must therefore also be simple. Therefore Eq.(8.3.43) is smaller than Eq.(8.3.42) and
the complexity is C(L,T ) = C(L) + Ct(L ,T ) ≈ C(L). This holds for a system following
conservative, nonchaotic and nondissipative dynamics.

For a system that is chaotic or dissipative, the picture must be modified to ac-
commodate the flow of information between scales. From the previous paragraph we
conclude that all of the interesting (complex) dynamics of a system is provided by in-
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formation that comes from finer scales. The observer does not see this information
before it appears in the state of the system—i.e.,in the dynamics. If we allow ourselves
to see the finer-scale information we can track the flow of information that the ob-
server does not see. In a conventional chaotic system,the flow of information can be
characterized by its Lyaponov exponents. For a system that is described by a single real
valued parameter, x(t), the Lyaponov exponent is defined as an average over:

h = ln((x ′(t) − x(t))/(x ′(t − 1) − x(t − 1))) (8.3.44)

where unprimed and primed coordinates indicate two different trajectories. We can
readily see how this affects the information needed by an observer to describe the dy-
namics. Consider an observer at a particular scale, L. The observer sees the system in
state x(t − 1) at time t − 1, but he determines x(t − 1) only within a bin of width L.
Using the dynamics of the system that is assumed to be known, the observer can de-
termine the state of the system at the next time. This extrapolation is not precise, so
the observer needs additional information to specify the next location. The amount
of information needed is the lo garithm of the number of bins that one bin expands
into during one time step. This is precisely h / ln(2) bits of information. Thus, the
complexity of the dynamics for the observer is given by:

C(L,T ) = C(L) + Ct(L ,T ) + NTkh (8.3.45)

where we have used the same notation as in Eq. (8.3.43).
A physical system that has many dimensions,like the microscopic ideal gas, will

have one Lyaponov exponent for each of 6N dimensions of position and momentum.
If the dynamics is conservative then the sum over all the Lyaponov exponents is zero,

(8.3.46)

where ∆xi(t) = x′i (t) −xi(t) and ∆pi(t) = p′i (t) −pi(t). This follows directly from conser-
vation of volumes of phase space in conservative dynamics. However, while the sum
over all exponents is zero, some of the exponents may be positive and some negative.
These correspond to chaotic and dissipative modes of the dynamics. We can imagine
the flow of information as consisting of two streams, one going to higher scales and
one to lower scales. The complexity of the system is given by:

(8.3.47)

As indicated, the sum is only over positive values.
Two cautionary remarks about the application of Lyaponov exponents to com-

plex physical systems are necessary. Unlike many standard models of chaos,a complex
system does not have the same number of degrees of freedom at every scale. The num-
ber of independent bits of information describing the system above a particular scale
is given by the complexity profile, C(L). Thus,the flow of information between scales
should be thought of as due to a number of closed loops that extend from a particu-
lar lowest scale up to a particular highest scale. As the scale increases,the complexity

    

C(L,T) = C(L) +Ct(L,T)+ NTk h i

i:hi >0

∑

    i
∑ hi = log(

i
∏ ∆xi (t)∆pi(t)/

i
∏ ∆xi (t −T)∆pi (t −T)) = 0
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decreases. Thus, so does the maximum number of Lyaponov exponents. This means
that the sum over Lyaponov exponents is itself a function of scale. More generally, we
must also be concerned that C(L) can be time dependent,as it is in many irreversible
processes.

The second remark is that over time the cycling of information between scales
may bring the same information back more than once. Eq. (8.3.47) does not distin-
guish this,and therefore may include multiple counting of the same information. We
should understand this expression as an upper bound on the complexity.

Time scale dependence Once we have chaotic behavior, we can consider various
descriptions of the time dependence of the behavior seen by a particular observer. All
of the models we considered in Chapter 1 are applicable. The state of the system may
be selected at random from a particular distribution (ensemble) of states at successive
time intervals. This is a special case of the more general Markov chain model that is
described by a set of transition probabilities. Long-range correlations that are not eas-
ily described by a Markov chain may also be important in the dynamics.

In order to discuss the complexity profile as a function of T, we consider a
Markov chain model. From the analysis in Question 8.3.4 we learn that the loss of
complexity with time scale occurs as a result of cycles in the dynamics. These cycles
need not be deterministic; they may be stochastic—cycles that do not repeat indefi-
nitely but rather can occur one or more times through the probabilistic selection of
successive states. Thus,a high complexity for large T arises when there is a large space
of states with low chance of repetition in the dynamics. The highest complexity would
arise from a deterministic dynamics with cycles that are longer than T. This might
seem to contradict our previous conclusion, where the deterministic dynamics was
found to be simple. However, a complex deterministic dynamics can arise if the suc-
cessive states are specified by information from a smaller scale.

Question 8.3.4 Consider the information in a Markov chain of NT states
at intervals T0 given by the transition matrix P(s′|s). Assume the com-

plexity of specifying the transition matrix—the complexity of the dynamics
—Ct = C(P(s′|s)),is itself small.(See Question 8.3.5 for the case of a complex
deterministic dynamics.)

a. Show that the more deterministic the chain is, the less information it
contains.

b. Show that for an observer at a longer time scale consisting of two time
steps (T = 2T0) the information is reduced. Hint: Use convexity of infor-
mation as described in Question 1.8.8, f (〈x〉) > 〈 f(x)〉, for the function
f (x) = −x log(x).

c. Show that the complexity does not decrease for a system that does not
allow 2-cycles.

Solution 8.3.4 When the complexity of the dynamics is small, then the
complexity of the Markov chain is given by:

C = C(s) + Ct + NTk ln(2)I(s′|s) (8.3.48)
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where the terms correspond to the information in the initial state of the sys-
tem,the information in the dynamics and the incremental information per
update needed to specify the next state. The relationship between this and
Eq.(8.3.47) should be apparent. This expression does not hold if Ct is large,
because ifit is larger than NT C(s),then the chain is more concisely described
by specifying each of the states of the system (see Question 8.3.5).

The proof of (a) follows from realizing that the more deterministic the
system is,the smaller is I(s′|s). This may be used to define how deterministic
the dynamics is.

To analy ze the com p l ex i ty of the Ma rkov chain for an ob s erver at ti m e
scale 2T0, we need to com bine su cce s s ive sys tem states into an unordered
pair—the en s em ble of s t a tes seen by the ob s erver. We use the notati on {s ′, s}
for a pair of s t a te s . Thu s , we are con s i dering a new Ma rkov chain of tra n s i-
ti ons bet ween unordered pairs . To analy ze this we need two prob a bi l i ti e s :t h e
prob a bi l i ty of a pair and the tra n s i ti on prob a bi l i ty from one pair to the nex t .
The latter is the new tra n s i ti on matri x . The prob a bi l i ty of a particular pair is:

(8.3.49)

where P(s) is the probability of a particular state of the system and the two
terms in the upper line correspond to the probability of starting from s1 to
make the pair, and starting from s 2 to make the pair. The transition matrix
for pairs is given by

(8.3.50)

which is valid only for s1 ≠ s 2 and for s ′1 ≠ s ′2 . Other cases are treated like
Eq.(8.3.49). Eq.(8.3.50) includes all four possible ways of generating the se-
quence of the two pairs. The normalization is needed because the transition
matrix is the probability of {s ′1 ≠ s ′2} occurring, assuming the pair {s1, s2} has
already occurred.

To show (b) we must prove that the process of combining the states into
pairs reduces the information necessary to describe the chain. This is appar-
ent since the observer loses the information about the state order within each
pair. To show it from the equations, we note from Eq.(8.3.49) that the prob-
ability of a particular pair is larger than or equal to the probability of each of
the two possible unordered pairs. Since the probabilities are larger, the in-
formation is smaller. Thus the information contained in the first pair is
smaller for T = 2 than for T = 1. We must show the same result for each suc-
cessive pair. The transition probability can be seen to be an average over two
terms in the round parenthesis. By convexity, the information in the average
is less than the average information of each term.Each of the terms is a sum

    

P({ ′ s 1, ′ s 2} |{s1 ,s2})= P( ′ s 1 | ′ s 2)P( ′ s 2 |s1)+ P( ′ s 2 | ′ s 1)P( ′ s 1 |s1)( )P(s1 |s2)P(s2)[
+ P( ′ s 1 | ′ s 2)P( ′ s 2 |s2) + P( ′ s 2 | ′ s 1)P( ′ s 1 |s2)( )P(s2 |s1)P(s1)]/P({s1 ,s2})

    
P({s1 ,s2}) =

P(s1 |s2)P(s2) + P(s2 |s1)P(s1) s2 ≠ s1

P(s1 |s1)P(s1) s2 = s1
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over the probabilities of two possible orderings, and is therefore larger than
or equal to the probability of either ordering. Thus,the information needed
to specify any pair in the chain is smaller than the corresponding informa-
tion in the chain of states.

Finally, to prove (c) we note that the less the order of states is lost when
we combine states into pairs, the more complexity is retained. If transitions
in the dynamics can only occur in one direction,then we can infer the order
and information is not lost. Thus, for T = 2 the complexity is retained if the
dynamics is not reversible—there are no 2-cycles. From the equations we see
that if only one of P(s1|s2) and P(s 2|s1) can be nonzero, and similarly for
P(s ′1|s ′2) and P(s ′2|s ′1), then only one term survives in Eq. (8.3.49) and
Eq. (8.3.50) and no averaging is performed. For arbitrary T the complexity
is the same as at T = 1 if the dynamics does not allow loops of size less than
or equal to T. ❚

Question 8.3.5 Calculate the maximum information that might in prin-
ciple be necessary to specify completely a deterministic dynamics of a

system whose complexity at any time is C(L). Contrast this with the maxi-
mum complexity of describing NT steps of this system.

Solution 8.3.5 The number of possible states of the system is 2C(L) /k ln(2).
Each of these must be assigned a successor by the dynamics. The maximum
possible information to specify the dynamics arises if there is no algorithm
that can specify the successor, so that each successor must be identified out
of all possible states. This would require 2C(L) /k ln(2)C(L) /k ln(2) bits.

The maximum com p l ex i ty of NT s teps is just NTC(L) , as long as this is
s m a ll er than the previous re su l t .Wh i ch is gen era lly a re a s on a ble assu m pti on . ❚

A simple example of chaotic behavior that is relevant to complex systems is that
of a mobile system—an animal or human being—where the motion is internally di-
rected.A description of the system behavior, even at a length scale larger than the sys-
tem itself, must describe this motion. However, the motion is determined by infor-
mation contained on a smaller length scale just prior to its occurrence. This satisfies
the formal requirements for chaotic behavior regardless of the specifics of the motion
involved. Stated differently, the large-scale motion would be changed by modifica-
tions of the internal state of the system. This is consistent with the sensitivity of
chaotic motion to smaller scale changes.

Another example of information t ransfer between different scales is related to
adaptability, which requires that information about the external environment be rep-
resented in the organism.This generally involves the transfer of information between
a larger scale and a smaller scale.Specifically, between observed phenomena and their
representation in the synapses of the nervous system.

When we describe a system at a particular moment of time,the complexity of the
system at its own scale or larger is zero—or a constant if we include the description of
the equilibrium system. However, when we consider the description of a system over
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time, then the complexity is larger due to the system motion. Increasing the scale of
observation continues to result in a progressive decrease in complexity. At a scale that
is larger than the system itself, it is the motion of the system as measured by its loca-
tion at successive time intervals that is to be described. As the scale becomes larger,
smaller scale motions are not observed,and a simpler description of motion is possi-
ble. The observer only notes changes in position that are larger than the scale of
observation.

A natural question that can be asked in this context is whether the motion of the
system is due to external influences or due to the system itself. For example,a particle
moving in a fluid may be displaced by the motion of the fluid. This should be con-
sidered different from a mobile bacteria. Similarly, a basketball in a game moves
through its trajectory not because of its own volition, but rather because of the voli-
tion of the players. How do we distinguish this from a system that moves due to its
own actions? More generally, we must ask how we must deal with the environmental
influences for a system that is not isolated. This question will be dealt with in Section
8.3.6 on behavioral complexity. Before we address this question,in the next section we
discuss several aspects of the complexity profile, including the relationship of the
complexity of the whole to the complexity of its parts.

8.3.5 Properties of complexity profiles of systems
and components

General properties We can readily understand some of the properties that we
would expect to find in complexity profiles of systems that are difficult to calculate di-
rectly. Fig. 8.3.2 illustrates the complexity profile for a few systems. The paragraphs
that follow describe some of their features.

For any system, the complexity at the smallest values of L, T is the microscopic
complexity—the amount of information necessary to describe a particular mi-
crostate. For an equilibrium state this is the same as the thermodynamic entropy,
which is the entropy of a system observed on an arbitrarily long time scale.This is not
true in general because short-range correlations decrease the microstate complexity,
but do not affect the apparent macroscopic entropy. We have thus also defined the en-
tropy profile S(L,T) as the amount of information necessary to determine an arbitrary
microstate consistent with the observed macrostate. From our discussion of noner-
godic systems in Section 8.3.1 we might also conclude that at any scale L, T the sum
of the complexity C(L ,T ) and the entropy S(L ,T ) of the system (the fast degrees of
freedom) should add up to the microscopic complexity or macroscopic entropy

C(0,0) ≈ S(∞,∞) ≈ C(L ,T ) + S(L ,T ) (8.3.51)

However, this is valid only under special circumstances—when the macroscopic state
is selected at random from the ensemble of macrostates,and the microstate is selected
at random from the possible microstates.A glass may satisfy this requirement; how-
ever, other complex systems need not.

For a typical system in equilibrium, as L,T is increased the system rapidly
becomes homogeneous in space and time. Specifically, the density of the system is
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uniform in space and time,aside from unobservable small fluctuations, once the scale
of observation is larger than either the correlation length or the correlation time of
the system. Indeed, this might be taken to be the definition of the correlation length
and time—the scale at which the microscopic information becomes irrelevant to the
properties of the system. Beyond the correlation length,the average behavior charac-
teristic of the macroscopic scale is all that remains,and the complexity profile is con-
stant at all length and time scales less than the size of the system.

We can con trast the com p l ex i ty profile of a therm odynamic sys tem with what we
ex pect from va rious com p l ex sys tem s . For a gl a s s , the com p l ex i ty profile is qu i te dif-
ferent in time and in space . A typical glass is uniform if L is larger than a micro s cop i c
correl a ti on len g t h . Thu s , the com p l ex i ty profile of the glass is similar to an equ i l i briu m
s ys tem as a functi on of L. However, it is different as a functi on of T. The frozen degree s
of f reedom that make it a non er godic sys tem at typical time scales of ob s erva ti on guar-
a n tee this.At typical va lues of T the tem poral en s em ble of the sys tem inclu des the state s
that are re ach ed by vi bra ti onal modes of the sys tem , but not the atomic re a rra n gem en t s
ch a racteri s tic of f luid moti on . Thu s , the atomic vi bra ti ons cannot be ob s erved except
at micro s copic va lues of T. However, a significant part of the micro s copic de s c ri pti on
remains nece s s a ry at lon ger time scales. Corre s pon d i n gly, a plateau in the com p l ex i ty
profile ex tends up to ch a racteri s tic time scales of human ob s erva ti on .At a tem pera tu re -
depen dent and mu ch lon ger time scale, the com p l ex i ty profile declines to its therm o-
dynamic limit. This time scale, the rel a x a ti on ti m e , is acce s s i ble near the glass tra n s i-
ti on tem pera tu re . For lower tem pera tu res it is not. Because the glass is uniform in space ,
the plateau should be rel a tively flat and end abru pt ly. This is because spatial uniform i ty
i n d i c a tes that the rel a x a ti on time is essen ti a lly a local property with a narrow distri b-
uti on . A more ex ten ded spatial coupling would give rise to a grading of the plateau and
a broadening of the time scale at wh i ch the plateau disappe a rs .
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Figure 8.3.2 Schematic plots of the complexity profile C(L,T) of four different systems.
C(L,T) is the amount of information necessary to describe the system ensemble as a function
of the length scale, L, and time scale, T, of observation. Top panel shows the time scale de-
pendence, bottom panel shows the length scale dependence. (1) An equilibrium system has
a complexity profile that is sharply peaked at T = 0 and L = 0. Once the length or time scale
is beyond the correlation length or correlation time respectively, the complexity is just the
macroscopic complexity associated with thermodynamic quantities (U,N,V ), which vanishes
on any reasonable scale. (2) For a glass the complexity profile as a function of time scale
C(0,T) decays rapidly at first due to averaging over atomic vibrations; it then reaches a
plateau that represents the frozen degrees of freedom. At much longer time scales the com-
plexity profile decays to its thermodynamic limit. Unlike C(0,T), C(L,0) of a glass decays like
a thermodynamic system because it is homogeneous in space. (3) A magnet at a second-or-
der phase transition has a complexity profile that follows power-law behavior in both length
and time scale. Stochastic fractals capture this kind of behavior. (4) A complex biological or-
ganism has a complexity profile that should follow similar behavior to that of a fractal.
However it has plateau-like regions that correspond to crossing the scale of internal compo-
nents, such as molecules and cells. ❚
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More gen era lly, for a com p l ex sys tem we ex pect that many para m eters wi ll be re-
qu i red to de s c ri be its properties at all length and time scales, at least up to some frac-
ti on of the spatial and tem poral scale of the sys tem itsel f .S t a rting from the micro s cop i c
com p l ex i ty, the com p l ex i ty profile should not be ex pected to fall smoo t h ly. In bi o l og-
ical or ga n i s m s , we can ex pect that as we increase the scale of ob s erva ti on ,t h ere wi ll be
p a rticular length scales at wh i ch details wi ll be lost. P l a teaus in the profile are rel a ted
to the ex i s ten ce of well - def i n ed levels of de s c ri pti on . For ex a m p l e , an iden ti f i a ble level
of cellular beh avi or would corre s pond to a plate a u ,because over a ra n ge of l ength scales
l a r ger than the cell , a full acco u n ting of cellular properti e s , but not of the internal be-
h avi or of the cell , must be given . Th ere are many cells that have a ch a racteri s tic size
and are immobi l e . However, because different cell pop u l a ti ons have different sizes and
s ome cells are mobi l e , the sharpness of the tra n s i ti on should be smoo t h ed . We can at
least qu a l i t a tively iden tify several different plate a u s .At the shortest time scale the atom i c
vi bra ti ons wi ll be avera ged out to end the first plate a u .L a r ger atomic moti ons or mol-
ecular beh avi or wi ll be avera ged out on a secon d ,l a r ger scale. The internal cellular be-
h avi or wi ll then be avera ged out . F i n a lly, the internal beh avi or of ti s sues and or ga n s
wi ll be avera ged out on a sti ll lon ger length and time scale. It is the degrees of f reedom
that remain rel evant on the lon gest length scale that are key to the com p l ex i ty of t h e
s ys tem . These degrees of f reedom manifest the con cept of em er gent co ll ective beh av-
i or. Ul ti m a tely, t h ey must be trace a ble back to the micro s copic degrees of f reedom .
De s c ri bing the con n ecti on bet ween the micro s copic para m eters and mac ro s cop i c a lly
rel evant para m eters has occ u p i ed our atten ti on in mu ch of this boo k .

Mathematical models that best capture the complexity profile of a complex sys-
tem are fractals (see Section 1.10). Mathematical fractals with no granularity (no
smallest length scale) have infinite complexity. However, if we define a smallest length
scale, corresponding to the atomic length scale of a physical system, and we define a
longest length scale that is the size of the system, then we can plot the spatial com-
plexity profile of a fractal-like system. There are two quite distinct kinds of mathe-
matical fractals, deterministic and stochastic fractals. The deterministic fractals are
specified by an algorithm with only a few parameters,and thus their algorithmic com-
plexity is small. Examples are the Kantor set or the Sierpinski gasket. The algorithm
describes how to create finer and finer scale detail. The only difficulty in specifying the
fractal is specifying the number of levels to which the algorithm should be iterated.
This information (the number of iterations) requires a parameter whose length grows
logarithmically with the ratio of the size of the system to the smallest length scale.
Thus, a deterministic fractal has a complexity profile that decreases logarithmically
with observation length scale L, but is very small on all length scales.

Stochastic fractals are qualitat ively different. In such fractals, there are random
choices made at every scale of the structure.Stochastic fractals can be based upon the
Kantor set or Sierpinski gasket, by including random choices in the algorithm. They
may also be systems representing the spatial structure of various stochastic processes.
Such a system requires information to describe its structure on every length scale. A
stochastic fractal is a member of an ensemble,and its algorithmic as well as ensemble
complexity will scale as a power law of the scale of observation L. As L increases, the
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amount of information is reduced, but there is no length scale smaller than the size of
the system at which it is completely lost. Time series that have fractal behavior—that
have power-law correlations—would also display a power-law dependence of their
complexity profile as a function of T. The simplest physical model that demonstrates
such fractal properties in space and time is an Ising model at its second-order transi-
tion point. At this transition there are fluctuations on all spatial and temporal scales
that have power-law behavior in both. Observers with larger values of L can see the
behavior of the correlations only on the longer length scales. A renormalization
treatment, discussed in Section 1.10, can give the value of the complexity profile.
These examples illustrate how microscopic information may become ir relevant on
larger length scales, while leaving collective information that remains relevant at the
longer scales.

The complexity profile enables us to consider again the definition of a complex
system. As we stated, it seems intuitive that a complex system is complex on many
scales. This strengthens the identification of the fractal model of space and time as a
central model for the understanding of complex systems. We have also gained an un-
derstanding of the difference between deterministic and stochastic fractal systems.We
see that the glass is complex in its temporal behavior, but not in its spatial behavior,
and therefore is only a partial example of a complex system. If we want to identify a
unique complexity of a system, there is a natural space and time scale at which to de-
fine it. For the spatial scale, Ls , we consider a significant fraction of the system—one-
tenth of its size. For the temporal scale, Ts , we consider the relaxation (autocorrela-
tion) time of the behavior on this same length scale. This is essential ly the maximal
complexity for this length scale, which would be the same as setting T = 0. However,
we could also take a natural time scale of Ts = Ls /vs where vs is a characteristic veloc-
ity of the system. This form makes the increase in time scale for larger length scales
(systems) apparent. Leaving out the time scale,since it is dependent on the space scale,
we can write the complexity of a system s as

Cs = Cs(Ls) = Cs(Ls ,Ls /vs) ≈ Cs(Ls ,0) (8.3.52)

In Section 1.10 we discussed generally the scaling of quantities as a function of
the precision to which we describe the system.One of the central questions in the field
of complex systems is understanding how complexity scales. This scaling is con-
cretized by the complexity profile.One of the objectives is to understand the ultimate
limits to complexity. Given a particular length or time scale, we ask what is the max-
imum possible complexity at that scale.One could say that this complexity is limited
by the thermodynamic entropy; however, there are further limitations. These limita-
tions are established by the nature of physical law that establishes the dynamics and
interactions of the components. Thus it is unlikely that atoms can be attached to each
other in such a way that the behavior of each atom is relevant to the spatiotemporal
behavior of an organism at the length and time scale relevant to a human being. The
details of behavior must be lost as we observe on longer length and time scales; this
results in a loss of complexity. The complexity scaling of complex organisms should
follow a line like that given in Fig. 8.3.2. The highest complexity of an organism results
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from the retention of the greatest significance of details. This is in contrast to ther-
modynamic systems, where all of the degrees of freedom average out on a very short
length and time scale. At this time we do not know what limits can be placed on the
rate of decrease of complexity with scale.

Components and systems As we discussed in Ch a pter 2, a com p l ex sys tem is form ed
o ut of a hiera rchy of i n terdepen dent su b s ys tem s . Thu s , rel evant to va rious qu e s ti on s
a bo ut the com p l ex i ty profile is an understanding of the com p l ex i ty that may arise wh en
we bring toget h er com p l ex sys tems to form a larger com p l ex sys tem . In gen eral it is not
clear that bri n ging toget h er many com p l ex sys tems must give rise to a co ll ective com-
p l ex sys tem . This was discussed in Ch a pter 6, wh ere one example was a flock of a n i-
m a l s . Here we can provi de ad d i ti onal meaning to this statem ent using the com p l ex i ty
prof i l e . We wi ll discuss the rel a ti onship of the com p l ex i ty of com pon ents to the com-
p l ex i ty of the sys tem they are part of . To be def i n i te , we can con s i der a flock of s h eep.
The example is ch o s en to expand our vi ew tow a rd more gen eral app l i c a ti on of t h e s e
i de a s . The gen eral statem ents we make app ly to any sys tem form ed out of su b s ys tem s .

Let us assume that we know the complexity of a sheep, Csheep(Lsheep), the amount
of information necessary to describe the relevant behaviors of eating, walking, repro-
ducing, flocking, etc.,at a length scale of about one-tenth the size of the sheep. For our
current purposes this might be a lot of information contained in a large number of
books, or a little information contained in a single paragraph of text.Later, in Section
8.4, we will obtain an estimate of the complexity as, of order, one book or 107 bits.

We now consider a flock of N sheep and construct a description of this flock. We
begin by taking information that describes each of the sheep. Combining these de-
scriptions, we have a description of the flock. This information is,however, highly re-
dundant. Much of the information that describes one sheep can also be used to de-
scribe other sheep. Of course there are differences in size and in behavior. However,
having described one sheep in detail we can describe the differences, or we can de-
scribe general characteristics of sheep and then specialize them for each of the indi-
vidual sheep. Using this strategy, a description of the flock will be shorter than the
sum of the lengths of the descriptions of each of the sheep. Still, this is not what we
really want. The description of the flock behavior has to be on its own length scale
Lflock , which is much larger than Lsheep . So we shift our observation of behavior to this
longer length scale and find that most of the details of the individual sheep behavior
have become irrelevant to the description of the flock. We describe the flock behavior
in terms of sheep density, grazing activity, migration, reproductive rates, etc. Thus we
write that:

Cflock = Cflock(Lflock) << Cflock(Lsheep) << NCsheep(Lsheep) = NCsheep (8.3.53)

where N is the numb er of sheep in the flock. Among other conclusions, we see that
the complexity of a flock may actually be smaller than the complexity of one sheep.

More generally, the relationship between the complexity of the collective com-
plex system and the complexity of component systems is crucially dependent on the
existence of coherence and correlations in the behavior of the components that can
arise either from common origins for the behavior or from interactions between the
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components. We first describe this qualitatively by considering the two inequalities in
Eq. (8.3.53). The second inequality arises because different sheep have the same be-
havior. In this case their behavior is coherent. The first inequality arises because we
change the scale of observation and so lose the behavior of an individual sheep. There
is a trade-off between these two inequalities. If the behaviors of the sheep are inde-
pendent,then their behavior cannot be observed on the longer scale.Specifically, the
movement of one sheep to the right is canceled by another sheep that starts at its right
and moves to the left. Thus, only correlated motions of many sheep can be observed
on a longer scale.On the other hand,if their behaviors are correlated,then the com-
plexity of describing all of them is much smaller than the sum of the separate com-
plexities. Thus, having a large collective complexity requires a balance between de-
pendence and independence of the behavior of the components.

We can discuss this more quantitatively by considering the example of the
nonuniform ideal gas. The loss of information for uncorrelated quantities due to
combining them together is described by Eq.(8.3.37). To construct a model where the
quantities are correlated, we consider placing the same densities in a region of scale
L1 > L 0. This is the same model as the previous one, but now on a length scale of L1.
The new value of is 1 = (L1/L0)

d. This increase of the standard deviation causes
an increase in the value of the complexity for all scales greater than L1. However, for
L < L1 the complexity is just the complexity at L1, since there is no structure below this
scale. A comparative plot is given in Fig. 8.3.3.

We can come closer to considering the behavior of a collection of animals by con-
sidering a model for their motion.We start with a scale L 0 just larger than the animal,
so that we do not describe its internal structure—we describe only its location at suc-
cessive intervals of time. The characteristic time over which a sheep moves a distance
L 0 is T0. We will use a model for sheep motion that can illustrate the effect of coher-
ence of many sheep, as well as the effect of coherent motion of an individual sheep
over time. To do this we assume that an individual sheep moves in a straight line for
a distance qL0 in a time qT0 before choosing a new direction to move in at random.
For simplicity we can assume that the direction chosen is one of the four compass di-
rections, though this is not necessary for the analysis. We will use this model to cal-
culate the complexity profile of an individual sheep. Our treatment only describes the
leading behavior of the complexity profile and not various corrections.

For L = L0 and T = T0, the complexity of describing the motion is exactly 2 bits
for every q steps to determine which of the four possible directions the sheep will
move next. Because the movement is in a straight line, and the changes in direction
are at well-defined intervals, we can reconstruct the motion from the measurements
of any observer with L < qL 0 and T < qT0. Thus the complexity is:

C(L ,T ) = 2NT /q L < qL0, T < qT0 (8.3.54)

Once the scale of observation is greater than qL0, the observer does not see every
change in direction. The sheep is moving in a random walk where each step has a
length qL0 and takes a time qT0, but the observer does not see each step. The distance
traveled is proportional to the square root of the time,and so the sheep moves a dis-
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tance L once in every ( 0 /L)2 steps, where 0 = qL 0 is the standard deviation of the
random walk in each dimension. Every time the sheep travels a distance L we need 2
bits to describe its motion, and thus we have a complexity:

(8.3.55)

We note that at L = qL0 Eq. (8.3.54) and Eq. (8.3.55) are equal.
To obtain the complexity profile for long times scales T > qT0, but short length

scales L < qL0, we use a simplified “blob” picture to combine the successive positions
of the sheep into an ensemble of positions. For T only a few times qT0 we can expect
that the ensemble would enable us to reconstruct the motion—the complexity is the
same as Eq.(8.3.54). However, eventually the ensemble of positions will overlap and
form a blob. At this point the movement of the sheep will be described by the move-
ment of the blob, which itself undergoes a random walk. The standard deviation of
this random walk is proportional to the square root of the number of steps:

    T <qT0    L > qL0,

    
C(L,T) = 2

NT

q
0
2

L2
= 2NT

qL0
2

L2
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Figure 8.3.3 Plot of the complexity of a nonuniform gas (Eq. (8.3.37)), for two cases. The
first (1) has a correlation in its nonuniformity at a scale L0 and the second (2) at a scale
L1 > L0. The magnitude of the local deviations in the density are the same in the two cases.
The second case has a lower complexity at smaller scales but a higher complexity at the larger
scales. Because the complexity decreases rapidly with scale, to show the effects on a linear
scale L1 was taken to be only 

3
√10L0, and the horizontal axis is in units of L3 measured in units

of L3
0. Eq (8.3.39) would give similar results but the complexity would decay still more rapidly. ❚
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= 0√T/qT0. Since this is larger than L, the amount of information is essentially that
of selecting a value from a Gaussian distribution of this standard deviation:

L < , T > qT0 (8.3.56)

There are a few points to be made about this expression. First, we use the minimum
of two values to select the crossover point between the behavior in Eq. (8.3.54) and
the blob behavior. As we mentioned above, the blob behavior only occurs for T sig-
nificantly greater than qT0. The simplest way to identify the crossover point is when
the new estimate of the complexity becomes lower than our previous value. The sec-
ond point is that we have chosen to adjust the constant term added to the logarithm
so that when L = the complexity matches that given by Eq.(8.3.55), which describes
the behavior when L becomes large. Thus the limit on Eq.(8.3.55) should be general-
ized to L > . This minor adjustment enables the complexity to be continuous despite
our rough approximations, and does not change any of the conclusions.

We can see from our results (Fig. 8.3.4) how varying q affects the complexity.
Increasing q decreases the complexity at the scale of a sheep, C(L,T) ∝ 1/q in
Eq. (8.3.54). However, it increases the complexity at longer scales C(L,T) ∝ q in
Eq.(8.3.55). This is a straightforward consequence of increasing the coherence of the
motion over time. We also see that the complexity at long times decays inversely pro-
portional to the time but is relatively insensitive to q. The value of q primarily affects
the crossover point to the long time behavior.

We now use two different assumptions to calculate the complexity of the flock. If
the movement of all of the sheep is coherent, then the complexity of the flock for
length scales greater than the size of the flock is the same as the complexity of a sheep
for the same length scales. This is apparent because describing the movement of a sin-
gle sheep is the same as describing the entire flock. We now see the significance of in-
creasing q. Increasing q increases the flock complexity until qL0 reaches L1, where L1

is the size of the flock. Thus we can increase the complexity of the whole at the cost of
reducing the complexity of the components.

If the movement of sheep are independent of each other, then the flock displace-
ments—the displacements of its center of mass—are of characteristic size /√N (see
Eq.5.2.21). We might be concerned that the flock will disperse. However, as in our dis-
cussions of polymers in Section 5.2, interactions that would keep the sheep together
need not affect the motion of their center of mass. We could also introduce into our
model a circular reflecting boundary (a moving pen) around the flock, with its cen-
ter at the center of mass. Since the motion of the sheep with this boundary does not
require additional information over that without it,the complexity is the same. In ei-
ther case, the complexity of flock motion (L > L1) is obtained as:

(8.3.57)  L >
    
C(L,T) = 2NT

qL0
2

NL2

    

C(L,T) = 2
NT

q
min(1,

qT0

T
(1 + log(

L
))

= 2
NT

q
min(1,

qT0

T
(1 + log(

L0

L

qT

T0
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This is valid for all L if is less than L1. If we choose T to be very large, Eq. (8.3.56)
applies, with replaced by /√N. We see that when the motion of sheep are indepen-
dent,the flock complexity is much lower than before—it decreases inversely with the
number of sheep when L > . Even in this case, however, increasing q increases the
flock complexity. Thus coherence in the behavior of a single sheep in time, or coher-
ence between different sheep, increases the complexity of the flock. However, the
maximum complexity of the flock is just that of an individual sheep, and this arises
only for coherent behavior when all movements are visible on the scale of the flock.
Any movements of an individual sheep that are smaller than the scale of the flock dis-
appear on the scale of the flock. Thus even for coherent motion, in general the flock
complexity is smaller than the complexity of a sheep.

This example illustrates the effect of coherent behavior. However, we see that
even with coherent motion the complexity of a flock at its scale cannot be larger than
the complexity of the sheep at its own scale. This is a problem for us, because our
study of complex systems is focused upon systems whose complexity is larger than
their components. Without this possibility, there would be no complex systems. To
obtain a higher complexity of the whole we must modify this model. We must assume

750 Hu man  C i v i l i z a t i on  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 750
Title: Dynamics Complex Systems Short / Normal / Long

C(L)

L50 100 150 200

0.2

0.4

0.6

0.8

1

q=50;T=1

q=50;T=500

q=100;T=1

q=100;T=500

Figure 8.3.4 The complexity profile is plotted for a model of the movement of sheep as part
of a flock. Increasing the distance a sheep moves in a straight line (coherence of motion in
time), q, decreases the complexity at small length scales and increases the complexity at large
length scales. Solid lines and dashed lines show the complexity profile as a function of length
scale for a time scale T = 1 and T = 500 respectively. ❚
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more generally that the motion of a sheep is describable using a set of patterns of be-
havior. Coherent motion of sheep still lead to a similar (or lower) complexity. To in-
crease the complexity, the motion o f the flock must have more complex patterns of
motion. In order to achieve such patterns, the motions of the individual sheep must
be neither independent nor coherent—they must be correlated motions that com-
bine patterns of sheep motion into the more complex patterns of flock motion. This
is possible only if there are interactions between them, which have not been included
here. It should now be clear that the objective of learning how the complexity of a sys-
tem is related to the complexity of its components is central to our study of complex
systems.

Question 8.3.6 Throughout much of this book our working definition
of complex systems or complex organisms as articulated in Section 1.3

and developed further in Chapter 2 was that a complex system has a behav-
ior that is dependent on all of its parts. In particular, that it is impossible to
take part of a complex organism away without affecting the behavior of the
whole and behavior of the part. How is this definition related to the defini-
tion of complexity articulated in this section?

Solution 8.3.6 Our quantitative concept of complexity is a measure of the
information necessary to describe the system behavior on its own length
scale. If the system behavior is complex,then it must require many parame-
ters to describe. These parameters are related to the description of the sys-
tem on a smaller length scale, where the parts of the system are manifest be-
cause we can distinguish the description of one part from another. To do
this we limit PL, T(n(x ,t)) to the domain of the part. The behavior of a sys-
tem is thus related to the behavior of the parts. The more these are relevant
to the system behavior, the greater is the system complexity. The informa-
tion that describes the system behavior must be relevant on every smaller
length scale. Thus, we have a direct relationship between the definition of a
complex system in terms of parts and the definition in terms of informa-
tion. Ultimately, the information necessary to describe the system behavior
is determined by the microscopic description of atomic positions and mo-
tions. The more complex a system is, the more its behavior depends on
smaller scale components. ❚

Question 8.3.7 When we defined interdependence we did not consider
the dependence of an animal on air as a relevant example. Explain.

Solution 8.3.7 We can now recognize that the use of information as a
characterization of behavior enables us to distinguish various forms of de-
pendency. In particular, we see that the dependence of an animal on air is
simple, since the necessary properties of air are simple to describe. Thus,
the degree of interdependence of two systems should be measured as the
amount of information necessary to replace one in the description of the
other. ❚
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8.3.6 Behavioral complexity
Our ability to describe a system arises from measurements or observations of its be-
havior. The use of system descriptions to define system complexity does not directly
take this into account. The complexity profile brought us closer by acknowledging the
observer in the space and time scale of the description. By acknowledging the scale of
observation, we obtained a mechanism for distinguishing complex systems from
equilibrium systems,and a systematic method for characterizing the complexity of a
system. There is another approach to reaching the complexity profile that incorpo-
rates the observer and system relationship in a more satisfactory manner. It also en-
ables us to consider directly the interaction of the system with its environment, which
was not included previously. To introduce the new approach, we return to the under-
pinning of descriptive complexity and present the concept of behavioral complexity.

In Shannon’s approach to the study of information in communication systems,
there were two quantities of fundamental interest. The first was the information con-
tent of an individual message, and the second was the average information provided
by a particular source. The discussion of algorithmic complexity was based on a con-
sideration of the information provided by a particular message—specifically, how
much it could be compressed. This carried over into our discussion of physical sys-
tems when we introduced the microscopic complexity of a system as the information
contained in a particular microscopic realization of the system. When all messages,or
all system states, have the same probability, then the information in the particular
message is the same as the average information, and we can write:

(8.3.58)

The expression on the right, however, has a different purpose. It is a quantity that
characterizes the ensemble rather than the individual microstate. It is a characteriza-
tion of the source rather than of any particular message.

We can pursue this line of reasoning by considering more carefully how we might
characterize the source of the information, rather than the messages.One way to char-
acterize the source is to determine the average amount of information in a message.
However, if we want to describe the source to someone, the most essential informa-
tion is to give a description of the kinds of messages that will be received—the en-
semble of possible messages. Thus to characterize the source we need a description of
the probability of each kind of message. How much information do we need to de-
scribe these probabilities? We call this the behavioral complexity of the source.

A few examples in the context of a source of messages will serve to illustrate this
concept. Any description of a source must assume a language that is to be used. We
assume that the language consists of a list of characters or messages that can be re-
ceived from the source, along with their probabilities.A delimiter (:) is used to sepa-
rate the messages from their probability. For convenience, we will write probabilities
in decimal notation. A second delimiter (,) is used to separate different members of
the list.A source that gives zeros and ones at random with equal probability would be
described by {1:0.5,0:0.5}. It is convenient to include the length of a message in our

    

I({x, p}|(U ,N ,V )) = −logP({x, p}) = − P({x, p})
{x,p}

∑ log(P({x, p}))
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description of the source. Thus we might describe a source with length N = 1000 char-
acter messages, each character zero and one with equal probability, as: {1000(1:0.5,
0:0.5)}. The message complexity of this source would be given by N, the length of a
message. However, the behavioral complexity is given by (in this language): two dec-
imal digits,two characters (1, 0),the number representing N (requiring log(N) char-
acters) and several delimiters. We could also specify an ASCII language source by a
table of this kind that would consist of 256 elements and the probabilities of their oc-
currence in some database. We see that the behavioral complexity is quite distinct
from the complexity of the messages provided by a source. In particular in the above
example it can be larger, if N = 1, or it can be much smaller, if N is large.

This definition of the behavioral complexity of a source runs into a minor prob-
lem, because the probabilities are real numbers and would generally require arbitrary
numbers of digits to describe. To overcome this problem,there must be a convention
assumed about the limit of precision that is desired in describing the source. In prin-
ciple,this precision is related to the number of messages that might be received. This
convention could be part of the language, or could be defined by the specification it-
self. The description of the source can also be compressed using the principles of al-
gorithmic complexity.

As we found above,the behavioral complexity can be much smaller than the in-
formation complexity of a particular message—if the source provides many random
digits, the complexity of the message is high but the complexity of the source is low
because we can characterize it simply as a source of random numbers. However, if the
probability of each message must be independently specified, the behavioral com-
plexity of a source is much larger than the information content of a particular mes-
sage. If a particular message requires N bits of information,then the number of pos-
sible messages is 2N. Listing all of the possible messages requires N 2N bits, and
specifying each probability with Q bits would give us a total of (N + Q)2N bits to de-
scribe the source. This could be reduced if the messages are placed in an agreed-upon
order; then the number of bits is Q2N. This is still exponentially larger than the infor-
mation in a particular message. Thus, the complexity of an arbitrary source of mes-
sages of a particular length is much larger than the complexity of the messages it sends.

We are interested in the behavioral complexity when our objective is to use the
messages that we receive to understand the source, rather than to make use of the in-
formation itself. Behavioral complexity becomes particularly useful when it is smaller
than the complexity of a message, because it enables us to anticipate or predict the be-
havior of the source.

We now apply these thoughts about the source as the system of interest, rather
than the message as the system of interest, to a discussion of the properties of physi-
cal systems. To make the connection between source and system, we consider an ob-
server of a physical system who performs a number of measurements. We might
imagine the measurements to consist of subjecting the system to light at various fre-
quencies and measuring their scattering and reflection (looking at the system), ob-
servations of animals in the wild or in captivity, or physical probes of the system. We
consider each measurement to be a message from the system to the observer.We must,
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however, take note that any measurement consists of two parts,the conditions or en-
vironment in which the observation was performed and the behavior of the system
under these conditions. We write any observation as a pair (e,a), where e represents
the environment and a represents a measurement of system properties (action) un-
der the circumstances of the environment e. The observer, after performing a number
of measurements, writes a description of the observations. This description charac-
terizes the system. It captures the properties of the list of measurements, rather than
of one particular measurement. It may or may not explicitly contain the information
of each measurement. Alternatively, it may assign probabilities to a particular mea-
surement. We would like to define the behavioral complexity as the amount of infor-
mation contained in the observer’s description. However, we must be careful how we
do this because of the presence of the environmental description e.

In order to clarify this point, and to make contact between behavioral complex-
ity and our previous discussion of descriptive complexity, we first consider the phys-
ical system of interest to be essentially isolated. Then the environmental description
is irrelevant, and an observation consists only of the system measurement a. The list
of measurements is the set {a}. In this case it is relatively easy to see that the behav-
ioral complexity of a physical system is its descriptive complexity—the set of all mea-
surements characterizes completely the state of the system.

If the entire set of measurements is performed at a single instant, and has arbi-
trary precision, then the behavioral complexity is the microstate complexity of the
system. The result of any measurement can be obtained from a description of the mi-
crostate, and the set of possible measurements determines the microstate.

For a set of measurements performed over time on an equilibrium system, the
behavioral complexity is the ensemble complexity—the number of parameters nec-
essary to specify its ensemble. A particular message is a measurement of the system
properties, which in principle might be detailed enough to determine the instanta-
neous positions and momenta of all of the particles. However, the list of measure-
ments is determined by the ensemble of states the system might have. As in
Section 8.3.1, we conclude that the complexity of an equilibrium system is the com-
plexity of describing its ensemble—specifying (U,N,V ) and other parameters like
magnetization that result from the breaking of ergodicity. For a glass, the ensemble
information is the information in the frozen coordinates previously defined as the
complexity. More generally, for a set of measurements performed over an interval of
time T—or at one instant but with time determination error T—and with spatial po-
sition determination errors given by L, we recover the complexity profile.

We now return to consider a system that is not isolated but subject to an envi-
ronmental influence so that an observation consists of the pair (e,a) (Fig. 8.3.5). The
complexity of describing such messages also contains the complexity of the environ-
ment e. Does this mean that our system description must include its environment and
that the complexity of the system is dependent on the complexity of the environment?
Complex systems or simple systems interact and respond to the environment in
which they are found. Since the system response a is dependent on the environment
e, there is no doubt that the complexity of a is dependent on the complexity of e. Three
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examples illustrate how the environmental influence is important. The tail o f a dog
has a particular motion that can be described, and the complexity can be character-
ized. However, we may want to attribute much of this complexity to the rest of the dog
rather than to the tail. Similarly, the motion of a particle suspended in a liquid follows
Brownian motion, the description of which might be better attributed to the liquid
than to the particle. Clearer yet is the example of the behavior of a basketball during
a basketball game. These examples generalize to the consideration of any system, be-
cause measuring the properties of a system in an environment may cause us to be
measuring the influence of the environment, rather than the system. The observer
must describe the system behavior as a response to a particular environment, rather
than just the behavior itself. Thus, we do not characterize the system by a list of ac-
tions {a} but rather by the list of pairs {(e,a)} where our concern is to describe f the
functional mapping a = f (e) from the environment e to the response a. Once we real-
ize this, we can again affirm that a full microscopic description of the physical system
is enough to give all system responses. The point is that the complexity of a system
should not include the complexity of the influence upon it, but just the complexity of
its response. This response is a property of the system and is determined by a com-
plete microscopic description. Conversely, a full description of behavior subject to all
possible environments would require complete microscopic information.

However, within a range of environments and with a desired degree of precision
(spatial and temporal scale) it is possible to provide less information and still describe
the behavior. We consider the ensemble of messages (measurements) to have possible
times of observation over a range of times given by T and errors in position determi-
nation L. Describing the ensemble of responses g ives us the behavioral complexity
profile Cb(L,T ).

When the influence of the environment is not important, C(L,T ) and Cb(L,T )
are the same. When the environment matters,it is also important to characterize the
information that is relevant about the environment. This is related to the problem of
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prediction, because predicting the system behavior in the future requires information
about the environment. As we have defined it,the descriptive complexity is the infor-
mation necessary to predict the behavior of the system over the time interval t2 − t1.
We can characterize the environmental influence by generalizing Eq. (8.3.47) to in-
clude a term that describes the rate of information transfer from the environment to
the system:

(8.3.59)

where Ce(L)/k ln(2) is the information about the environment necessary to predict the
state of the system at the next time step, and Cb(L) is the behavioral complexity at one
time interval. Because the system itself is finite,the amount of information about the
universe that is relevant to the system behavior in any interval of time must also be fi-
nite. We note that because the system affects the environment, which then affects the
system, Eq.(8.3.59) as written may count information more than once.Thus,this ex-
pression as written is an upper bound on the complexity. We noted this point also
with respect to the Lyaponov exponents after Eq. (8.3.47).

This use of behavior/response rather than a description to characterize a system
is related to the use of response functions in physics, or input/output relationships to
describe artificial systems. The response function can (in principle) be completely de-
rived from the microscopic description of a system. It is more directly relevant to the
system behavior in response to environmental influences, and thus is essential for di-
rect comparison with experimental results.

Behavioral complexity suggests that we should consider the system behavior as
represented by a function a = f (e). The input to the function is a description of the
environment; the output is the response or action. There is a difficulty with this ap-
proach in that the complexity of functions is generically much larger than that of the
system itself. From the discussion in Section 8.2.3 we know that the description of a
function would require an amount of information given by Cf = Ca2Ce, where Ce is the
environmental complexity, and Ca is the complexity of the action. Because the envi-
ronmental influence leads to an exponentially large complexity, it is clear that often
the most compact description of the system behavior will give its structure rather
than its response to all inputs. Then, in principle, the response can be derived from
the structure. This also implies that the behavior of physical systems under different
environments cannot be independent. We note that these conclusions must also ap-
ply to human beings as complex systems that respond to their environment (see
Question 8.3.8).

Question 8.3.8 Discuss the following statements with respect to human
beings as complex systems: “The most compact description of the sys-

tem behavior will give its structure rather than its response to all inputs,” and
“This implies that the behavior of physical systems under different environ-
ments cannot be independent.”

    

C(L,T) = Cb(L,T)+ NTCe (L,T)

Cb(L ,T ) = Cb(L) +C t(L ,T )+ NTk hi
i:hi >0
∑
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Solution 8.3.8 The first statem ent is rel evant to the discussion of beh avi or-
ism as an approach to psych o l ogy (see Secti on 3.2.8). It says that the idea of
de s c ri bing human beh avi or by cataloging re acti ons to envi ron m ental sti mu l i
is ulti m a tely an inef f i c i ent approach . It is more ef fective to use su ch measu re-
m ents to con s tru ct a model for the internal functi oning of the indivi dual and
use this model to de s c ri be the measu red re s pon s e s . The model de s c ri pti on is
mu ch more concise than the de s c ri pti on of a ll po s s i ble re s pon s e s .

Moreover, from the second statement we know that the model can de-
scribe the responses to circumstances that have not been measured. This also
means that the use of such models may be effective in predicting the behav-
ior of an individual.Specifically, that reactions of a human being are not in-
dependent of past reactions to other circumstances. A model that incorpo-
rates the previous behaviors may have some ability to predict the behavior
to new circumstances. This is part of what we do when we interact with other
individuals—we construct models that represent their behavior and then
anticipate how they will react to new circumstances.

The coupling between the reaction of a human being under one cir-
cumstance to the reaction under a different circumstance is also relevant to
our understanding of human limitations. Optimizing the response through
adaptation to a set of environments according to some goal is a process that
is limited in its effectiveness due to the coupling between responses to dif-
ferent circumstances. An individual who is eff ective in some circumstances
may have qualities that lead to ineffective behavior under other circum-
stances. We will discuss this in Chapter 9 in the context of considering the
specialization of human beings in society. This point is also applicable more
generally to living organisms and their ability to consume resources and
avoid predators as discussed in Chapter 6. Increasing complexity enables an
organism to be more effective, but the effectiveness under a variety of cir-
cumstances is limited by the interdependence of responses. This is relevant
to the observation that living organisms generally consume limited types of
resources and live in particular ecological niches. ❚

8.3.7 The observer and recognition
The explicit existence of an observer in the definition of behavioral complexity en-
ables us to further consider the role of the observer in the definition of complexity.
What assumptions have we made about the properties of the observer? One of the as-
sumptions that we have made is that the observer is more complex than the system.
What happens if the complexity of the system is greater than the complexity of the
observer? The complexity of an observer is the number of bits that may be used to de-
scribe the observer. If the observer is described by fewer bits than are needed to de-
scribe the system, then the observer will be unable to contain the description of the
system that is being observed. In this case,the observer will construct a description of
the system that is simpler than the system actually is. There are several possible ways
that the observer may simplify the description of the system. One is to reject the
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observation of all but a few kinds of messages. The other is to artificially limit the
length of messages described. A third is to treat complex variability of the source as
random—described by simple probabilities. These simplifications are often done in
our modeling of physical systems.

An inherent problem in discussing behavioral complexity using environmental
influence is that it is never possible to guarantee that the behavior of a system has been
fully characterized. For example, a rock can be described as “just sitting there,” if we
want to describe the complexity of its motion under different environments. Of
course the nature of the environment could be changed so that other behaviors will
be realized. We may, for example,discover that the rock is actually a camouflaged an-
imal. This is an inherent problem in behavioral complexity: it is never possible to
characterize with certainty the complexity of a system under circumstances that have
not been measured. All such conclusions are extrapolations. Performing such extrap-
olations is an essential part of the use of the description of a system. This is a general
problem that applies to quantitative scientific modeling as well as the use of experi-
ence in general.

Finally, we describe the relevance of recognition to complexity. The first
comment is related to the recognition of sets of numbers introduced briefly in
Section 8.2.3. We introduced there the concept of recognition complexity of a set that
relies upon a recognizer (a special kind of TM called a predicate that gives a single bit
output) that can identify the system under discussion. Specifically, when presented
with the system it says, “This is it,” and when presented with any other system it says,
“This is not it.” We define the complexity of a system (or set of systems) as the com-
plexity of the simplest recognizer of the system (or set of systems). There are some in-
teresting features of this definition.First we realize that this definition is well suited to
describing classes of systems. A description or model of a class of systems must iden-
tify common attributes rather than specific behaviors.A second interesting feature is
that the complexity of the recognizer depends on the possible universe of systems that
it can be presented with. For example,the complexity of recognizing cows depends on
whether we allow ourselves to present the recognizer with all domestic animals, all
known biological organisms on earth, all potentially viable biological organisms, or
all possible systems. Naturally, this is an important issue in the field of pattern recog-
nition, where the complexity of designing a system to recognize a particular pattern
is strongly dependent on the universe of possibilities within which the pattern must
be recognized. We will return to this point later when we consider the properties of
human language in Section 8.4.1.

A different form of complexity related to recognition may be abstracted from the
Turing test of artificial intelligence. This test suggests that we will achieve an artificial
representation of intelligence when it becomes impossible to determine whether we
are interacting with an artificial or actual human being. We can assume that Turing
had in mind only a limited type of interaction between the observer “we” and the sys-
tems being observed—either the real or artificial representation of a human being.
This test, which relies upon an observer to recognize the system, can serve as the ba-
sis for an additional definition of complexity. We determine the minimal possible
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complexity of a model (simulated representation) of the system which would be rec-
ognized by a particular observer under particular circumstances as the system. The
complexity of this model we call the substitution complexity. The sensitivity of this
definition to the nature of the observer and the conditions of the observation is man-
ifest. In some ways this definition,however, is implicit in all of our earlier definitions.
In all cases, the complexity measures the length of a representation of the system.
Ultimately we must determine whether a particular representation of the system is
faithful. The “we” in the previous sentence is some observer that must recognize the
system behavior in the constructed representation.

We conclude this section by reviewing some of the main concepts that were in-
troduced. We noted the sensitivity of complexity to the spatial and temporal scale rel-
evant to the description or response. The complexity profile formally takes this into
account. If necessary, we can define the unique complexity of a system to be its com-
plexity profile evaluated at its own scale.A more complete characterization of the sys-
tem uses the entire complexity profile. We found that the mathematical models most
closely associated with complexity—chaos and fractals—were both relevant. The for-
mer described the influence of microscopic information over time. The latter de-
scribed the gradual rather than rapid loss of information with spatial and temporal
scale. We also reconciled the notion of information as a measure of system complex-
ity with the notion of complex systems as composed out of interdependent parts.Our
next objective is to concretize this discussion further by estimating the complexity of
particular systems.

Complexity Estimation

There are various difficulties associated with obtaining specific values for the com-
plexity of a particular system. There are both fundamental and practical problems.
Fundamental problems such as the difficulty in determining whether a representation
is maximally compressed are important. However, before this is an issue we must first
obtain a representation.

One approach to obtaining the complexity of a system is to construct a repre-
sentation. The explicit representation should then be used to make a simulation to
show that the system behavior is reproduced. If it is,then we know that the length of
the representation is an upper bound on the complexity of the system. We can hope,
however, that it will not be necessary to obtain explicit representations in order to es-
timate complexities. The objective of this section is to discuss various methods for es-
timating the complexity of systems with which we are familiar. These approaches
make use of representations that we cannot simulate, however, they do have recog-
nizable relationships to the system.

Measuring complexity is an experimental problem. The only reason that we are
able to discuss the complexity of various systems is that we have already made many
measurements of the properties of various systems. We can make use of the existing
information to construct estimates of their complexity. A specific estimation method
is not necessarily useful for all systems.

8.4
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Our objective in this section is limited to obtaining “ballpark” estimates of the
complexity of systems. This means that our errors will be in the exponent rather
than in the number itself. We would be very happy to have an estimate of complexity
such as 103±1 or 107±2. When appropriate, we keep track of half-decades using factors
of three, such as in 3 × 104. These rough estimates will give us a first impression of
the degree of complexity of many of the systems we would like to understand. It
would tell us how difficult (very roughly) they are to describe. We will discuss three
methods—(1) use of intuition and human language descriptions, (2) use of a nat-
ural representation tied to the system existence, where the principle example is the
genome of living organisms, and (3) use of component counting. Each of these
methods has flaws that will limit our confidence in the resulting estimates. However,
since we are trying to find rough estimates, we can still take advantage of them.
Consistency of different methods will give us some confidence in our estimates of
complexity.

While we will discuss the complexity of various systems,our focus will be on de-
termining the complexity of a human being. Our final estimate,1010±2 bits will be ob-
tained by combining the results of different estimation techniques in the following
sections. The implications of obtaining an estimate of human complexity will be dis-
cussed in Section 8.4.4. We start,however, by noting that the complexity of a human
being can be bounded by the physical entropy of the collection of atoms from which
he or she is formed. This is roughly the entropy of a similar weight of water, about 1031

bits. This is the value of S /k ln2. As usual, we have assumed that there is nothing as-
sociated with a human being except the material of which he or she is formed, and
that this material is described by known physical law. This entropy is an upper bound
to the information necessary to specify the complete human being. The meaning of
this number is that if we take away the person and we replace all of the atoms accord-
ing to a specification of 1031 bits of information, we have replaced microscopically
each atom where it was. According to our understanding of physical law, there can be
no discernible difference. We will discuss the implications for artificial intelligence in
Section 8.4.4, where we consider whether a computer could simulate the dynamics of
atoms in order to simulate the behavior of the human being.

The entropy of a human being is much larger than the complexity estimate we
are after, because we are interested in the complexity at a relevant spatial and tempo-
ral scale. In general we consider the complexity of a system at the natural scale defined
in Section 8.3.5, one-tenth the size of the system itself,and the relaxation time of the
behavior on this same length scale. We could also define the complexity by the ob-
server. For example,the maximum visual sensitivity of a human being is about 1/100
of a second and 0.1 mm. For either case, observing only at this spatial and temporal
scale decreases dramatically the relevance of the microscopic description. The reduc-
tion in information is hard to estimate directly. To estimate the relevant complexity,
we must consider other techniques. However, since most of the information in the en-
tropy is needed to describe the position of molecules of water undergoing vibrations,
we can guess that the complexity is significantly smaller than the entropy.
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8.4.1 Human intuition—language and complexity
The first method for estimation of complexity—the use of human intuition and lan-
guage—is the least controlled/scientific method of obtaining an estimate of the com-
plexity of a system. This approach,in its most basic form,is precisely what was asked
in Question 8.2.1. We ask someone what they believe the complexity of the system is.
It is assumed that the person we ask is somewhat knowledgeable about the system and
also about the problem of describing systems. Even though it appears highly arbitrary,
we should not dismiss this approach too readily because human beings are designed
to understand complex systems. It could be argued that much of our development is
directed toward enabling us to construct predictive models of various parts of the en-
vironment in which we live. The complexity of a system is directly related to the
amount of study we need in order to master or predict the behavior of a system. It is
not accidental that this is the fundamental objective of science—behavior prediction.
We are quite used to using the word “complexity”in a qualitative manner and even in
a comparative fashion—this is more complex or less complex than something else.
What is missing is the quantitative definition. In order for someone to give a quanti-
tative estimate of the complexity of a system,it is necessary to provide a definition of
complexity that can be readily understood.

One useful and intuitive definition of complexity is the amount of information
necessary to describe the behavior of a system. The information can be quantified in
terms of representations people are familiar with—the amount of text/the number of
pages /the number of books. This can be sufficient to cause a person to build a rough
mental model of the system description, which is much more sophisticated than
many explicit representations that might be constructed. There is an inherent limita-
tion in this approach mentioned more generally above—a human being cannot di-
rectly estimate the complexity of an organism of similar or greater complexity than a
human being. In particular, we cannot use this approach directly to estimate the com-
plexity of human beings. Thus we will focus on simpler animals first. For example,we
could ask the question in the following way: How much text is necessary to describe
the behavior of a frog? We might emphasize for clarification that we are not interested
in comparative frogology, or molecular frogology. We are just interested in a descrip-
tion of the behavior of a frog.

To gain additional confidence in this approach, we may go to the library and find
descriptions that are provided in books. Superficially, we find that there are entire
books devoted to a particular type of insect (mosquito, ant, butterfly), as there are
books devoted to the tiger or the ape. However, there is a qualitative difference be-
tween these books. The books on insects are devoted to comparative descriptions,
where various types of, e.g., mosquitoes, from around the world, their physiology,
and/or their evolutionary history are described. Tens to hundreds of types are com-
pared in a single book. Exceptional behaviors or examples are highlighted. The
amount of text devoted to the behavior of a par ticular t ype of mosquito could be
readily contained in less than a single chapter. On the other hand,a book devoted to
tigers may describe only behavior (e.g., not physiology), and one devoted to apes
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would describe only a particular individual in a manner that is limited to only part of
its behaviors.

Does the difference in texts describing insects and tigers reflect the social priori-
ties of human beings? This appears to be difficult to support. The mosquito is much
more relevant to the well-being of human beings than the tiger. Mosquitoes are eas-
ier to study in captivity and are more readily available in the wild.There are films that
enable us to observe the mosquito behavior at its own scale rather than at our usual
larger scale. Despite such films,there is no book-length description of the behavior of
a mosquito. This is true despite the importance of knowledge of its behavior to pre-
vention of various diseases. Even if there is some degree of subjectivity to the com-
plexity estimates obtained from the lengths of descriptions found in books,the use of
existing books is a reasonable first attempt to obtain complexity estimates from the
information that has been compiled by human beings. We can also argue that when
there is greater experience with complexity and complexity estimation,our ability to
use intuition or existing texts will improve and become important tools in complex-
ity estimation.

Before applying this methodology, however, we should understand more care-
fully the basic relationship of language to complexity. We have already discussed in
Section 1.8 the information in a string of English characters.A first estimate of 4.8 bits
per character could be based upon the existence of 26 letters and 1 space. In
Question 1.8.12,the best estimate obtained was 3.3 bits per character using a Markov
chain model that included correlations between adjacent characters. To obtain an
even better estimate, we need to have a model that includes longer-range correlations
between characters. The most reliable estimates have been obtained by asking people
to guess the next character in an English text. It is assumed that people have a highly
sophisticated model for the structure of English and that the individual has no spe-
cific knowledge of the text. The guesses were used to establish bounds on the infor-
mation content. We can summarize these bounds as 0.9±0.3 bits/character. For our
present discussion, the difference between high and low bounds (a factor of 2) is not
significant. For convenience we will use 1 bit/character for our conversion factor. For
larger quantities of text, this corresponds to values given in Table 8.4.1.

Our esti m a te of i n form a ti on in text has assu m ed a stri ct ly narra tive English tex t .
We should also be con cern ed abo ut figures that accom p a ny de s c ri ptive materi a l s . Doe s
the conven ti onal wi s dom of “a pictu re is worth a thousand word s” m a ke sense? We can
con s i der this both from the point of vi ew of d i rect com pre s s i on of the pictu re , and the
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1 char 1 bit -
1 page = 3000 char 3x103 bit 104

1 chapter = 30 pages 105 bit 3x105

1 book = 10 chapters 106 bit 3x106

Table 8.4.1 Information estimates for straight English text and illustrated text. ❚
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po s s i bi l i ty of rep l acing the figure by de s c ri ptive tex t . A thousand words corre s pon d s
to 5 × 1 03 ch a racters or bi t s ,a bo ut two pages of tex t . De s c ri ptive figures su ch as gra ph s
or diagrams of ten consist of a few lines that can be con c i s ely de s c ri bed using a formu l a
and would have a small er com p l ex i ty. P h o togra phs are form ed of h i gh ly correl a ted
gra phical inform a ti on that can be com pre s s ed . In a bl ack and wh i te ph o togra ph 5 × 1 03

bits would corre s pond to a 70 × 70 grid of com p l etely indepen dent pixel s . If we rec a ll
that we are not intere s ted in small det a i l s , this seems re a s on a ble as an upper bo u n d .
Moreover, the text that accompanies a figure gen era lly de s c ri bes its essen tial con ten t .
Thus wh en we ask the key qu e s ti on — wh et h er two pages of text would be su f f i c i ent to
de s c ri be a typical figure and rep l ace its functi on in the text—this seems a som ewh a t
gen erous but not en ti rely unre a s on a ble va lu e . A figure typ i c a lly occupies half of a page
that would be otherwise occ u p i ed by tex t . Thu s , for a high ly illu s tra ted boo k , on aver-
a ge containing one figure and on e - h a l f p a ge of text on each page , our esti m a te of t h e
i n form a ti on con tent of the book would increase from 106 bits by a factor of 2.5 to
ro u gh ly 3 × 1 06 bi t s . If t h ere is one pictu re on every two page s , the inform a ti on con-
tent of the book would be do u bl ed ra t h er than tri p l ed . While it is not re a lly essen ti a l
for our level of prec i s i on , it seems re a s on a ble to adopt the conven ti on that esti m a te s
using de s c ri pti ons of beh avi oral com p l ex i ty inclu de figure s . We wi ll do so by incre a s-
ing the previous va lues by a factor of 3 (Ta ble 8.4.1). This wi ll not ch a n ge any of t h e
con clu s i on s .

There is another aspect of the relationship of language to complexity. A language
uses individual words (like “frog”) to represent complex phenomena or systems (like
the physical system we call a frog). The complexity of the word “frog” is not the same
as the complexity of the frog. Why is this possible? According to our discussion of al-
gorithmic complexity, the smallest possible representation of a complex system has a
length in bits which is equal to the system complexity. Here we have an example of a
system—frog—whose representation “frog” is manifestly smaller than its complexity.

The resolution of this puzzle is through the concept of recognition complexity
discussed in Section 8.3.7.A word is a member of an ensemble of words,and the sys-
tems that are described by these words are an ensemble of systems. It is only necessary
that the ensemble of words be matched to the ensemble of systems described by the
words,not the whole ensemble of possible systems. Thus,the complexity of a word is
not related to the complexity of the system, but rather to the complexity of specifying
the system—the logarithm of the number of systems that are part of the shared ex-
perience of the individuals who are communicating. This is the central point of recog-
nition complexity. For a human being with experience and memory of only a limited
number of the set of all complex systems, to describe a system one must identify it
only in comparison with the systems in memory, not with those possible in principle.

Another way to think about this is to consider a human being as analogous to a
special UTM with a set of short representations that the UTM can expand to a spe-
cific limited subset of possible long descriptions. For example, having memorized a
play by Shakespeare,it is only necessary to invoke the name to retrieve the whole play.
This is,indeed,the essence of naming—a name is a short reference to a complex sys-
tem. All words are names of more complex entities.
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In this way, language provides a systematic mechanism for compression of infor-
mation. This implies that we should not use the length of a word to estimate the com-
plexity of a system that it refers to. Does this also invalidate the use of human language
to obtain complexity estimates? On one hand, when we are asked to describe the be-
havior of a frog, we assume that we must describe it without reference to the name it-
self.“It behaves like a frog” is not a sufficient description. There is a presumption that
a description of behavior is made to someone without specific knowledge. An esti-
mate of the complexity of a frog would be much higher than the complexity of the
word “frog.” On the other hand,the words that would be used to describe a frog also
refer to complex entities or actions. Consistency in different estimates of the amount
of text necessary to describe a frog might arise from the use of a common language
and experience. We could expand the description further by requiring that a person
explain not only the behavior of the frog, but also the meaning of each of the words
used to describe the behavior of the frog. At this point,however, it is more construc-
tive to keep in mind the subtle relationship between language and complexity as part
of our uncertainty, and take the given estimates at face value. Ultimately, the com-
plexity of a system is defined by the condition that all possible (in principle) behav-
iors of the same complexity could be described using the same length of text. We ac-
cept the possibility that language-based estimates of complexity of biological
organisms may be systematically too small because they are common and familiar. We
may nevertheless have relative complexities estimated correctly.

Finally, we can argue that when we estimate the complexity of systems that ap-
proach the complexity of a human being, the estimation problems becomes less se-
vere. This follows because o f our discussion of universality o f complexity g iven in
Section 8.2.2.Specifically, that the more complex a system is,the less relevant specific
knowledge is, and the more universal are estimates of complexity. Nevertheless, ulti-
mately we will conclude that the inherent compression in use of language for de-
scribing familiar complex systems is the greatest contributor to uncertainty in com-
plexity estimates.

There is another approach to the use of human intuition and language in esti-
mating complexity. This is by reference to computer languages. For someone familiar
with computer simulation, we can ask for the length of the computer program that
can simulate the behavior of the system—more specifically, the length of the program
that can simulate a frog. Computer languages are generally not very high in informa-
tion content, because there are a few commands and variables that are used through-
out the program. Thus we might estimate the complexity of a program not by char-
acters, but by program lines at several bits per program line. Consistent with the
definition of algorithmic complexity, the estimate of system complexity should also
include the complexity of the compiler and of the computer operating system and
hardware. Compilers and operating systems are much more complex than many pro-
grams by themselves. We can bypass this problem by considering instead the size of
the execution module—after application of the compiler.

There are other problems with the use of natural or artificial language descrip-
tions, including:
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1. Overestimation due to a lack of knowledge of possible representations. This
problem is related to the difficulty of determining the compressibility of infor-
mation. The assumption of a particular length of text presumes a kind of repre-
sentation. This choice of representation may not be the most compact. This may
be due to the form of the representation—specifically English text. Alternatively,
the assumption may be in the conceptual (semantic) framework. An example is
the complexity of the motion of the planets in the Ptolemaic (earth-centered)
representation compared to the Copernican (sun-centered) representation.
Ptolemy would give a larger complexity estimate than Copernicus because the
Ptolemaic system requires a much longer description—which is the reason the
Copernican system is accepted as “true” today.

2. Underestimation due to lack of knowledge of the full behavior of the system. If
an individual is familiar with the behavior of a system only under limited cir-
cumstances,the presumption that this limited knowledge is complete will lead to
a complexity estimate that is too low. Alternatively, lack of knowledge may also
result in too high estimates if the individual extrapolates the missing knowledge
from more complex systems.

3. Difficulty with counting. Large numbers are generally difficult for people to
imagine or estimate. This is the advantage of identifying numbers with length of
text, which is generally a more familiar quantity.

With all of these limitations in mind, what are some of the estimates that we have
obtained? Table 8.4.2 was constructed using various books. The lengths of linguistic
descriptions of the behavior of biological organisms range from several pages to sev-
eral books. Insects and fish are at pages,frogs at a chapter, most mammals at approx-
imately a book, and monkeys and apes at several books. These numb ers span the
range of complexity estimates.

We have concluded that it is not possible to use this approach to obtain an esti-
mate of human complexity. However, this is not quite true. We can apply this method
by taking the highest complexity estimate o f other systems and using this as a close
lower bound to the complexity of the human being. By close lower bound we mean
that the actual complexity should not be tremendously greater. According to our
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Animal Text length Complexity (bits)

Fish a few pages 3x104

Grasshopper, Mosquito a few pages to a chapter 105

Ant (one, not colony) a few pages to a chapter 105

Frog a chapter or two 3x105

Rabbit a short book 106

Tiger a book 3x106

Ape a few books 107

Table 8.4.2 Estimates of the approximate length of text descriptions of animal behavior ❚
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experience,the complexity estimates of animals tend to extend up to roughly a single
book. Primates may be estimated somewhat higher, with a range of one to tens of
books. This suggests that human complexity is somewhat larger than this latter num-
ber—approximately 108 bits, or about 30 books. We will see how this compares to
other estimates in the following sections.

There are several other approaches to estimating human complexity based upon
language. The existence of book-length biographies implies a poor estimate of human
complexity of 106 bits. We can also estimate the complexity of a human being by the
typical amount of information that a person can learn.Specifically, it seems to make
sense to base an estimate on the length of a college education, which uses approxi-
mately 30 textbooks. This is in direct agreement with the previous estimate of 108 bits.
It might be argued that this estimate is too low because we have not inc luded other
parts of the education (elementary and high school and postgraduate education) or
other kinds of education/information that are not academic. It might also be argued
that this is too high because students do not actually know the entire content of 30
textbooks. One reason this number appears reasonable is that if the complexity of a
human being were much greater than this,there would be individuals who would en-
dure tens or hundreds of college educations in different subjects. The estimate of
roughly 30 textbooks is also consistent with the general upper limit on the number of
books an individual can write in a lifetime. The most prolific author in modern times
is Isaac Asimov, with about 500 books. Thus from such text-based self-consistent ev-
idence we might assume that the estimate of 108 bits is not wrong by more than one
to two orders of magnitude. We now turn to estimation methods that are not based
on text.

8.4.2 Genetic code
Biological organisms present us with a convenient and explicit representation for their
formation by development—the genome. It is generally assumed that most of the in-
formation needed to describe the physiology of the organism is contained in genetic
information. For simplicity we might think of DNA as a kind of program that is in-
terpreted by decoding machinery during development and operation. In this regard
the genome is much like a Turing machine tape (see Section 1.9), even though the
mechanism for transcription is quite different from the conventional Turing machine.
Some other perspectives are given in Section 7.1.Regardless of how we ultimately view
the developmental process and cellular function, it appears natural to associate with
the genome the information that is necessary to specify physiological design and func-
tion. It is not difficult to determine an upper bound to the amount of information
that is contained in a DNA sequence. Taken at face value,this provides us with an es-
timate of the complexity of an organism. We must then inquire as to the approxima-
tions that are being made. We first discuss the approach in somewhat greater detail.

Considering the DNA as an alphabet of four characters provided by the four nu-
cleotides or bases represented by A (adenine) T (tyrosine) C (cytosine) G (guanine),
a first estimate of the information contained in a DNA sequence would be
N log(4) = 2N. N is the length of the DNA chain. Since DNA is formed of two com-
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plementary nucleotide chains in a double helix, its length is measured in base pairs.
While this estimate neglects many corrections, there are a number of assumptions
that we are making about the organism that give a larger uncertainty than some of the
corrections that we can apply. Therefore as a rough estimate,this is essentially as good
an estimate as we can obtain from this methodology at present.Specific numbers are
given in Table 8.4.3. We see that for a human being, the estimate is nearly 1010 bits,
which is somewhat larger than that obtained from language-based estimates in the
previous section. What is more remarkable is that there is no systematic trend of in-
creasing genome length that parallels our expectations of increasing organism com-
plexity based on estimates of the last section. Aside from the increasing trend from
bacteria to fungi to animals/plants,there is no apparent trend that would suggest that
genome length is correlated with our expectations about complexity.

We now proceed to discuss limitations in this approach. The list of approxima-
tions given below is not meant to be exhaustive, but it does suggest some of the diffi-
culties in determining the information content even when there is a clear first nu-
merical value to start from.

a. A significant percentage of DNA is “non-coding.” This DNA is not transcribed
for protein structures. It may be relevant to the structural properties of DNA. It
may also contain other useful information not directly relevant to protein se-
quence. Nevertheless, it is likely that information in most of the base pairs that
are non-coding is not essential for organism behavior. Specifically, they can be re-
placed by many other possible base pair sequences without effect. Since
30%–50% of human DNA is estimated to be coding, this correction would r e-
duce the estimated complexity by a factor of two to three.

b. Di rect forms of com pre s s i on : as pre s en t ly unders tood ,D NA is pri m a ri ly uti l i zed
t h ro u gh tra n s c ri pti on to a sequ en ce of amino ac i d s . The coding for each amino
acid is given by a triple of b a s e s . Si n ce there are many more triples (43 = 64) than
amino acids (twen ty) some of the sequ en ces have no amino acid co u n terp a rt ,a n d
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Organism Genome length (base pairs) Complexity (bits)

Bacteria (E. coli) 106–107 107

Fungi 107–108 108

Plants 108–1011 3x108–3x1011

Insects 108–7x109 109

Fish (bony) 5x108–5x109 3x109

Frog and Toad 109–1010 1010

Mammals 2x109–3x109 1010

Man 3x109 1010

Table 8.4.3 Estimates of complexity based upon genome length. Except for plants, where
there is a particularly wide range of genome lengths, a single number is given for the infor-
mation contained in the genome, because the accuracy does not justify more specific num-
bers. Genome lengths and ranges are representative. ❚
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t h ere are more than one sequ en ce that map on to the same amino ac i d . This re-
dundancy means that there is less inform a ti on in the DNA sequ en ce . Taking this
i n to account by assigning a triple of bases to one of t wen ty ch a racters that repre-
s ent amino acids would give a new esti m a te of (N /3 ) l og(20) = 1 . 4N. To improve
the esti m a te furt h er, we would inclu de the rel a tive prob a bi l i ty of the differen t
amino ac i d s , and correl a ti ons bet ween them .

c. General compression: more generally, we can ask how compressed the DNA en-
coding of information is. We can rely upon a basic optimization of function in
biology. This might suggest that some degree of compression is performed in or-
der to reduce the complexity of transmission of the information from generation
to generation. However, this is not a proof, and one could also argue in favor of
redundancy in order to avoid susceptibility to small changes. Moreover there are
likely to be inherent limitations on the compressibility of the information due to
the possible transcription mechanisms that serve instead of decompression algo-
rithms. For example,ifa molecule that is to be represented has a long chain of the
same amino acid, e.g., asp-asp-asp-asp-asp-asp-asp-asp-asp-asp-asp-asp-asp-
asp-asp-asp-asp-asp, it would be interesting if this could be represented using a
chemical equivalent of (18)asp. This requires a transcription mechanism that re-
peats segments—a DNA loop. There are organisms that are known to have highly
repetitive sequences (e.g., 107 repetitions) forming a significant fraction of their
genome. Much of this may be non-coding DNA.

Other forms of compression may also be relevant. For example, we can ask
if there are protein components/subchains that can be used in more than one
protein. This is relevant to the general redundancy of protein design. There is ev-
idence that the genome does uses this property for compression by overlapping
the regions that code for several different proteins. A particular region of DNA
may have several coding regions that can be combined in different ways to obtain
a number of different proteins. Transcription may start from distinct initial
points. Presumably, the information that describes the pattern of transcriptions
is represented in the noncoding segments that are between the coding segments.
Related to the issue of DNA code compression are questions about the complex-
ity of protein primary structure in relation to its own function—specifically, how
much information is necessary to describe the function of a protein. This may be
much less than the information necessary to specify its primary structure (amino
acid sequence). This discussion is approaching issues of the scale at which com-
plexity is measured—at the atomic scale where the specific amino acid is relevant,
or at the molecular scale at which the enzymatic function is relevant. We will
mention this limitation again in point (d).

d. Scale of representation:the genome codes for macromolecular and cellular func-
tion of the biological organism. This is much less than the microscopic entropy,
since it does not code the atomic vibrations or molecular diffusion. However,
since our concern is for the organism’s macroscopic complexity, the DNA is likely
to be coding a far greater complexity than we are interested in for multicellular
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organisms. The assumption is that much of the cellular chemical activity is not
relevant to a description of the behavior on the scale of the organism. If the DNA
were representing the sum of the molecular or cellular scale complexity of each
of the cells independently, then the error in estimating the complexity would be
quite large. However, the molecular and cellular behavior is generally repeated
throughout the organism in different cells. Thus, the DNA is essentially repre-
senting the complexity of a single cellular function with the additional compli-
cation of representing the variation in this function. To the extent that the com-
plexity of cellular behavior is smaller than that of the complete organism,it may
be assumed that the greatest part of the DNA code represents the macroscale be-
havior. On the other hand, if the organism behavior is comparatively simple,the
greater part of the DNA representation would be devoted to describing the cel-
lular behavior.

e. Completeness of representation: we have assumed that DNA is the only source of
cellular information. However, during cell division not only the DNA is trans-
ferred but also other cellular structures,and it is not clear how much information
is necessary to specify their function. It is clear, however, that DNA does not con-
tain all the information. Otherwise it would be possible to transfer DNA from
one cell into any other cell and the organism would function through control by
the DNA. This is not the case. However, it may very well be that the description
of all other parts of the cell, including the transcription mechanisms, only in-
volves a small fraction of the information content compared to the DNA (for ex-
ample,104–106 bits compared to 107–1011 bits in DNA).Similar to our point (d),
the information in cellular structures is more likely to be irrelevant for organisms
whose complexity is high. We could note also that there are two sources of DNA
in the eukaryotic cell, nuclear DNA and mitochondrial DNA.The information in
the nuclear DNA dominates over the mitochondrial DNA, and we also expect it
to dominate over other sources of cellular information. It is possible, however,
that the other sources of information approach some fraction (e.g., 10%) of the
information in the nuclear DNA, causing a small correction to our estimates.

f. We have implicitly assumed that the development process of a biological organ-
ism is deterministic and uniquely determined by the genome. Randomness in the
process of development gives rise to additional information in the final structure
that is not contained in the genome. Thus, even organisms that have the same
DNA are not exactly the same. In humans, identical twins have been studied in
order to determine the difference between environmental and genetic influence.
Here we are not considering the macroscale environmental influence, but rather
the microscale influence. This influence begins with the randomness of molecu-
lar vibrations during the developmental process. The additional information
gained in this way would have to play a relatively minor functional role if there is
significance to the genetic control over physiology. Nevertheless,a complete esti-
mate of the complexity of a system must include this information. Without con-
sidering different scales of structure or behavior, on the macroscale we should
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not expect the microscopic randomness to affect the complexity by more than a
factor of 2,and more likely the effect is not more than 10% in a typical biologi-
cal organism.

g. We have also neglected the macroscale environmental influences on behavior.
These are usually described by adaptation and learning . For most biological or-
ganisms,the environmental influences on behavior are believed to be small com-
pared to genetic influences. Instinctive behaviors dominate. This is not as true
about many mammals and even less true about human beings. Therefore,the ge-
netic estimate becomes less reliable as an upper bound for human beings than it
is for lower animals. This point will be discussed in greater detail below.

We can see that the assumptions discussed in (a), (b), (c) and (d) would lead to
the DNA length being an overly large estimate of the complexity. Assumptions dis-
cussed in (e), (f ) and (g) imply it is an underestimate.

One of the conceptual difficulties that we are presented with in considering
genome length as a complexity estimate is that plants have a much higher DNA length
than animals. This is in conflict with the conventional wisdom that animals have a
greater complexity of behavior than plants.We might adopt one of two approaches to
understanding this result: first, that plants are actually more complex than animals,
and second, that the DNA representation in plants does not make use of, or cannot
make use of, compression algorithms that are present in animal cells.

If plants are systematically more complex than animals, there must be a general
quality of plants that has higher descriptive and behavioral complexity. A candidate
for such a property is that plants are generally able to regenerate after injury. This in-
herently requires more information than the reliance upon a specific time history for
development. In essence,there must be some form of actual blueprint for the organ-
ism encoded in the genome that takes into account many possible circumstances.
From a programming point of view, this is a multiply reentrant program. To enable
this feature may very well be more complex, or it may require a more redundant
(longer) representation of the same information. It is presumed that the structure of
animals has such a high intrinsic complexity that representation of a fully regenera-
tive organism would be impossible. This idea might be checked by considering the
genome length of animals that have greater ability to regenerate. If they are substan-
tially longer than similar animals without the ability to regenerate, the explanation
would be supported. Indeed, the salamander, which is the only vertebrate with the
ability to regenerate limbs, has a genome of 1011 base pairs. This is much larger than
that of other vertebrates, and comparable to that of the largest plant genomes.

A more general reason for the high plant genome complexity that is consistent
with regeneration would be that plants have systematically developed a high com-
plexity on smaller (molecular and cellular) rather than larger (organismal) scales.
One reason for this would be that plant immobility requires the development of com-
plex molecular and cellular mechanisms to inhibit or survive partial consumption by
other organisms. By our discussion of the complexity profile in Section 8.3, a hig h
complexity on small scales would not allow a high complexity on larger scales. This
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explanation would also be consistent with our understanding of the relative simplic-
ity of plants on the larger scale.

The second possibility is that there exists a systematic additional redundancy of
the genome in plants. This might be the result of particular proteins with chains of
repetitive amino acids.A protein formed out of a long chain of the same amino acid
might be functionally of importance in plants,and not in animals. This is a potential
explanation for the relative lengths of plant genome and animal genome.

One of the most striking features of the genome lengths found for various or-
ganisms is their relative uniformity. Widely different types of organisms have similar
genome lengths, while similar organisms may have quite different genome lengths.
One explanation for this that might be suggested is that genome lengths have in-
creased systematically with evolutionary time. It is hard, however, to see why this
would be the case in all but the simplest models of evolution. It makes more sense to
infer that there are constraints on the genome lengths that have led it to gravitate to-
ward a value in the range 109–1010. Increases in organism complexity then result from
fewer redundancies and better compression, rather than longer genomes. In princi-
ple, this could account for the pattern of complexities we have obtained.

Regardless of the ultimate reason for various genome lengths, in each case the
complexity estimate from genome length provides an upper bound to the genetic
component of organism complexity (c.f. points (e), (f ) and (g) above). Thus,the hu-
man genome length provides us with an estimate of human complexity.

8.4.3 Component counting
The objective of complexity estimation is to determine the behavioral complexity of
a system as a whole. However, one of the important clues to the complexity of the sys-
tem is its composition from elements and their interactions. By counting the number
of elements, we can develop an understanding of the complexity of the system.
However, as with other estimation methods,it must be understood that there are in-
herent problems in this approach. We will find that this method gives us a much
higher estimate than the other methods. In using this method we are faced with the
dilemma that lies at the heart of the ability to understand the nature of complex sys-
tems—how does complex behavior arise out of the component behavior and their in-
teractions? The essential question that we face is: Assuming that we have a system
formed of N interacting elements that have a complexity C0 (or a known distribution
of complexities),how can the complexity C of the whole system be determined? The
maximal possible value would be NC0. However, as we discussed in Section 8.3,this is
reduced both by correlations between elements and by the change of scale from that
of the elements to that of the system. We will discuss these problems in the context of
estimating human complexity.

If we are to consider the behavioral complexity of a human being by counting
components, we must identify the relevant components to count. If we count the
number of atoms, we would be describing the microscopic complexity. On the other
hand, we cannot count the number of parts on the scale of the organism (one)
because the problem in determining the complexity remains in evaluating C0. Thus
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the objective is to select components at an intermediate scale. Of the natural inter-
mediate scales to consider, there are molecules, cells and organs. We will tackle the
problem by considering cells and discuss difficulties that arise in this context. The first
difficulty is that the complexity of behavior does not arise equally from all cells. It is
generally understood that muscle cells and bone cells are largely uniform in structure.
They may therefore collectively be described in terms of a few parameters, and their
contribution to organism behavior can be summarized simply. In contrast,as we dis-
cussed in Chapter 2,the behavior of the system on the scale of the organism is gener-
ally attributed to the nervous system. Thus,aside from an inconsequential number of
additional parameters, we will consider only the cells of the nervous system. If we were
considering the behavior on a smaller length scale, then it would be natural to also
consider the immune system.

In order to make more progress, we must discuss a specific model for the nervous
system and then determine its limitations. We can do this by considering the behav-
ior of a model system we studied in detail in Chapter 2—the attractor neural network
model.Each of the neurons is a binary variable. Its behavior is specified by whether it
is ON or OFF. The behavior of the network is,however, described by the values of the
synapses. The total complexity of the synapses could be quite high if we allowed the
synapses to have many digits of precision in their values, but this does not contribute
to the complexity of the network behavior. Given our investigation of the storage of
patterns in the network, we can argue that the maximal number of independent pa-
rameters that may be specified for the operation of the network consists of the neural
firing patterns that are stored. This corresponds to cN 2 bits of information, where N
is the number of neurons,and c ≈ 0.14 is a number that arose from our analysis of
network overload.

Th ere are several probl ems with app lying this formula to bi o l ogical nervous sys-
tem s . The first is that the bi o l ogical net work is not fully con n ected . We could app ly a
similar formula to the net work assuming on ly the nu m ber of synapses Ns that are pre-
s en t , on avera ge , for a neu ron .This gives a va lue cNsN. This means that the stora ge ca-
p ac i ty of the net work is small er, and should scale with the nu m ber of s y n a p s e s . For the
human brain wh ere Ns has been esti m a ted at 104 and N ≈ 1 01 1, this would give a va lu e
of 0.1 × 1 04 × 1 01 1 = 1 01 4 bi t s . The probl em with this esti m a te is that in order to spec i f y
the beh avi or of the net work , we need to specify not on ly the impri n ted patterns but also
wh i ch synapses are pre s ent and wh i ch are absen t .L i s ting the synapses that are pre s en t
would requ i re a set of nu m ber pairs that would specify wh i ch neu rons each neu ron is
a t t ach ed to. This list would requ i re ro u gh ly N Nsl og (N) = 3 × 1 01 6 bi t s , wh i ch is larger
than the nu m ber of bits of i n form a ti on in the stora ge itsel f . This esti m a te may be re-
du ced by a small amount, i f , as we ex pect , the synapses of a neu ron largely con n ect to
n eu rons that are nearby. We wi ll use 101 6 as the basis for our com p l ex i ty esti m a te .

The second major problem with this model is that real neurons are far from bi-
nary variables. Indeed, a neuron is a complex system. Each neuron responds to par-
ticular neurotransmitters, and the synapse b etween two specific neurons is different
from other synapses. How many parameters would be needed to describe the behav-
ior of an individual neuron,and how relevant are these parameters to the complexity
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of the whole system? Naively, we might think that taking into account the complexity
of individual neurons g ives a much higher complexity than that considered above.
However, this is not the case.We assume that the parameters necessary to describe an
individual neuron correspond to a complexity C0, and it is necessary to specify the pa-
rameters of all of the neurons. Then the complexity of the whole system would in-
clude C0N bits for the neurons themselves. This would be greater than 1016 bits only
if the complexity of the individual neurons were larger than 105. A reasonable esti-
mate of the complexity of a neuron is roughly 103–104 bits. This would give a value of
C0N = 1013−1014 bits, which is not a significant amount by comparison with 1016 bits.
By these estimates,the complexity of the internal structure of a neuron is not greater
than the complexity of its interconnections.

Similarly, we should consider the complexity of a synapse, which multiplies the
number of synapses. Synapses are significantly simpler than the neurons. We may es-
timate their complexity as no more than 10 bits. This would be sufficient to specify
the synaptic strength and the type of chemicals involved in transmission. Multiplying
this by the total number of synapses (1015) gives 1016 bits. This is the same as the in-
formation necessary to specify the list of synapses that are present.

Combining our estimates for the information necessary to specify the structure
of neurons,the structure of synapses and the list of synapses present, we obtain an es-
timate for complexity of 1016 bits. This estimate is significantly larger than the esti-
mate found from the other two approaches. As we mentioned before, there are two
fundamental difficulties with this approach that make the estimate too high—
correlations among parameters and the scale of description.

Ma ny of the para m eters enu m era ted above are likely to be the same, giving rise to
the po s s i bi l i ty of com pre s s i on of the de s c ri pti on . Both the de s c ri pti on of an indivi du a l
n eu ron and the de s c ri pti on of the synapses bet ween them can be dra s ti c a lly simplified
i fa ll of t h em fo ll ow a pattern . For ex a m p l e , the vi sual sys tem invo lves processing of a vi-
sual field wh ere the different neu rons at different loc a ti ons perform essen ti a lly the same
opera ti on on the vi sual inform a ti on . Even if t h ere are smooth va ri a ti ons in the para-
m eters that de s c ri be both the neu ron beh avi or and the synapses bet ween them , we can
de s c ri be the processing of the vi sual field in terms of a small nu m ber of p a ra m eters .
In deed ,one would guess (an intu i ti on - b a s ed esti m a te) that processing of the vi sual fiel d
is qu i te com p l i c a ted (more than 102 bits) but would not exceed 103– 1 05 bits altoget h er.
Si n ce a su b s t a n tial fracti on of the nu m ber of n eu rons in the brain is devo ted to initi a l
vi sual proce s s i n g, the use of this redu ced de s c ri pti on of the vi sual processing would re-
du ce the esti m a te of the com p l ex i ty of the whole sys tem .

Nevertheless,the initial visual processing does not involve more than 10% of the
number of neurons. Even if we eliminate all of their parameters,the estimate of sys-
tem complexity would not change.However, the idea behind this construction is that
whenever there are many neurons whose behavior can be grouped together into par-
ticular functions,then the complexity of the description is reduced. Thus if we can de-
scribe neurons as belonging to a particular class of neurons (category or stereotype),
then the complexity is reduced. It is known that neurons can be categorized;however,
it is not clear how many parameters remain once this categorization has been done.
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When we think about grouping the neurons together, we might also realize that this
discussion is relevant to the consideration of the influence of environment and ge-
netics on behavior. If the number of parameters necessary to describe the network
greatly exceeds the number of parameters in the genetic code, which is only 1010 bits,
then many of these parameters must be specified by the environment. We will discuss
this again in the next section.

On a more ph i l o s ophical note , we com m ent that para m eters that de s c ri be the
n ervous sys tem also inclu de the mall e a ble short - term mem ory. While this may be
a small part of the total inform a ti on , our esti m a te of beh avi oral com p l ex i ty
should raise qu e s ti ons su ch as, How specific do we have to be? Should the con ten t
of s h ort - term mem ory be inclu ded? The argument in favor would be that we need
to repre s ent the human being in en ti rety. The argument against would be that
what happen ed in the past five minutes or even the past day is not rel evant and we
can re s et this part of the mem ory. Even tu a lly we may ask wh et h er the obj ective is
to repre s ent the specific inform a ti on known by an indivi dual or just his or her
“ch a racter.”

We have not yet directly addressed the role of substructure (Chapter 2) in the
complexity of the nervous system. In comparison with a fully connected network, a
network with substructure is more complex because it is necessary to specify the sub-
structure, or more specifically which neurons (or which information) are proximate
to which. However, in a system that is subdivided by virtue of having fewer synapses
between subdivisions, once we have counted the information that is present in the se-
lection of synapses,as we have done above,the substructure of the system has already
been included.

The second problem of estimating complexity based on component counting is
that we do not know how to reduce the complexity estimate based upon an increase
of the length scale of observation. The estimate we have obtained for the complexity
of the nervous system is relevant to a description of its behavior on the scale of a neu-
ron (it does, however, focus on cellular behavior most relevant to the behavior of the
organism). In order to overcome this problem, we need a method to assess the de-
pendence of the organism behavior on the cellular behavior. A natural approach
might be to evaluate the robustness of the system behavior to changes in the compo-
nents. Human beings are believed to lose approximately 106 neurons every day (even
without alcohol) corresponding to the loss of a significant fraction of the neurons
over the course of a lifetime. This suggests that individual neurons are not crucial to
determining human behavior. It implies that there may be a couple of orders of mag-
nitude between the estimate of neuron complexity and human complexity. However,
since the daily loss of neurons corresponds only to a loss of 1 in 105 neurons, we could
also argue that it would be hard for us to notice the impact of this loss. In any event,
our estimate based upon component counting, 1016, is eight orders of magnitude
larger than the estimates obtained from text and six orders of magnitude larger than
the genome-based estimate.To account for this difference we would have to argue that
99.999% of neuron parameters are irrelevant to human behavior. This is too great a
discrepancy to dismiss based upon such an argument.
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Finally, we can demonstrate that 1016 is too large an estimate of complexity by
considering the counting of time rather than the counting of components. We con-
sider a minimal time interval of describing a human being to be of order 1 se cond,
and we allow for each second 103 bits of information. There are of order 109 seconds
in a lifetime. Thus we conclude that only, at most,1012 bits of information are neces-
sary to describe the actions of a human. This estimate assumes that each second is in-
dependently described from all other seconds,and no patterns of behavior exist. This
would seem to be a very generous estimate. We can contrast this number with an es-
timate of the total amount of information that might be imprinted upon the
synapses. This can be estimated as the total number of neuronal states over the course
of a lifetime. For a neuron reaction time of order 10−2 seconds,1011 neurons,and 109

seconds in a lifetime, we have 1022 bits of information. Thus we see that the total
amount of information that passes through the nervous system is much larger than
the information that is represented there, which is larger than the information that is
manifest in terms of behavior. This suggests either that the collective behavior of neu-
rons requires redundant information in the synapses,as discussed in Section 8.3.6, or
that the actions of an individual do not fully represent the possible actions that the in-
dividual would take under all circumstances. The latter possibility returns us to the
discussion of Eq.(8.3.47) and Eq.(8.3.59), where we commented that the expression
is an upper bound, because information may cycle between scales or between system
and environment. Under these circumstances, the potential complexity of a system
under the most diverse set of circumstances is not necessarily the observed complex-
ity. Both of our approaches to component counting (spatial and temporal) may over-
estimate the complexity due to this problem.

8.4.4 Complexity of human beings, artificial intelligence,
and the soul

We begin this section by summarizing the estimates of human complexity from the
previous sections,and then turn to some more philosophical considerations of its sig-
nificance. We have found that the microscopic complexity of a human being is in the
vicinity of 1030 bits. This is much larger than our estimates of the macroscopic com-
plexity—language-based 108 bits, genome-based 1010 bits and component (neuron)-
counting 1016 bits. As discussed at the end of the last section, we replace the spatial
component-counting estimate with the time-counting upper bound of 1012 bits. We
will discuss the discrepancies between these numbers and conclude with an estimate
of 1010±2 bits.

We can summarize our understanding of the different estimates. The language-
based estimate is likely to be somewhat low because of the inherent compression
achieved by language.One way to say this is that a college education, consisting of 30
textbooks, is based upon childhood learning (nonlinguistic and linguistic) that pro-
vides meaning to the words, and therefore contains comparable or greater informa-
tion. The genome-based complexity is likely to be a too-large estimate of the influence
of genome on behavior, because genome information is compressible and because
much of it must be relevant to molecular and cellular function. The component-

C o m p l e x i ty  e s t ima t i o n 775

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 775
Title: Dynamics Complex Systems Short / Normal / Long

Bar-YamChap8.pdf  3/10/02 10:53 AM  Page 775



counting estimate suggests that the information obtained from experience is much
larger than the information due to the genome—specifically, that genetic information
cannot specify the parameters of the neural network. This is consistent with our dis-
cussion in Section 3.2.11 that suggested that synapses store learned information while
the genome determines the overall structure of the network. We must still conclude
that most of the network information is not relevant to behavior at the larger scale. It
is redundant, and /or does not manifest itself in human behavior because of the lim-
ited types of external circumstances that are encountered. Because of this last point,
the complexity for describing the response to arbitrary circumstances may be higher
than the estimate that we will give, but should still be significantly less than 1016 bits.

Our estimate of the complexity of a human being is 1010±2 bits. The error bars es-
sentially bracket the values we obtained. The main final caveat is that the difficulty in
assessing the possibility of information compression may lead to a systematic bias to
high complexities. For the following discussion,the actual value is less important than
the existence of an estimate.

Consideration of the complexity of a human being is intimately related to fun-
damental issues in artificial intelligence. The complexity of a human being specifies
the amount of information necessary to describe and, given an environment, predict
the behavior of a human being. There is no presumption that the prediction would be
feasible using present technology. However, in principle,there is an implication of its
possibility. Our objective here is to briefly discuss both philosophical and practical
implications of this observation.

The notion of reproducing human behavior in a computer (or by other artificial
means) has traditionally been a major domain of confrontation between science and
religion,and science and popular thought. Some of these conflicts arise because of the
supposition by some religious philosophers of a nonmaterial soul that is presumed to
animate human beings. Such nonmaterial entities are rejected in the context of sci-
ence because they are, by definition,not measurable. It may be helpful to discuss some
of the alternate approaches to the traditional conflict that bypass the controversy in
favor of slightly modified definitions.Specifically, we will consider the possibility of a
scientific definition of the concept of a soul.We will see that such a concept is not nec-
essarily in conflict with notions of artificial intelligence. Instead it is closely related to
the assumptions of this field.

One way to define the concept of soul is as the information that describes com-
pletely a human being. We have just estimated the amount of this information. To un-
derstand how this is related to the religious concept of soul, we must realize that the
concept of soul serves a purpose. When an individual dies,the existence of a soul rep-
resents the independence of the human being from the material of which he or she is
formed. If the material of which the human being is made were essential to its func-
tion, then there would be no independent functional description. Also, there would
be no mechanism by which we could reproduce human behavior without making use
of precisely the atoms of which he or she was formed. In this way the description of a
soul suggests an abstraction of function from matter which is consistent with ab-
stractions that are familiar in science and modern thought, but might not be consis-
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tent with more primitive notions of matter. A primitive concept of matter might in-
sist that the matter of which we are formed is essential to our functioning. The sim-
plest possible abstraction would be to state (as is claimed by physics) that the specific
atoms of which the human being are formed are not necessary to his or her function.
Instead, these atoms may be replaced by other indistinguishable atoms and the same
behavior will be found. Artificial intelligence takes this a large step further by stating
that there are other possible media in which the same behavior can be realized.A hu-
man being is not directly tied to the material of which he is made. Instead there is a
functional description that can be implemented in various media, of which one pos-
sible medium is the biological body that the human being was implemented in, when
we met him or her.

Viewed in this light, the statement of the existence of a soul appears to be the
same as the claim of artificial intelligence—that a human being can be reproduced in
a different form by embodying the function rather than the mechanism of the human
being. There is,however, a crucial distinction between the religious view and some of
the practical approaches of artificial intelligence. This difference is related to the no-
tion of a universal artificial intelligence, which is conceptually similar to the model of
universal Turing machines. According to this view there is a generic model for intelli-
gence that can be implemented in a computer. In contrast,the religious view is typi-
cally focused on the individual identity of an individual human being as manifest in
a unique soul. We have discussed in Chapter 3 that our models of human beings are
to be understood as nonuniversal and would indeed be better realized by the concept
of representing individual human beings rather than a generic artificial intelligence.
There are common features to the information processing of different individuals.
However, we anticipate that the features characteristic of human behavior are pre-
dominantly specific to each individual rather than common. Thus the objective of
creating artificial human beings might be better described as that of manifesting the
soul of an individual human.

We can illustrate this change in perspective by considering the Turing test for rec-
ognizing artificial intelligence. The Turing test suggests that in a conversation with a
computer we may not be able to distinguish it from a human being. A key problem
with this prescription is that there is no specification of which human being is to be
modeled. Human beings have varied complexity, and interactions are of varied levels
of intimacy. It would be quite easy to reproduce the conversation of a mute individ-
ual, or even an obsessed individual. Which human being did Turing have in mind? We
can go beyond this objection by recognizing that in order to fool us into thinking that
the computer is a human being, except for a very casual conversation, the computer
would have to represent a single human being with a name,a family history, a profes-
sion, opinions and a personality, not an abstract notion of intelligence. Finally, we
may also ask whether the represented human being is someone we already know, or
someone we do not know, prior to the test.

While we bypassed the fundamental controversy between science and religion re-
garding the presence of an immaterial soul, we suspect that the real conflict between
the approaches resides in a different place. This conflict is in the question of the
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intrinsic value of a human being and his place in the universe. Both the religious and
popular view would like to place an importance on a human being that transcends the
value of the matter of which he is formed. Philosophically, the scientific perspective
has often been viewed as lowering human worth. This is true whether it is physical sci-
entists that view the material of which man is formed as “just” composed of the same
atoms as rocks and water, or whether it is biological scientists that consider the bio-
chemical and cellular structures as the same as,and derived evolutionarily from,ani-
mal processes.

The study of complexity presents us with an opportunity in this regard.A quan-
titative definition of complexity can provide a direct measure of the difference be-
tween the behavior of a rock,an animal and a human being. We should recognize that
this capability can be a double-edged sword. On the one hand it provides us with a
scientific method for distinguishing man from matter, and man from animal, by rec-
ognizing that the particular arrangement of atoms in a human being, or the particu-
lar implementation of biology, achieves a functionality that is highly complex. At the
same time, by placing a number on this complexity it presents us with the finiteness
of the human being. For those who would like to view themselves as infinite,a finite
complexity may be humbling and difficult to accept. Others who already recognize
the inherent limitations of individual human beings,including themselves, may find
it comforting to know that this limitation is fundamental.

As is often the case,the value of a number attains meaning though comparison.
Specifically, we may consider the complexity of a human being and see it as either high
or low. We must have some reference point with respect to which we measure human
complexity. One reference point was clear in the preceding discussion—that of ani-
mals. We found that our (linguistic) estimates of human complexity placed human
beings quantitatively above those of animals, as we might expect. This result is quite
reasonable but does not suggest any clear dividing line between animals and man.
There is, however, an independent value to which these complexities can be com-
pared. For consistency, we use language-based complexity estimates throughout.

The idea of biological evolution and the biological continuity of man from ani-
mal is based upon the concept of the survival demands of the environment on man.
Let us consider for the moment the complexity of the demands of the environment.
We can estimate this complexity using relevant literature. Books that discuss survival
in the wild are typically quite short, 3 × 105 bits. Such a book might describe more
than just basic survival—plants to eat and animal hunting—but also various skills of
a primitive life such as stone knives, tanning, basket making, and primitive home or
boat construction. Alternatively, a book might discuss survival under extreme cir-
cumstances rather than survival under more typical circumstances. Even so, the
amount of text is not longer than a rather brief book. While there are many individ-
uals who have devoted themselves to living in the wild,there are no encyclopedias of
relevant information. This suggests that in comparison with the complexity of a hu-
man being, the complexity of survival demands is small. Indeed, this complexity ap-
pears to be right at the estimated dividing line between animal (106 bits) and man
(108 bits). It is significant that an ape may have a complexity of ten times the com-
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plexity of the environmental demands upon it, but a human being has a complexity
of a hundred times this demand. Another way to arrive at this conclusion is to con-
sider primitive man, or primitive tribes that exist today. We might ask about the com-
plexity of their existence and specifically whether the demands of the survival are the
same as the complexity of their lives. From books that reflect studies of such peoples
we see that the descrip tion of their survival techniques is much shorter than the de-
scription of their social and cultural activities.A single aspect of their culture might
occupy a book, while the survival methods do not occupy even a single one.

We might compare the behavior of primitive man with the behavior of animal
predators. In contrast to grazing animals, predators satisfy their survival needs in
terms of food using only a small part of the day. One might ask why they did not de-
velop complex cultural activities. One might think, for example, of sleeping lions.
While they do have a social life, it does not compare in complexity to that of human
beings. The explanation that our discussion provides is that while time would allow
cultural activities, complexity does not. Thus, the complexity of such predators is es-
sentially devoted to problems of survival. That of human beings is not.

This conclusion is quite intriguing. Several interesting remarks follow. In this
context we can suggest that analyses of animal behavior should not necessarily be as-
sumed to apply to human behavior. In particular, any animal behavior might be jus-
tified on the basis of a survival demand. While this approach has also often been ap-
plied to human beings—the survival advantages associated with culture, art and
science have often been suggested—our analysis suggests that this is not justified, at
least not in a direct fashion. Human behavior cannot be driven by survival demands
if the survival demands are simpler than the human behavior. Of course,this does not
rule out that general aspects or patterns of behavior, or even some specific behaviors,
are driven by survival demands.

One of the distinctions between man and animals is the relative dominance of in-
stinctive behavior in animals,as compared to learned behavior in man. It is often sug-
gested that human dependence on learned rather than instinctive behavior is simply
a different strategy for survival. However, ifthe complexity of the demands of survival
are smaller than that of a human being, this does not hold. We can argue instead that
if the complexity of survival demands are limited, then there is no reason for addi-
tional instinctive behaviors. Thus, our results suggest that instinctive behavior is ac-
tually a better strategy for overcoming survival demands—because it is prevalent in
organisms whose behavior arises in response to survival demands. However, once
such demands are met, there is little reason to produce more complex instinctive be-
haviors, and for this reason human behavior is not instinctively driven.

We now turn to some more practical asp ects o f the implications of our com-
plexity estimates for the problem of artificial intelligence—or the re-creation of an in-
dividual in an artificial form. We may start from the microscopic complexity (roughly
the entropy) which corresponds to the information necessary to replace every atom
in the human being with another atom of the same kind,or alternatively, to represent
the atoms in a computer. We might imagine that the computer could simulate the dy-
namics of the atoms in order to simulate the behavior of the human being. The
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practicality of such an implementation is highly questionable.The problem is not just
that the number of bits of storage as well as the speed requirements are beyond mod-
ern technology. It must be assumed that any computer representation of this dynam-
ics must ultimately be composed of atoms. If the simulation is not composed out of
the atoms themselves, but some controllable representation of the atoms, then the
complexity of the machine must be significantly greater than that of a human being.
Moreover, unless the system is constructed to respond to its environment in a man-
ner similar to the response of a human being, then the computer must also simulate
the environment. Such a task is likely to be formally as well as practically impossible.

One central question then becomes whether it is possible to compress the repre-
sentation of a human being into a simpler one that can be stored.Our estimate o f be-
havioral complexity, 1010±2 bits, suggests that this might be possible. Since a CD-ROM
contains 5 × 109 bits, we are discussing 2 × 10±2 CD-ROMs. At the lower end of this
range, 0.02 CD-ROMs is clearly not a problem. Even at the upper end, two hundred
CD-ROMs is well within the domain of feasibility. Indeed, even if we chose to repre-
sent the information we estimated to be necessary to describe the neural network of
a single individual, 1016 bits or 2 million CD-ROMs, this would be a technologically
feasible project. We have made no claims about our ability to obtain the necessary in-
formation for one individual. However, once this information is obtained, it should
be possible to store it.A computer that can simulate the behavior of this individual
represents a more significant problem.

Before we discuss the problem of simulating a human being, we might ask what
the additional microscopic complexity present in a human body is good for.
Specifically, if only 1010 bits are relevant to human behavior, what are most of the 1031

bits doing? One way to think about this question is to ask why nature didn’t build a
similar machine with of order 1010 atoms, which would be significantly smaller. We
might also ask whether we would know if such an organism existed.On our own scale,
we might ask why nature doesn’t build an organism with a complexity of order 1030.
We have already suggested that there may be inherent limitations to the complexity
that can be formed. However, there may also be another use of some of the additional
large number of microscopic pieces of information.

One possible use of the additional information can be inferred from our argu-
ments about the difference between TM with and without a random tape. The dis-
cussion in Section 1.9.7 suggests that it may be necessary to have a source of ran-
domness to allow human qualities such as creativity. This fits nicely with our
discussion of chaos in complex system behavior. The implication is that the micro-
scopic information becomes gradually relevant to the macroscopic behavior as a
chaotic process. We can assume that most microscopic information in a human being
describes the position and orientation of water molecules. In this picture, random
motion of molecules affects cellular behavior, specifically the firing of neurons, that
ultimately affects human behavior. This does not mean that all of the microscopic in-
formation is relevant. Only a small number of bits can be relevant at any time.
However, we recognize that in order to obtain a certain number of random bits,there
must be a much larger reservoir of randomness. This is one approach to understand-
ing a possible use of the microscopic information content of a human being. Another
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approach would ascribe the additional information to the necessary support struc-
tures for the complex behavior, but would not attribute to it an essential role as
information.

We have demonstrated time and again that it is possible to build a stronger or
faster machine than a human being. This has led some people to believe that we can
also build a systematically more capable machine—in the form of a robot. We have al-
ready argued that the present notion of computers may not be sufficient if it becomes
necessary to include chaotic behavior. We can go beyond this argument by consider-
ing the problem we have introduced of the fundamental limits to complexity for a col-
lection of molecules. It may turn out that our quest for the design of a complex ma-
chine will be limited by the same fundamental laws that limit the design of human
beings.One of the natural improvements for the design of deterministic machines is
to consider lower temperatures that enable lower error rates and higher speeds, and
possibly the use of superconductors. However, the choice of a higher temperature may
be required to enable a higher microscopic complexity, which also limits the macro-
scopic complexity. The mammalian body temperature may be selected to balance two
competing effects. At high temperatures there is a high microscopic complexity.
However, breaking the ergodic theorem requires low temperatures so that energy bar-
riers can be effective in stopping movement in phase space.A way to argue this point
more generally is that the sensitivity of human ears and eyes is not limited by the bi-
ological design, but by fundamental limits of quantum mechanics. It may also be that
the behavioral complexity of a human being at its own length and time scale is lim-
ited by fundamental law. As with the existence of artificial sensors in other parts of the
visual spectrum, we already know that machines with other capabilities can be built.
However, this argument suggests that it may not be possible to build a systematically
more complex artificial organism.

The previous discussion is not a proof that we cannot build a robot that is more
capable than a human being. However, any claims that it is possible should be tem-
pered by the respect that we have gained from studying the effectiveness of biological
design. In this regard, it is interesting that some of the modern approaches to artifi-
cial intelligence consider the use of nanotechnology, which at least in part will make
use of biological molecules and methods.

Finally we can say that the concept of an infinite human being may not be en-
tirely lost.Even the lowly TM whose internal (table) complexity is rather small can,in
arbitrarily long time and with an infinite storage, reproduce arbitrarily complex be-
havior. In this regard we should not consider just the complexity of a human b eing
but also the complexity of a human being in the context of his tools. For example, we
can consider the complexity of a human being with paper and pen,the complexity of
a human being with a computer, or the complexity of a human being with access to a
library. Since human beings make use of external storage that is limited only by the
available matter, over time a human being, through collaboration with other human
beings/generations extending through time,can reproduce complex behavior limited
only by the matter that is available. This brings us back to questions of the behavior
of collections of human beings, which we will address in Chapter 9.
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