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i Bayesian networks

= A Bayesian network is a triplet (V, G, @).Vis a set
of variables, G is a connected DAG whose nodes
correspond one-to-one to members of V such that

each variable is conditionally independent of its non-
descendants given its parents.

Denote the parents of veVin Gby 1t (v). @is a set of
probability distributions:

®={ P(vlm(v)) | v e V}.



Knowledge representation and inference

= Bayesian networks (BNs) are a graphical model for
uncertain knowledge representation
= Can be constructed based on expert knowledge
= Can be learnt from data

= BNs are a graphical model for reasoning about the
state of the problem domains

= An interpretation to the world, e.g. the posterior
probabilities of some variable given evidence

= To support automated decision making



Qualitative structure and quantitative distributions

= A BN consists of two parts, structure and parameters
= The graphical structure encodes conditional dependencies
= Qualitatively

= The probability distribution parameters specify the strength
of such dependencies

= Quantitatively
= This allows us to first focus on qualitative structure

and then quantitative strength of dependencies in
construction



Causal relationship makes BNs sparse

= BNs constructed based on causal (natural)
relationship tends to be sparse
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i Conditional independent

= LetX, Y, and Z be disjoint sets of variables. X and Y
are conditionally independent give Z, denoted | (X,
Z, Y), iff foreveryx € Dy, vy € Dy, z € D,such
that P(y, z) > 0, the following holds:

P(xly, z) = P(x]|z)

Degenerate
when Z is @

When Z is empty, X and Y are marginally
independent, denoted by (X, 2, Y)

P(xly) = P(x)



i Conditional independent example

} This pattern repeats

P(X]Y) = P(X)
Y X P(X]Y)
0 0 0.3
0 1 0.7
1 0 0.3
1 1 0.7

If P(X]Y) = P(X),
whether P(Y|X) = P(Y)A




i Conditional independent example

P(X]Y,Z) = P(X|2)

> ( This pattern repeats

Y Z X P(X|Y,2)
0 0 0 0.1
0 0 1 0.9
0 1 0 0.8
0 1 1 0.2
1 0 0 0.1
1 0 1 0.9
1 1 0 0.8
1 1 1 0.2




i Decomposition over structures

= A Bayesian network is a triplet (V, G, @).Vis a set
of variables, G is a connected DAG whose nodes
correspond one-to-one to members of V such that
each variable is conditionally independent of its non-
descendants given its parents.

Denote the parents of veVin Gby 1t (v). @is a set of
probability distributions:
=1 P(vlm(v)) | v e V}.

= By chain rule: P(V) = [l PIz(v))

veV



Decomposition over structures
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i Cut a structure through

Not through Through

By cut through, we divide and conquer
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Markov blanket

= A Markov blanket of a node includes its parents, children, and
children’s parents. Given a Markov blanket, the node is
independent of all other nodes.

S
fo/ \./ e—o h
a \. {

\ Given b, ¢, d, e, a is
f j independent of the rest of

Given a Markov
blanket, a graph
can be cut through

| o

the structure f, g, h, i, j, k
k
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i Why children’s parents - v structure

dl O\ /o dz
S

Two diseases d1 and d2 can both cause symptom
s. Before we know a patient has symptom s, d1 and
d2 could be independent, e.g. headache or fever
could be caused by many independent diseases.
How if we know a patient has symptom s?

This is also the reason why
deductive reasoning can
generally only be done in
ne direction
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i When two arcs meet

= In a directed graph, when two arcs meet in a path,
the shared node can be in one of the three possible
cases: tail-to-tail, head-to-tail or head-to-head, as
the node v, shown below.
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Path open or closed

IL

Let X, Y and Z be disjoint subsets of nodes (vertices) in a
DAG G.

A path p between nodes x & Xandy & Y is rendered
closed by Z whenever one of the two conditions is true:

There exists z&7 that is either tail-to-tail or head-to-tail on p

There exists a node w that is head-to-head on p and neither w
nor any descendant of w is in Z. If both conditions are false,
then p is rendered open by 7
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i Graphical separation

= If every path between x and vy is closed by Z, then x
and y are said to be separated by Z. X and Y are said
to be separatedby 7 if every pair x € Xandy € Y
are separated by Z. We use the notation < X|Z|Y >,
to denote that X and Y are separated by Z in graph G
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i Graphical separation & independence

= A DAG is an I-map (or called /ndependence map) of a
probability distribution P(V) over a set of variables V ,
If there is a one-to-one correspondence between
nodes in G and variables in V and for every disjoint
subsets X, Y and Z, we have

< X|Z|Y >= (X, Z, Y ),

= A graph is a minimal I-mgp if all links in it are
necessary for it to remain an I-map

= When an I-map is minimal, there would be no nonwarranted
dependency claims

= Therefore, it is sparser and computation is more efficient
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i Relationship between structure and distribution

= In a BN, its structure should be an I-map (better if
minimal I-map) of its P(V)

A complete
graph is an
I-map of any
distribution

< X|ZIY >= (X, Z, Y ),

If Xand Y are separated by Z in G, then X and Y
should be independent given Z in P(V) .

Equivalent

Reversely, if X, Y are dependent in P(V), then
X and Y should be dependent in its structure G
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i Perfect map

= Ifitis only an I-map, there is no guarantee that
independencies in P(V) will have corresponding
separation in the structure

= Similarly, if it is only an I-map, there is no guarantee
that non-separations in the structure indicates
dependencies in P(V)

= To make both guaranteed, the structure should be a

perfect-map of P(V), the structure should also be a
D-map of P(V), but may not always be possible
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