
Genetic Programming

An Introductory Tutorial and a Survey of

Techniques and Applications

Riccardo Poli
Department of Computing and Electronic Systems

University of Essex, UK
rpoli@essex.ac.uk

William B. Langdon

Departments of Biological and Mathematical Sciences
University of Essex, UK
wlangdon@essex.ac.uk

Nicholas F. McPhee

Division of Science and Mathematics
University of Minnesota, Morris, USA

mcphee@morris.umn.edu

John R. Koza
Stanford University, Stanford, California

john@johnkoza.com

Technical Report CES-475

ISSN: 1744-8050
October 2007

1

Abstract

This paper introduces genetic programming (GP) – a set of evolutionary com-
putation techniques for getting computers to automatically solve problems without
having to tell them explicitly how to do it. Since its inception, GP has been used
to solve many practical problems, producing a number of human competitive results
and even patentable new inventions. We start with a gentle introduction to the ba-
sic representation, initialisation and operators used in GP, complemented by a step
by step description of their use for the solution of an illustrative problem. We then
progress to discuss a variety of alternative representations for programs and more ad-
vance specialisations of GP. A multiplicity of real-world applications of GP are then
presented to illustrate the scope of the technique. For the benefits of more advanced
readers, this is followed by a series of recommendations and suggestions to obtain the
most from a GP system. Although the paper has been written with beginners and
practitioners in mind, for completeness we also provide an overview of the theoretical
results and models available to date for GP. The paper is concluded by an appendix
which provides a plethora of pointers to resources and further reading.

2

Contents

1 Introduction 5
1.1 GP in a Nutshell . 5
1.2 Overview of the Paper . 6

2 Representation, Initialisation and Operators in Tree-based GP 7
2.1 Representation . 7
2.2 Initialising the Population . 9
2.3 Selection . 11
2.4 Recombination and Mutation . 11

3 Getting Ready to Run Genetic Programming 14
3.1 Steps 1: Terminal Set . 14
3.2 Step 2: Function Set . 15

3.2.1 Closure . 15
3.2.2 Sufficiency . 17
3.2.3 Evolving Structures other than Programs 17

3.3 Step 3: Fitness Function . 18
3.4 Steps 4 and 5: Parameters and Termination 19

4 Example of a Run of Genetic Programming 20
4.1 Preparatory Steps . 20
4.2 Step-by-Step Sample Run . 22

4.2.1 Initialisation . 22
4.2.2 Fitness Evaluation . 22
4.2.3 Selection, Crossover and Mutation 23

5 Advanced Tree-based GP Techniques 25
5.1 Automatically Defined Functions . 25
5.2 Program Architecture and Architecture-Altering Operations 26
5.3 Genetic Programming Problem Solver . 26
5.4 Constraining Syntactic Structures . 27

5.4.1 Enforcing Particular Structures . 27
5.4.2 Strongly Typed GP . 28
5.4.3 Grammar Based Constraints . 28
5.4.4 A Cautionary Note . 29

5.5 Developmental Genetic Programming . 30

6 Linear and Graph-based GP 31
6.1 Linear Genetic Programming . 31
6.2 Graph Based Genetic Programming . 33

3

7 Applications 34
7.1 Curve Fitting, Data Modelling, and Symbolic Regression 34
7.2 Human Competitive Results – the Humies 37
7.3 Image and Signal Processing . 40
7.4 Financial Trading, Time Series Prediction and Economic Modelling 42
7.5 Industrial Process Control . 43
7.6 Medicine, Biology and Bioinformatics . 43
7.7 Mixing GP with Other Techniques . 44
7.8 GP to Create Searchers and Solvers – Hyper-heuristics 44
7.9 Artistic . 45
7.10 Entertainment and Computer Games . 45
7.11 Where can we Expect GP to Do Well? . 46

8 Tricks of the Trade 46
8.1 Getting Started . 46
8.2 Presenting Results . 47
8.3 Reducing Fitness Evaluations/Increasing their Effectiveness 48
8.4 Co-evolution . 50
8.5 Reducing Cost of Fitness with Caches . 50
8.6 GP Running in Parallel . 52

8.6.1 Master-slave GP . 52
8.6.2 Geographically Distributed GP . 53
8.6.3 GP Running on GPUs . 55

8.7 GP Trouble-shooting . 56

9 Genetic Programming Theory 57
9.1 Mathematical Models . 57
9.2 Search Spaces . 58
9.3 Bloat . 60

10 Conclusions 61

4

1 Introduction

The goal of having computers automatically solve problems is central to artificial intelli-
gence, machine learning, and the broad area encompassed by what Turing called “machine
intelligence” [415]. Machine learning pioneer Arthur Samuel, in his 1983 talk entitled “AI:
Where It Has Been and Where It Is Going” [366], stated that the main goal of the fields
of machine learning and artificial intelligence is:

“to get machines to exhibit behaviour, which if done by humans, would be
assumed to involve the use of intelligence.”

Genetic programming (GP) is an evolutionary computation (EC) technique that au-
tomatically solves problems without having to tell the computer explicitly how to do it.
At the most abstract level GP is a systematic, domain-independent method for getting
computers to automatically solve problems starting from a high-level statement of what
needs to be done.

Over the last decade, GP has attracted the interest of streams of researchers around
the globe. This paper is intended to give an overview of the basics of GP, to summarise
important work that gave direction and impetus to research in GP as well as to discuss some
interesting new directions and applications. Things change fast in this field, as investigators
discover new ways of doing things, and new things to do with GP. It is impossible to cover
all aspects of this area, even within the generous page limits of this paper. Thus this paper
should be seen as a snapshot of the view we, the authors, have at the time of writing.

1.1 GP in a Nutshell

Technically, GP is a special evolutionary algorithm (EA) where the individuals in the
population are computer programs. So, generation by generation GP iteratively transforms
populations of programs into other populations of programs as illustrated in Figure 1.
During the process, GP constructs new programs by applying genetic operations which are
specialised to act on computer programs.

Algorithmically, GP comprises the steps shown in Algorithm 1. The main genetic
operations involved in GP (line 5 of Algorithm 1) are the following:

Generate Population
of Random Programs

Run Programs and
Evaluate Their Quality

Breed Fitter Programs

Solution

(* (SIN (- y x))
 (IF (> x 15.43)
 (+ 2.3787 x)
 (* (SQRT y)
 (/ x 7.54))))

Figure 1: GP’s main loop.

5

Algorithm 1 Abstract GP algorithm.

1: Randomly create an initial population of programs from the available primitives (see
Section 2.2).

2: repeat
3: Execute each program and ascertain its fitness.
4: Select one or two program(s) from the population with a probability based on fitness

to participate in genetic operations (see Section 2.3).
5: Create new individual program(s) by applying genetic operations with specified prob-

abilities (see Section 2.4).
6: until an acceptable solution is found or some other stopping condition is met (e.g.,

reaching a maximum number of generations).
7: return the best-so-far individual.

• Crossover: the creation of one or two offspring programs by recombining randomly
chosen parts from two selected programs.

• Mutation: the creation of one new offspring program by randomly altering a ran-
domly chosen part of one selected program.

Some GP systems also support structured solutions (see, e.g., Section 5.1), and some of
these then include architecture-altering operations which randomly alter the architecture
(e.g., the number of subroutines) of a program to create a new offspring program. Also,
often, in addition of crossover, mutation and the architecture-altering operations, an opera-
tion which simply copies selected individuals in the next generation is used. This operation,
called reproduction, is typically applied only to produce a fraction of the new generation.

1.2 Overview of the Paper

This paper starts with an overview of the key representations and operations in GP (Sec-
tion 2), a discussion of the decisions that need to be made before running GP (Section 3),
and an example of a GP run (Section 4).

This is followed by descriptions of some more advanced GP techniques including: auto-
matically defined functions (Section 5.1) and architecture-altering operations (Section 5.2),
the GP problem solver (Section 5.3), systems that constrain the syntax of evolved programs
in some way (e.g., using grammars or type systems; Section 5.4) and developmental GP
(Section 5.5). Alternative program representations, namely linear GP (Section 6.1) and
graph-based GP (Section 6.2) are then discussed.

After this survey of representations, we provide a review of the enormous variety of
applications of GP, including curve fitting and data modelling (Section 7.1), human com-
petitive results (Section 7.2) and much more, and a substantial collection of “tricks of the
trade” used by experienced GP practitioners (Section 8). We also give an overview of some
of the considerable work that has been done on the theory of GP (Section 9).

6

x x

+ +

max

x

y3

∗

Figure 2: GP syntax tree representing max(x*x,x+3y).

After concluding the paper (Section 10), we provide a resources appendix that reviews
the many sources of further information on GP, its applications, and related problem
solving systems.

2 Representation, Initialisation and Operators in

Tree-based GP

In this section we will introduce the basic tools and terms used in genetic programming. In
particular, we will look at how solutions are represented in most GP systems (Section 2.1),
how one might construct the initial, random population (Section 2.2), and how selection
(Section 2.3) as well as recombination and mutation (Section 2.4) are used to construct
new individuals.

2.1 Representation

In GP programs are usually expressed as syntax trees rather than as lines of code. Figure 2
shows, for example, the tree representation of the program max(x*x,x+3*y). Note how
the variables and constants in the program (x, y, and 3), called terminals in GP, are leaves
of the tree, while the arithmetic operations (+, *, and max) are internal nodes (typically
called functions in the GP literature). The sets of allowed functions and terminals together
form the primitive set of a GP system.

In more advanced forms of GP, programs can be composed of multiple components
(e.g., subroutines). In this case the representation used in GP is a set of trees (one for each
component) grouped together under a special root node that acts as glue, as illustrated in
Figure 3. We will call these (sub)trees branches. The number and type of the branches in

7

ROOT

...

Component
1

Component
2

Component
N

Branches

Figure 3: Multi-component program representation.

a program, together with certain other features of the structure of the branches, form the
architecture of the program.

It is common in the GP literature to represent expressions in a prefix notation similar
to that used in LISP or Scheme. For example, max(x*x,x+3*y) becomes (max (* x x)

(+ x (* 3 y))). This notation often makes it easier to see the relationship between
(sub)expressions and their corresponding (sub)trees. Therefore, in the following, we will
use trees and their corresponding prefix-notation expressions interchangeably.

How one implements GP trees will obviously depend a great deal on the programming
languages and libraries being used. Most traditional languages used in AI research (e.g.,
Lisp and Prolog), many recent languages (e.g., Ruby and Python), and the languages
associated with several scientific programming tools (e.g., MATLAB r© and Mathemtica r©)
provide automatic garbage collection and dynamic lists as fundamental data types making
it easy to directly implement expression trees and the necessary GP operations. In other
languages one may have to implement lists/trees or use libraries that provide such data
structures.

In high performance environments, however, the tree-based representation may be too
memory-inefficient since it requires the storage and management of numerous pointers.
If all functions have a fixed arity (which is extremely common in GP applications) the
brackets become redundant in prefix-notation expressions, and the tree can be represented
as a simple linear sequence. For example, the expression (max (* x x) (+ x (* 3 y)))

could be written unambiguously as the sequence max * x x + x * 3 y. The choice of
whether to use such a linear representation or an explicit tree representation is typically
guided by questions of convenience, efficiency, the genetic operations being used (some may
be more easily or more efficiently implemented in one representation), and other data one
may wish to collect during runs (e.g., it is sometimes useful to attach additional information
to nodes, which may require that they be explicitly represented). There are also numerous

8

+
t=1

+

∗

t=2 t=3

x

+

∗

+
t=4

x

∗

y

+
t=6

x

∗

y

/

+
t=7

x

∗

y 01

/

+
t=5

x

∗

y

/

1

Figure 4: Creation of a full tree having maximum depth 2 (and therefore a total of seven
nodes) using the Full initialisation method (t=time).

high-quality, freely available GP implementations (see the resources in the appendix at the
end of this paper for more information).

While these tree representations are the most common in GP, there are other important
representations, some of which are discussed in Section 6.

2.2 Initialising the Population

Similar to other evolutionary algorithms, in GP the individuals in the initial population
are randomly generated. There are a number of different approaches to generating this
random initial population. Here we will describe two of the simplest (and earliest) methods
(the Full and Grow methods), and a widely used combination of the two known as Ramped
half-and-half.

In both the Full and Grow methods, the initial individuals are generated subject to a
pre-established maximum depth. In the Full method (so named because it generates full
trees) nodes are taken at random from the function set until this maximum tree depth is
reached, and beyond that depth only terminals can be chosen. Figure 4 shows snapshots
of this process in the construction of a full tree of depth 2. The children of the * node, for
example, must be leaves, or the resulting tree would be too deep; thus at time t = 3 and
time t = 4 terminals must be chosen (x and y in this case).

Where the Full method generates trees of a specific size and shape, the Grow method
allows for the creation of trees of varying size and shape. Here nodes are selected from the
whole primitive set (functions and terminals) until the depth limit is reached, below which
only terminals may be chosen (as is the case in the Full method). Figure 5 illustrates this
process for the construction of a tree with depth limit 2. Here the first child of the root +
node happens to be a terminal, thus closing off that branch before actually reaching the
depth limit. The other child, however, is a function (-), but its children are forced to be

9

+
t=1

+
t=2

x

t=3
+

−x

t=4
+

−x

2

t=5
+

−x

2 y

Figure 5: Creation of a five node tree using the Grow initialisation method with a maximum
depth of 2 (t=time). A terminal is chosen at t = 2, causing the left branch of the root to
be closed at that point even though the maximum depth had not been reached.

terminals to ensure that the resulting tree does not exceed the depth limit.
Pseudo code for a recursive implementation of both the Full and Grow methods is given

in Algorithm 2.
Note here that the size and shapes of the trees generated via the Grow method are highly

sensitive to the sizes of the function and terminal sets. If, for example, one has significantly
more terminals than functions, the Grow method will almost always generate very short
trees regardless of the depth limit. Similarly, if the number of functions is considerably
greater than the number of terminals, then the Grow method will behave quite similarly
to the Full method. While this is a particular problem for the Grow method, it illustrates
a general issue where small (and often apparently inconsequential) changes such as the
addition or removal of a few functions from the function set can in fact have significant
implications for the GP system, and potentially introduce important unintended biases.

Because neither the Grow or Full method provide a very wide array of sizes or shapes
on their own, Koza [203] proposed a combination called ramped half-and-half. Here half
the initial population is constructed using Full and half is constructed using Grow. This
is done using a range of depth limits (hence the term “ramped”) to help ensure that we
generate trees having a variety of sizes and shapes.

While these methods are easy to implement and use, they often make it difficult to
control the statistical distributions of important properties such as the sizes and shapes of
the generated trees. Other initialisation mechanisms, however, have been developed (e.g.,
[263]) that do allow for closer control of these properties in instances where such control is
important.

It is also worth noting that the initial population need not be entirely random. If some-
thing is known about likely properties of the desired solution, trees having these properties
can be used to seed the initial population. Such seeds might be created by humans based
on knowledge of the problem domain, or they could be the results of previous GP runs.

10

Algorithm 2 Pseudo code for recursive program generation with the “Full” and “Grow”
methods.
procedure: gen rnd expr(func set, term set, max d, method)

1: if max d = 0 or
(

method = grow and rand() < |term set|
|term set|+|func set|

)

then

2: expr = choose random element(term set)
3: else
4: func = choose random element(func set)
5: for i = 1 to arity(func) do
6: arg i = gen rnd expr(func set, term set, max d - 1, method);
7: end for
8: expr = (func, arg 1, arg 2, ...);
9: end if

10: return expr

Notes: func set is a function set, term set is a terminal set, max d is the maximum al-
lowed depth for expressions, method is either “Full” or “Grow” and expr is the generated
expression in prefix notation.

However, one needs to be careful not to create a situation where the second generation
is dominated by offspring of a single or very small number of seeds. Diversity preserving
techniques, such as multi-objective GP (e.g., [313, 374]), demes [242] (see Section 8.6),
fitness sharing [125] and the use of multiple seed trees, might be used. In any case, the
diversity of the population should be monitored to ensure that there is significant mixing
of different initial trees.

2.3 Selection

Like in most other EAs, genetic operators in GP are applied to individuals that are prob-
abilistically selected based on fitness. That is, better individuals are more likely to have
more child programs than inferior individuals. The most commonly employed method for
selecting individuals in GP is tournament selection, followed by fitness-proportionate se-
lection, but any standard EA selection mechanism can be used. Since selection has been
described many times in the EA literature, we will not provide any additional details.

2.4 Recombination and Mutation

Where GP departs significantly from other EAs is in the implementation of the operators
of crossover and mutation. The most commonly used form of crossover is subtree crossover.
Given two parents, subtree crossover randomly selects a crossover point in each parent tree.
Then, it creates the offspring by replacing the sub-tree rooted at the crossover point in a
copy of the first parent with a copy of the sub-tree rooted at the crossover point in the
second parent, as illustrated in Figure 6.

11

3

1y

∗

+

yx

+

+

2x

/

Crossover
Point

Crossover
Point

3

+

2x

/

(x+y)+3

(y+1) (x/2)*

(x/2)+3

Parents Offspring

GARBAGE

Figure 6: Example of subtree crossover.

Except in technical studies on the behaviour of GP, crossover points are usually not
selected with uniform probability. Typical GP primitive sets lead to trees with an average
branching factor of at least 2, so the majority of the nodes will be leaves. Consequently the
uniform selection of crossover points leads to crossover operations frequently exchanging
only very small amounts of genetic material (i.e., small subtrees); many crossovers may
in fact reduce to simply swapping two leaves. To counter this, Koza suggested the widely
used approach of choosing functions 90% of the time, while leaves are selected 10% of the
time.

While subtree crossover is the most common version of crossover in tree-based GP,
other forms have been defined and used. For example, one-point crossover [326, 329, 239]
works by selecting a common crossover point in the parent programs and then swapping
the corresponding subtrees. To account for the possible structural diversity of the two
parents, one-point crossover analyses the two trees from the root nodes and considers for
the selection of the crossover point only the parts of the two trees, called the common region,
which have the same topology (i.e. the same arity in the nodes encountered traversing the
trees from the root node). In context-preserving crossover [87], the crossover points are
constrained to have the same coordinates, like in one-point crossover. However, in this case
no other constraint is imposed on their selection (i.e., they are not limited to the common
region). In size-fair crossover [224, 243] the first crossover point is selected randomly like
in standard crossover. Then the size of the subtree to be excised from the first parent
is calculated. This is used to constrain the choice of the second crossover point so as
to guarantee that the subtree excised from the second parent will not be “unfairly” big.
Finally, it is worth mentioning that the notion of common region is related to the notion of

12

3

yx

+

+

Mutation
Point

Randomly Generated
Sub-tree

y

∗

2x

/

yx

+

+

Mutation
Point

y

∗

2x

/

Figure 7: Example of subtree mutation.

homology, in the sense that the common region represents the result of a matching process
between parent trees. It is then possible to imagine that within such a region transfer of
homologous primitives can happen in very much like the same way as it happens in GAs
operating on linear chromosomes. An example of recombination operator that implements
this idea is uniform crossover for GP [328].

The most commonly used form of mutation in GP (which we will call subtree mutation)
randomly selects a mutation point in a tree and substitutes the sub-tree rooted there
with a randomly generated sub-tree. This is illustrated in Figure 7. Subtree mutation is
sometimes implemented as crossover between a program and a newly generated random
program; this operation is also known as “headless chicken” crossover [10].

Another common form of mutation is point mutation, which is the rough equivalent for
GP of the bit-flip mutation used in GAs. In point mutation a random node is selected and
the primitive stored there is replaced with a different random primitive of the same arity
taken from the primitive set. If no other primitives with that arity exist, nothing happens
to that node (but other nodes may still be mutated). Note that, when subtree mutation
is applied, this involves the modification of exactly one subtree. Point mutation, on the
other hand, is typically applied with a given mutation rate on a per-node basis, allowing
multiple nodes to be mutated independently.

There are a number of mutation operators which treat constants in the program as
special cases. [371] mutates constants by adding Gaussianly distributed random noise to
them. However, others use a variety of potentially expensive optimisation tools to try and
fine tune an existing program by finding the “best” value for constants within it. E.g.,
[369] uses “a numerical partial gradient ascent . . . to reach the nearest local optimum” to
modify all constants in a program, while [378] uses simulated annealing to stochastically
update numerical values within individuals.

While mutation is not necessary for GP to solve many problems, [307] argues that, in

13

some cases, GP with mutation alone can perform as well as GP using crossover. While
mutation was often used sparsely in early GP work, it is more widely used in GP today,
especially in modelling applications.

3 Getting Ready to Run Genetic Programming

To run a GP system to solve a problem a small number of ingredients, often termed
preparatory steps, need to be specified:

1. the terminal set,

2. the function set,

3. the fitness measure,

4. certain parameters for controlling the run, and

5. the termination criterion and method for designating the result of the run.

In this section we consider these ingredients in more detail.

3.1 Steps 1: Terminal Set

While it is common to describe GP as evolving programs, GP is not typically used to evolve
programs in the familiar, Turing-complete languages humans normally use for software
development. It is instead more common to evolve programs (or expressions or formulae)
in a more constrained and often domain-specific language. The first two preparatory steps,
the definition of the terminal and function sets, specify such a language, i.e., the ingredients
that are available to GP to create computer programs.

The terminal set may consist of:

• the program’s external inputs, typically taking the form of named variables (e.g., x,
y);

• functions with no arguments, which are, therefore, interesting either because they
return different values in different invocations (e.g., the function rand() that returns
random numbers, or a function dist to wall() that returns the distance from the
robot we are controlling to an obstacle) or because the produce side effects (e.g.,
go left()); and

• constants, which can either be pre-specified or randomly generated as part of the tree
creation process.

14

Table 1: Examples of primitives allowed in the GP function and terminal sets.

Function Set
Kind of Primitive Example(s)
Arithmetic +, *, /
Mathematical sin, cos, exp
Boolean AND, OR, NOT
Conditional IF-THEN-ELSE

Looping FOR, REPEAT
...

...

Terminal Set
Kind of Primitive Example(s)
Variables x, y
Constant values 3, 0.45
0-arity functions rand, go left

Note that using a primitive such as rand can cause the behaviour of an individual
program to vary every time it is called, even if it is given the same inputs. What we often
want instead is a set of fixed random constants that are generated as part of the process
of initialising the population. This is typically accomplished by introducing a terminal
that represents an ephemeral random constant. Every time this terminal is chosen in the
construction of an initial tree (or a new subtree to use in an operation like mutation), a
different random value is generated which is then used for that particular terminal, and
which will remain fixed for the rest of the run. The use of ephemeral random constants
is typically denoted by including the symbol < in the terminal set; see Section 4 for an
example.

3.2 Step 2: Function Set

The function set used in GP is typically driven by the nature of the problem domain.
In a simple numeric problem, for example, the function set may consist of merely the
arithmetic functions (+, -, *, /). However, all sorts of other functions and constructs
typically encountered in computer programs can be used. Table 1 shows a sample of some
of the functions one sees in the GP literature. Also for many problems, the primitive set
includes specialised functions and terminals which are expressly designed to solve problems
in a specific domain of application. For example, if the goal is to program a robot to mop the
floor, then the function set might include such actions as move, turn, and swish-the-mop.

3.2.1 Closure

For GP to work effectively, most function sets are required to have an important property
known as closure [203], which can in turn be broken down into the properties of type
consistency and evaluation safety.

Type consistency is necessitated by the fact that subtree crossover (as described in
Section 2.4) can mix and join nodes quite arbitrarily during the evolutionary process. As
a result it is necessary that any subtree can be used in any of the argument positions for
every function in the function set, because it is always possible that sub-tree crossover

15

will generate that combination. For functions that return a value (e.g., +, -, *, /), it
is then common to require that all the functions be type consistent, namely that they
all return values of the same type, and that all their arguments be of that type as well.
In some cases this requirement can be weakened somewhat by providing an automatic
conversion mechanism between types, e.g., converting numbers to Booleans by treating all
negative values as false, and non-negative values as true. Conversion mechanisms like this
can, however, introduce unexpected biases into the search process, so they should be used
thoughtfully.

The requirement of type consistency can seem quite limiting, but often simple restruc-
turing of the functions can resolve apparent problems. An if function, for example, would
often be defined as taking three arguments: The test, the value to return if the test evalu-
ates to true, and the value to return if the test evaluates to false. The first of these three
arguments is clearly Boolean, which would suggest that if can’t be used with numeric
functions like +. This can easily be worked around however by providing a mechanism to
automatically convert a numeric value into a Boolean as discussed above. Alternatively,
one can replace the traditional if with a function of four (numeric) arguments a, b, c, d
with the semantics “If a < b then return value c, otherwise return value d”. These are
obviously just specific examples of general techniques; the details are likely to depend on
the particulars of your problem domain.

An alternative to requiring type consistency is to extend the GP system to, for example,
explicitly include type information, and constrain operations like crossover so they do not
perform “illegal” (from the standpoint of the type system) operations. This is discussed
further in Section 5.4.

The other component of closure is evaluation safety, necessitated by the fact that many
commonly used functions can fail in various ways. An evolved expression might, for ex-
ample, divide by 0, or call MOVE FORWARD when facing a wall or precipice. This is typically
dealt with by appropriately modifying the standard behaviour of primitives. It is common,
for example, to use protected versions of numeric functions that can throw exceptions, such
as division, logarithm, and square root. The protected version of such a function first tests
for potential problems with its input(s) before executing the corresponding instruction,
and if a problem is spotted some pre-fixed value is returned. Protected division (often no-
tated with %), for example, checks for the case that its second argument is 0, and typically
returns 1 if it is (regardless of the value of the first argument).1 Similarly, MOVE AHEAD can
be modified to do nothing if a forward move is illegal for some reason or, if there are no
other obstacles, the edges can simply be eliminated by making the world toroidal.

An alternative to protected functions is to trap run-time exceptions and strongly re-
duce the fitness of programs that generate such errors. If the likelihood of generating
invalid expressions is very high, however, this method can lead to all the individuals in the
population having nearly the same (very poor) fitness, leaving selection with very little

1The decision to return 1 here provides the GP system with a simple and reliable way to generate
the constant 1, via an expression of the form (/ x x). This, combined with a similar mechanism for
generating 0 via (- x x) ensures that GP can easily construct these two important constant.

16

discriminatory power.
One type of run-time error that is somewhat more difficult to check for is numeric

overflow. If the underlying implementation system throws some sort of exception, then
this can be handled either by protection or by penalizing as discussed above. If, however,
the implementation language quietly ignores the overflow (e.g., the common practice of
wrapping around on integer overflow), and if this behavior is seen as unacceptable, then the
implementation will need to include appropriate checks to catch and handle such overflows.

3.2.2 Sufficiency

There is one more property that, ideally, primitives sets should have: sufficiency. Suf-
ficiency requires that the primitives in the primitive set are capable of expressing the
solutions to the problem, i.e., that the set of all the possible recursive compositions of such
primitives includes at least one solution. Unfortunately, sufficiency can be guaranteed only
for some problems, when theory or experience with other methods tells us that a solution
can be obtained by combining the elements of the primitive set.

As an example of a sufficient primitive set let us consider the set {AND, OR, NOT, x1, x2,
..., xN}, which is always sufficient for Boolean function induction problems, since it can
produce all Boolean functions of the variables x1, x2, ..., xN. An example of insufficient set
is the set {+, -, *, /, x, 0, 1, 2}, which is insufficient whenever, for example, the target
function is transcendental, e.g., exp(x), and therefore cannot be expressed as a rational
function (basically, a ratio of polynomials). When a primitive set is insufficient for a
particular application, GP can only develop programs that approximate the desired one,
although perhaps very closely.

3.2.3 Evolving Structures other than Programs

There are many problems in the real world where solutions cannot be directly cast as
computer programs. For example, in many design problems the solution is an artifact of
some type (a bridge, a circuit, etc.). GP has been applied to problems of this kind by
using a trick: the primitive set is designed in such a way that, through their execution,
programs construct solutions to the problem. This has been viewed as analogous to the
development by which an egg grows into an adult. For example, if the goal is the automatic
creation of an electronic controller for a plant, the function set might include common
components such as integrator, differentiator, lead, lag, and gain, and the terminal
set might contain reference, signal, and plant output. Each of these operations, when
executed, then insert the corresponding device into the controller being built. If, on the
other hand, the goal is the synthesis of analogue electrical circuits the function set might
include components such as transistors, capacitors, resistors, etc. This is further discussed
in Section 5.5.

17

3.3 Step 3: Fitness Function

The first two preparatory steps define the primitive set for GP, and therefore, indirectly
define the search space GP will explore. This includes all the programs that can be con-
structed by composing the primitives in all possible ways. However, at this stage we still
do not know which elements or regions of this search space are good (i.e., include programs
that solve or approximately solve the problem). This is the task of the fitness measure,
which effectively (albeit implicitly) specifies the desired goal of the search process. The
fitness measure is our primary (and often sole) mechanism for giving a high-level statement
of the problem’s requirements to the GP system. For example, if the goal is to get GP to
automatically synthesise an amplifier, the fitness function is the mechanism for telling GP
to synthesise a circuit that amplifies an incoming signal (as opposed to, say, a circuit that
suppresses the low frequencies of an incoming signal or computes its square root).

Depending on the problem at hand, fitness can be measured in terms of the amount
of error between its output and the desired output, the amount of time (fuel, money,
etc.) required to bring a system to a desired target state, the accuracy of the program
in recognising patterns or classifying objects into classes, the payoff that a game-playing
program produces, the compliance of a structure with user-specified design criteria, etc.

There is something unusual about the fitness functions used in GP that differentiates
them from those used in most other EAs. Because the structures being evolved in GP are
computer programs, fitness evaluation normally requires executing all the programs in the
population, typically multiple times. While one can compile the GP programs that make
up the population, the overhead is usually substantial, so it is much more common to use
an interpreter to evaluate the evolved programs.

Interpreting a program tree means executing the nodes in the tree in an order that
guarantees that nodes are not executed before the value of their arguments (if any) is
known. This is usually done by traversing the tree recursively starting from the root node,
and postponing the evaluation of each node until the value of its children (arguments)
is known. This process is illustrated in Figure 8, where the number to the right of each
internal node represents the result of evaluating the subtree root at that node. In this
example, the independent variable X evaluates to -1. Algorithm 3 gives a pseudo-code
implementation of the interpretation procedure. The code assumes that programs are
represented as prefix-notation expressions and that such expressions can be treated as lists
of components.

In some problems we are interested in the output produced by a program, i.e., the
value returned when we evaluate starting at the root node. In other problems, however,
we are interested in the actions performed by a program. In this case the primitive set
will include functions with side effects, i.e., functions that do more than just return a
value, but, for example, change some global data structures, print or draw something on
the screen or control the motors of a robot. Irrespective of whether we are interested
in program outputs or side effects, quite often the fitness of a program depends on the
results produced by its execution on many different inputs or under a variety of different
conditions. These different test cases typically incrementally contribute to the fitness value

18

-

+ /

x3 0 1 2

- - - -

x 03

3

x=-1

-2

1

3 -3

-1

2

Figure 8: Example interpretation of a syntax tree (the terminal x is a variable has a value
of -1). The number to the right of each internal node represents the result of evaluating
the subtree root at that node.

of a program, and for this reason are called fitness cases.
Another common feature of GP fitness measures is that, for many practical problems,

they are multi-objective,, i.e., they combine two or more different elements that are often
in competition with one another. The area of multi-objective optimization is a complex
and active area of research in GP and machine learning in general; see [80], for example,
for more.

3.4 Steps 4 and 5: Parameters and Termination

The fourth and fifth preparatory steps are administrative. The fourth preparatory step en-
tails specifying the control parameters for the run. The most important control parameter
is the population size. Other control parameters include the probabilities of performing
the genetic operations, the maximum size for programs, and other details of the run.

The fifth preparatory step consists of specifying the termination criterion and the
method of designating the result of the run. The termination criterion may include a
maximum number of generations to be run as well as a problem-specific success predicate.
Typically the single best-so-far individual is then harvested and designated as the result
of the run, although one might wish to return additional individuals and data as necessary
or appropriate for your problem domain.

19

Algorithm 3 Typical interpreter for GP.

procedure: eval(expr)

1: if expr is a list then
2: proc = expr(1) {Non-terminal: extract root}
3: if proc is a function then
4: value = proc(eval(expr(2)), eval(expr(3)), ...) {Function: evaluate arguments}
5: else
6: value = proc(expr(2), expr(3), ...) {Macro: don’t evaluate arguments}
7: end if
8: else
9: if expr is a variable or expr is a constant then

10: value = expr {Terminal variable or constant: just read the value}
11: else
12: value = expr() {Terminal 0-arity function: execute}
13: end if
14: end if
15: return value

Notes: expr is an expression in prefix notation, expr(1) represents the primitive at the
root of the expression, expr(2) represents the first argument of that primitive, expr(3)
represents the second argument, etc.

4 Example of a Run of Genetic Programming

This section provides a concrete, illustrative run of GP in which the goal is to automatically
evolve an expression whose values match those of the quadratic polynomial x2 + x + 1 in
the range [−1, +1]. That is, the goal is to automatically create a computer program that
matches certain numerical data. This process is sometimes called system identification or
symbolic regression (see Section 7.1 for more).

We begin with the five preparatory steps from the previous section, and then describe
in detail the events in one possible run.

4.1 Preparatory Steps

The purpose of the first two preparatory steps is to specify the ingredients the evolu-
tionary process can use to construct potential solutions. Because the problem is to find
a mathematical function of one independent variable, x, the terminal set (the inputs to
the to-be-evolved programs) must include this variable. The terminal set also includes
ephemeral random constants, drawn from some reasonable range, say from −5.0 to +5.0,
as described in Section 3.1. Thus the terminal set, T , is

T = {x,<}.

The statement of the problem is somewhat flexible in that it does not specify what func-

20

tions may be employed in the to-be-evolved program. One simple choice for the function
set consists of the four ordinary arithmetic functions: addition, subtraction, multiplica-
tion, and division. Most numeric regression will include at least these operations, often in
conjunction with additional functions such as sin and log. In our example, however, we
will restrict ourselves to the simple function set

F = {+, -, *, %},

where % is protected division as discussed in Section 3.2.1.
The third preparatory step involves constructing the fitness measure that specifies what

the human wants. The high-level goal of this problem is to find a program whose output
is equal to the values of the quadratic polynomial x 2+x+1. Therefore, the fitness assigned
to a particular individual in the population for this problem must reflect how closely the
output of an individual program comes to the target polynomial x2 + x + 1.

The fitness measure could be defined as the integral of the absolute value of the dif-
ferences (errors) between the individual mathematical expression and the target quadratic
polynomial x2+x+1, taken over the range [−1, +1]. However, for most symbolic regression
problems, it is not practical or possible to analytically compute the value of the integral
of the absolute error. Thus it is common to instead define the fitness to be the sum of
absolute errors measured at different values of the independent variable x in the range
[−1.0, +1.0]. In particular, we will measure the errors for x = −1.0,−0.9, · · · , 0.9, 1.0. A
smaller value of fitness (error) is better; a fitness (error) of zero would indicate a perfect
fit. Note that with this definition, our fitness is (approximately) proportional to the area
between the parabola x2 + x + 1 and the curve representing the candidate individual (see
Figure 10 for examples).

The fourth step is where we set our run parameters. The population size in this
small illustrative example will be just four. In actual practice, the population size for
a run of GP typically consists of thousands or millions of individuals, but we will use
this tiny population size to keep the example manageable. In practice, the crossover
operation is commonly used to generate about 90% of the individuals in the population;
the reproduction operation (where a fit individual is simply copied from one generation
to the next) is used to generate about 8% of the population; the mutation operation is
used to generate about 1% of the population; and the architecture-altering operations (see
Section 5.2) are used to generate perhaps 1% of the population. Because this example
involves an abnormally small population of only four individuals, the crossover operation
will be used to generate two individuals, and the mutation and reproduction operations will
each be used to generate one individual. For simplicity, the architecture-altering operations
are not used for this problem.

In the fifth and final step we need to specify a termination condition. A reasonable
termination criterion for this problem is that the run will continue from generation to
generation until the fitness (or error) of some individual is less than 0.1. In this contrived
example, our example run will (atypically) yield an algebraically perfect solution (with a
fitness of zero) after merely one generation.

21

(a) (b) (c) (d)

- + + *

+ 0 1 * 2 0 x -

x 1 x x -1 -2

x+1 x +12 2 x

Figure 9: Initial population of four randomly created individuals of generation 0

4.2 Step-by-Step Sample Run

Now that we have performed the five preparatory steps, the run of GP can be launched.

4.2.1 Initialisation

GP starts by randomly creating a population of four individual computer programs. The
four programs are shown in Figure 9 in the form of trees.

The first randomly constructed program tree (Figure 9a), and is equivalent to the
expression x + 1. The second program (Figure 9b) adds the constant terminal 1 to the
result of multiplying x by x and is equivalent to x 2+1. The third program (Figure 9c)
adds the constant terminal 2 to the constant terminal 0 and is equivalent to the constant
value 2. The fourth program (Figure 9d) is equivalent to x.

4.2.2 Fitness Evaluation

Randomly created computer programs will, of course, typically be very poor at solving
the problem at hand. However, even in a population of randomly created programs, some
programs are better than others. Here, for example, the four random individuals from
generation 0 in Figure 9 produce outputs that deviate by different amounts from the target
function x2 +x+1. Figure 10 compares the plots of each of the four individuals in Figure 9
and the target quadratic function x2+x+1. The sum of absolute errors for the straight line
x+1 (the first individual) is 7.7 (Figure 10a). The sum of absolute errors for the parabola
x 2+1 (the second individual) is 11.0 (Figure 10b). The sums of the absolute errors for the
remaining two individuals are 17.98 (Figure 10c) and 28.7 (Figure 10d), respectively.

As can be seen in Figure 10, the straight line x+1 (Figure 10a) is closer to the parabola
x2 + x + 1 in the range from –1 to +1 than any of three other programs in the population.
This straight line is, of course, not equivalent to the parabola x2 + x + 1; it is not even
a quadratic function. It is merely the best candidate that happened to emerge from the

22

(a) (b)

(c) (d)

-2

 4

-1 1

-2

 4

-1 1

-2

 4

-1 1

-2

 4

-1 1

Figure 10: Graphs of the evolved functions from generation 0. The heavy line in each
plot is the target function x2 + x + 1, with the other line being the evolved functions
from the first generation (see Figure 9). The fitness of each of the four randomly created
individuals of generation 0 is approximately proportional to the area between two curves,
with the actual fitness values being 7.7, 11.0, 17.98 and 28.7 for individuals (a) through
(d), respectively.

blind (and very limited) random search of generation 0. In the valley of the blind, the
one-eyed man is king.

4.2.3 Selection, Crossover and Mutation

After the fitness of each individual in the population is ascertained, GP then probabilisti-
cally selects relatively more fit programs from the population to act as the parents of the
next generation. The genetic operations are applied to the selected individuals to create
offspring programs. The important point for our example is that our selection process
is not greedy. Individuals that are known to be inferior will be selected to a certain de-
gree. The best individual in the population is not guaranteed to be selected and the worst
individual in the population will not necessarily be excluded.

In this example, we will start with the reproduction operation. Because the first in-
dividual (Figure 9a) is the most fit individual in the population, it is very likely to be
selected to participate in a genetic operation. Let us suppose that this particular individ-
ual is, in fact, selected for reproduction. If so, it is copied, without alteration, into the

23

(a) (b) (c) (d)

- + - +

+ 0 % 0 x 0 1 *

x 1 x x x

x+1 1 x

x 1

+

x + x + 1
2

Figure 11: Population of generation 1 (after one reproduction, one mutation, and one
two-offspring crossover operation).

next generation (generation 1). It is shown in Figure 11a as part of the population of the
new generation.

We next perform the mutation operation. Because selection is probabilistic, it is pos-
sible that the third best individual in the population (Figure 9c) is selected. One of the
three nodes of this individual is then randomly picked as the site for the mutation. In
this example, the constant terminal 2 is picked as the mutation site. This program is then
randomly mutated by deleting the entire subtree rooted at the picked point (in this case,
just the constant terminal 2) and inserting a subtree that is randomly constructed in the
same way that the individuals of the initial random population were originally created.
In this particular instance, the randomly grown subtree computes the quotient of x and x
using the protected division operation %. The resulting individual is shown in Figure 11b.
This particular mutation changes the original individual from one having a constant value
of 2 into one having a constant value of 1, improving its fitness from 17.98 to 11.0.

Finally, we use the crossover operation to generate our final two individuals for the next
generation. Because the first and second individuals in generation 0 are both relatively fit,
they are likely to be selected to participate in crossover. However, selection can always
pick suboptimal individuals. So, let us assume that in our first application of crossover
the pair of selected parents is composed of the above-average tree in Figures 9a and the
below-average tree in Figure 9d. One point of the first parent, namely the + function
in Figure 9a, is randomly picked as the crossover point for the first parent. One point
of the second parent, namely the leftmost terminal x in Figure 9d, is randomly picked
as the crossover point for the second parent. The crossover operation is then performed
on the two parents. The offspring (Figure 11c) is equivalent to x and is not particularly
noteworthy. Let us now assume, that in our second application of crossover, selection

24

chooses the two most fit individuals as parents: the individual in Figure 9b as the first
parent, and the individual in Figure 9a as the second. Let us further imagine that crossover
picks the leftmost terminal x in Figure 9b as a crossover point for the first parent, and the
+ function in Figure 9a as the crossover point for the second parent. Now the offspring
(Figure 11d) is equivalent to x2 + x + 1 and has a fitness (sum of absolute errors) of zero.
Because the fitness of this individual is below 0.1, the termination criterion for the run is
satisfied and the run is automatically terminated. This best-so-far individual (Figure 11d)
is then designated as the result of the run.

Note that the best-of-run individual (Figure 11d) incorporates a good trait (the
quadratic term x 2) from the first parent (Figure 9b) with two other good traits (the linear
term x and constant term of 1) from the second parent (Figure 9a). The crossover opera-
tion thus produced a solution to this problem by recombining good traits from these two
relatively fit parents into a superior (indeed, perfect) offspring.

This is, obviously, a highly simplified example, and the dynamics of a real GP run
are typically far more complex than what is presented here. Also, in general there is no
guarantee that an exact solution like this will be found by GP.

5 Advanced Tree-based GP Techniques

5.1 Automatically Defined Functions

Human programmers organise sequences of repeated steps into reusable components such
as subroutines, functions, and classes. They then repeatedly invoke these components
— typically with different inputs. Reuse eliminates the need to “reinvent the wheel”
every time a particular sequence of steps is needed. Reuse makes it possible to exploit
a problem’s modularities, symmetries, and regularities (and thereby potentially accelerate
the problem-solving process). This can be taken further, as programmers typically organise
these components into hierarchies in which top level components call lower level ones, which
call still lower levels, etc.

While several different mechanisms for evolving reusable components have been pro-
posed (e.g., [13, 359]), Koza’s Automatically Defined Functions (ADFs) [204] have been the
most successful way of evolving reusable components.

When ADFs are used, a program consists of one (or more) function-defining trees
(i.e., ADFs) as well as one or more main result-producing trees (see Figure 3). An ADF
may have none, one, or more inputs. The body of an ADF contains its work-performing
steps. Each ADF belongs to a particular program in the population. An ADF may be
called by the program’s main result-producing tree, by another ADF, or by another type
of tree (such as the other types of automatically evolved program components described
below). Recursion is sometimes allowed. Typically, the ADFs are called with different
inputs. The work-performing steps of the program’s main result-producing tree and the
work-performing steps of each ADF are automatically and simultaneously created by GP.
The program’s main result-producing tree and its ADFs typically have different function

25

and terminal sets. ADFs are the focus of Genetic Programming II [204] and the videotape
[205].

Koza proposed also other types of automatically evolved program components. Auto-
matically defined iterations (ADIs), automatically defined loops (ADLs) and automatically
defined recursions (ADRs) provide means (in addition to ADFs) to reuse code. Automat-
ically defined stores (ADSs) provide means to reuse the result of executing code. These
automatically defined components are described in Genetic Programming III [211].

5.2 Program Architecture and Architecture-Altering Operations

The architecture of a program consists of the total number of trees, the type of each tree
(e.g., result-producing tree, ADF, ADI, ADL, ADR, or ADS), the number of arguments
(if any) possessed by each tree, and, finally, if there is more than one tree, the nature of
the hierarchical references (if any) allowed among the tree.

There are three ways to determine the architecture of the computer programs that will
be evolved:

1. The human user may specify in advance the architecture of the overall program, i.e.,
perform an architecture-defining preparatory step in addition to the five itemised in
Section 2.

2. The run may employ evolutionary selection of the architecture (as described in [204]),
thereby enabling the architecture of the overall program to emerge from a competitive
process during the run of GP.

3. The run may employ a set of architecture-altering operations which can create new
ADFs, remove ADFs, and increase or decrease the number of inputs an ADF has.
Note initially, many architecture changes (such as those define in [204]) are designed
not to change the semantics of the program and, so, the altered program often has
exactly the same fitness as its parent. However, the new arrangement of ADFs may
make it easier for subsequent changes to evolve better programs later.

5.3 Genetic Programming Problem Solver

The Genetic Programming Problem Solver (GPPS) is described in part 4 of Genetic Pro-
gramming III [211]. It is a very powerful AI approach, but typically it requires considerable
computational time.

When GPPS is used, the user does not need to chose either the terminal set or the func-
tion set (the first and second preparatory steps, cf. Section 2). The function set for GPPS
is the four basic arithmetic functions (addition, subtraction, multiplication, and division)
and a conditional operator IF. The terminal set for GPPS consists of numerical constants
and a set of input terminals that are presented in the form of a vector. By employing this
generic function set and terminal set, GPPS reduces the number of preparatory steps from
five to three.

26

GPPS relies on the architecture-altering operations described in Section 5.2 to dynami-
cally create, duplicate, and delete subroutines and loops during the run of GP. Additionally,
in version 2.0 of GPPS [211, Chapter 22], the architecture-altering operations are used to
dynamically create, duplicate, and delete recursions and internal storage. Because the
architecture of the evolving program is automatically determined during the run, GPPS
eliminates the need for the user to specify in advance whether to employ subroutines,
loops, recursions and internal storage in solving a given problem. It similarly eliminates
the need for the user to specify the number of arguments possessed by each subroutine.
Further, GPPS eliminates the need for the user to specify the hierarchical arrangement of
the invocations of the subroutines, loops, and recursions.

5.4 Constraining Syntactic Structures

As discussed in Section 3, most GP systems require type consistency where all sub-trees
return data of the same type, ensuring that the output of any subtree can be used as
one of the inputs to any other node. This ensures that the shuffling caused by sub-tree
crossover, etc., doesn’t lead to incompatible connections between nodes. Many problem
domains, however, have multiple types and do not naturally satisfy the type consistency
requirement. This can often be addressed through creative definitions of functions and
implicit type conversion, but this may not always be desirable. For example, if a key
goal is that the evolved solutions should be easily understood or analysed, then removing
type concepts and other common constraints may lead to solutions that are unacceptable
because they are quite difficult to interpret. GP systems that are constrained structurally
or via a type system often generate results that are easier for humans to understand and
analyse [147], [242, p126].

In this section we will look at three different approaches to constraining the syntax of
the evolved expression trees in GP: simple structure enforcement, strongly typed GP and
grammar based constraints.

5.4.1 Enforcing Particular Structures

If a particular structure is believed or known to be important then one can modify the GP
system to require that all individuals to have that structure [203]. A periodic function,
for example, might be believed to be of the form a sin(bt) and so the GP is restricted to
evolving expressions having that structure. (I.e., a and b are allowed to evolve freely, but
the rest of the structure is fixed). Syntax restriction can also be used to make GP follow
sensible engineering practices. For example, we might want to ensure that loop control
variables appear in the correct parts of FOR loops and nowhere else [242, p126].

This can be implemented in a number of ways. One could, for example, ensure that all
the initial individuals have that structure (for example, generating random sub-trees for a
and b while fixing the rest), and then constrain operations like crossover so that they do
not alter any of the fixed regions. An alternative approach would be to evolve the various
(sub)components separately in any of several ways. One could, for example, evolve pairs

27

of trees (a, b), or one could have two separate populations, one of which is being used to
evolve candidates for a while the other is evolving candidates for b.

5.4.2 Strongly Typed GP

Since constraints are often driven by or expressed using a type system, a natural approach
is to incorporate types and their constraints into the GP system [285]. In strongly typed
GP, every terminal has a type, and every function has types for each of its arguments and
a type for its return value. The process that generates the initial, random expressions, and
all the genetic operators are then constrained to not violate the type system’s constraints.

Returning to the if example from Section 3, we might have a domain with both numeric
and Boolean terminals (e.g., get speed and is food ahead). We might then have an if

function that takes three arguments: A test (Boolean), the value to return if the test is
true, and the value to return if the test is false. Assuming that the second and third values
are constrained to be numeric, then the output of the if is also going to be numeric. If
we choose the test argument as a root parent crossover point, then the sub-tree to insert
must have a Boolean output; if we choose either the second or third argument as a root
parent crossover point, then the inserted sub-tree must be numeric.

This basic approach to types can be extended to more complex type systems including
simple generics [285], multi-level type systems [148], and fully polymorphic, higher-order
type systems with generics [447].

5.4.3 Grammar Based Constraints

Another natural way to express constraints is via grammars, and these have been used in
GP in a variety of ways [426, 134, 436, 305, 153]. Many of these simply use a grammar as
a means of expressing the kinds of constraints discussed above in Section 5.4.1. One could
enforce the structure for the period function using a grammar such as the following:

tree ::= E × sin(E × t)

E ::= var | E op E

op ::= + | − | × | ÷
var ::= x | y | z

Genetic operators are restricted to only swapping sub-trees deriving from a common
non-terminal symbol in the grammar. So, for example, an E could be replaced by another
E, but an E could not be replaced by an op. This can be extended to, for example,
context-sensitive grammars by incorporating various related concepts from computational
linguistics [153].

Another major area is grammatical evolution (GE) [363, 305]. In GE a grammar is
used as in the example above. However instead of representing individuals directly using
either expression or derivation trees, grammatical evolution represents individuals using a

28

variable length sequence of integers. For each production rule, the set of options on the
right hand side are numbered from 0 upwards. In the example above the first rule only
has one option on the right hand side; this would both be numbered 0. The second rule
has two options, which would be numbered 0 and 1, the third rule has four options which
would be numbered 0 to 3, and the fourth rule has three options numbered 0 to 2. An
expression tree is then generated by using the values in the individual to “choose” which
option to take in the production rules, rewriting the left-most non-terminal is the current
expression.

If, for example, an individual is represented by the sequence

39, 7, 2, 83, 66, 92, 57, 80, 47, 94

then the translation process would proceed as follows (with the non-terminal to be rewritten
underlined in each case):

tree

→ 〈 39 mod 1 = 0, i.e., there is only one option 〉
E × sin(E × t)

→ 〈 7 mod 2 = 1, i.e., choose second option 〉
(E op E) × sin(E × t)

→ 〈 2 mod 2 = 0, i.e., take the first option 〉
(const op E) × sin(E × t)

→ 〈 83 mod 3 = 2, again, only one option, generate an ephemeral constant 〉
(z op E) × sin(E × t)

→ 〈 66 mod 4 = 2, take the third option 〉
(z × E) × sin(E × t)

. . .

(z × x) × sin(z × t)

In this example we didn’t need to use all the numbers in the sequence to generate a
complete expression free of non-terminals; 94 was in fact never used. In general “extra”
genetic material is simply ignored. Alternatively, sometimes a sequence can be “too short”
in the sense that the end of the sequence is reached before the translation process is
complete. There are a variety of options in this case, including failure (assigning this
individual the worst possible fitness) and wrapping (continuing the translation process,
moving back to the front of the numeric sequence). See [305] for further details on this
and other aspects of grammatical evolution.

5.4.4 A Cautionary Note

While increasing the expressive power of a type system or other constraint mechanism may
indeed limit the search space by restricting the kinds of structures that can be constructed,

29

this comes at a price. An expressive type system typically requires more complex machinery
to support it. It also makes it more difficult to generate type-correct individuals in the
initial population, and more difficult to find genetic operations that do not violate the
type system. In an extreme case like constructive type theory, the type system is so
powerful that it can completely express the formal specification of the program, so any
program/expression having this type is guaranteed to meet that specification. In the GP
context this would mean that all the members of the initial population (assuming that
they are required to have the desired type) would in fact be solutions to the problem, thus
removing the need for any evolution at all! Even without such extreme constraints, it has
often been found necessary to develop additional machinery in order to efficiently generate
an initial population that satisfies the necessary constraints [285, 447, 347, 370].

Also, while the type system may constrain the search space, it is not guaranteed that
this will make the evolutionary search process easier. There is no promise, for example,
that the type system will significantly increase the density of solutions or (perhaps more
importantly) approximate solutions. It is also possible that introducing the type system
might make the search landscape more rugged by preventing genetic operations from cre-
ating intermediate forms on potentially valuable evolutionary paths. It might be useful
to extend solution density studies such as those summarised in [239] to the landscapes
generated by typed systems in order to better understand the impact of these constraints
on the underlying search spaces.

In an extreme case again, a constraint system could generate a needle-in-the-haystack
situation, where the search space is indeed much smaller, but there is no smooth path to
the solution. It might then be preferable to have a transformation that actually increases
the size of the search space, but also generates a gentle slope to the a solution. So while
types and other constraint systems can be powerful tools, one needs to be careful to explore
the biases introduced by the constraints and not simply assume that they are beneficial to
the search process.

5.5 Developmental Genetic Programming

When appropriate terminals, functions and/or interpreters are defined, standard GP can
go beyond the production of computer programs. For example, in a technique called cel-
lular encoding, programs are interpreted as sequences of instructions which modify (grow)
a simple initial structure (embryo). Once the program terminates, the quality of the re-
sulting structure is taken to be the fitness of the program. Naturally, the primitives of
the language must be appropriate to grow structures in the domain of interest. Typical
instructions involve the insertion and/or sizing of components, topological modifications
of the structure, etc. Cellular encoding GP has successfully been used to evolve neural
networks [132, 133, 131] and electronic circuits [214, 212, 211], as well as in numerous
other domains.

One of the advantages of indirect representations such as cellular encoding is that the
standard GP operators can be used to manipulate structures (such as circuits) which may
have nothing in common with standard GP trees. A disadvantage is that they require

30

an additional genotype-to-phenotype decoding step. However, when the fitness function
involves complex calculations with many fitness cases the relative cost of the decoding step
is often small.

6 Linear and Graph-based GP

Until now we have been talking about the evolution of programs expressed as one or more
trees which are evaluated by a suitable interpreter. This is the original and most widespread
type of GP, but there are other types of GP where programs are represented in different
ways. This section will look at linear programs and graph-like (parallel) programs.

6.1 Linear Genetic Programming

There are two different reasons for trying linear GP. Basic computer architectures are fun-
damentally the same now as they were twenty years ago, when GP began. Almost all ar-
chitectures represent computer programs in a linear fashion (albeit with control structures,
jumps and loops). So, why not evolve linear programs [314, 306, 24]? Also, computers do
not naturally run tree-shaped programs. So, slow interpreters have to be used as part of
tree-based GP. On the contrary, by evolving the binary bit patterns actually obeyed by
the computer, the use of an expensive interpreter (or compiler) is avoided and GP can run
several orders of magnitude faster [298, 300, 72, 97].

The typical crossover and mutation operators for linear GP ignore the details of the
machine code of the computer being used. For example, crossover typically chooses ran-
domly two crossover points in each parent and swaps the code lying between them. Since
the crossed over fragments are typically of different lengths, such a crossover may change
the programs’ lengths, cf. Figure 12. Since computer machine code is organised into 32- or
64-bit words, the crossover points occur only at the boundaries between words. Therefore,
a whole number of words, containing a whole number of instructions are typically swapped
over. Similarly, mutation operations normally respect word boundaries and generate legal
machine code. However, linear GP lends itself to a variety of other genetic operations.
For example, Figure 13 shows homologous crossover. Many other crossover and mutation
operations are possible [244].

If the goal is execution speed, then the evolved code should be machine code for a real
computer rather than some higher level language or virtual-machine code. For example,
Peter Nordin started by evolving machine code for SUN computers [298]. Ron Crepeau
[72] targeted the Z80. Kwong Sak Leung’s linear GP [249] was firmly targeted at novel
hardware but much of the GP development had to be run in simulation whilst the hardware
itself was under development.

The Sun SPARC has a simple 32-bit RISC architecture which eases designing genetic
operation which manipulate its machine code. Nordin [299] wrapped each machine code
GP individual inside a C function. Each of the GP program’s inputs were copied from
one of the C function’s arguments into one of the machine registers. Note that typically

31

Figure 12: Typical linear GP crossover. Two instructions are randomly chosen in each
parent (top two genomes) as cut points. If the code fragment excised from the first par-
ent is replaced with the code fragment excised form the second to give the child (lower
chromosome).

Figure 13: Discipulus’ “homologous” crossover [110, 300, 108]. Two parents (top two
programs) crossover to yield two child programs (bottom). The two crossover cut points
are the same in both parents. Note code does not change its position relative to the start
of the program (left edge) and the child programs are the same lengths as their parents.
Homologous crossover is often combined with a small amount of normal two point crossover
(Figure 12) to introduce length changes into the GP population.

there are only a small number of inputs. Linear GP should be set up to write-protect these
registers, so that inputs cannot be overwritten, since if an input is overwritten and its value
is lost, the evolved code cannot be a function of it. As well as the registers used for inputs,
a small number (e.g. 2–4) of other registers are used for scratch memory to store partial
results of intermediate calculations. Finally, the GP simply leaves its answer in one of the
registers. The external framework uses this as the C function’s return value.

Note that execution speed is not the only reason for using linear GP. Linear programs
can be interpreted, just as trees can be. Indeed a linear interpreter can be readily im-
plemented. A simple linear structure lends itself to rapid analysis, which can be used for
“dead code” removal [36]. In some ways the search space of linear GP is easier to analyse
than that of trees [223, 225, 226, 227, 244]. For example, we have used the T7 and T8
architectures (in simulation) for several large scale experimental and mathematical analysis
of Turing complete GP [238, 247, 232, 246]. For these reasons, it makes sense to consider
linear “machine” code GP, for example, in Java. Since Java is usually run on a virtual
machine, almost by definition this requires a virtual machine (like Leung [249]) to interpret
the evolved byte code [264, 143].

32

Arg 1
R0..R7

Output
R0..R7

Arg 2
Opcode

0...127

R0..R7
or+ − * /

Figure 14: Format of a linear GP engine instruction. To avoid the overhead of packing and
unpacking data in the interpreter (written in a high level language such as C++), virtual
machine instructions, unlike real machine instructions, are not packed into bit fields. In
linear GP, instructions are laid from the start of the program to its end. In machine code
GP, these are real machine code instructions. In interpreted linear GP, machine code is
replaced with virtual machine code.

Since Unix was ported onto the x86, Intel’s complex instruction set has had almost
complete dominance. Seeing this, Nordin ported his Sun RISC linear GP onto Intel’s
CISC. Various changes were made to the genetic operations which ensure that the initial
random programs are made only of legal Intel machine code and that mutation operations,
which act inside the x86’s 32-bit word, respect the x86’s complex sub-fields. Since the x86
has instructions of different lengths, special care was taken when altering them. Typically
several short instructions are packed into the 4-byte words. If there are any bytes left
over, they are filled with no-operation codes. In this way best use is made of the available
space, without instructions crossing 32-bit boundaries. Nordin’s work led to Discipulus
[108], which has been used from applications ranging from Bioinformatics [421] to robotics
[245] and bomb disposal [85].

Generally, in linear GP instructions take the form shown in Figure 14.

6.2 Graph Based Genetic Programming

Trees are special types of graphs. So, it is natural to ask what would happen if one extended
GP so as to be able to evolve graph-like programs. Starting from the mid 1990s researchers
have proposed several extensions of GP that do just that, albeit in different ways.

For example, Poli proposed Parallel Distributed GP (PDGP) [317, 319]. PDGP is a
form of GP which is suitable for the evolution of efficient highly parallel programs which
effectively reuse partial results. Programs are represented in PDGP as graphs with nodes
representing functions and terminals. Edges represent the flow of control and results. In
the simplest form of PDGP edges are directed and unlabelled, in which case PDGP can
be considered a generalisation of standard GP. However, more complex representations
can be used, which allow the exploration of a large space of possible programs including
standard tree-like programs, logic networks, neural networks, recurrent transition networks
and finite state automata. In PDGP, programs are manipulated by special crossover and
mutation operators which guarantee the syntactic correctness of the offspring. For this
reason PDGP search is very efficient. PDGP programs can be executed in different ways,

33

depending on whether nodes with side effects are used or not.
In a system called PADO (Parallel Algorithm Discovery and Orchestration), Teller

and Veloso [405] used a combination of GP and linear discrimination to obtain parallel
classification programs for signals and images. The programs in PADO are represented as
graphs, although their semantics and execution strategy are very different from those of
PDGP.

In Miller’s Cartesian GP [281, 282], programs are represented by linear chromosomes
containing integers. These are divided into groups of three or four. Each group is associated
to a position in a 2–D array. An element of the group prescribes which primitive is stored at
that location in the array, while the remaining elements indicate from which other locations
the inputs for that primitive should be read. So, the chromosome represents a graph-like
program, which is very similar to PDGP. The main difference between the two systems is
that Cartesian GP operators (mainly mutation) act at the level of the linear chromosome,
while in PDGP they act directly on the graph.

It is also possible to use non-graph-based GP to evolve parallel programs. For exam-
ple, Bennett, in [30], used a parallel virtual machine in which several standard tree-like
programs (called “agents”) would have their nodes executed in parallel with a two stage
mechanism simulating parallelism of sensing actions and simple conflict resolution (priori-
tisation) for actions with side effects. Andre, Bennet and Koza [6] used GP to discover
rules for cellular automata, a highly parallel computational architecture, which could solve
large majority-classification problems. In conjunction with an interpreter implementing a
parallel virtual machine, GP can also be used to translate sequential programs into parallel
ones [423] or to develop parallel programs.

7 Applications

Since its early beginnings, GP has produced a cornucopia of results. The literature, which
covers more than 5000 recorded uses of GP, reports an enormous number of applications
where GP has been successfully used as an automatic programming tool, a machine learner
or an automatic problem-solving machine. It is impossible to list all such applications
here. In the following sections we mention a representative subset for each of the main
application areas of GP (Sections 7.1– 7.10), devoting particular attention to the important
areas of symbolic regression (Section 7.1) and human-competitive results (Section 7.2). We
conclude the section with guidelines for the choice of application areas (Section 7.11).

7.1 Curve Fitting, Data Modelling, and Symbolic Regression

In principle, the possible applications of GP are as many as the applications for programs
(virtually infinite). However, before one can try to solve a new problem with GP, one
needs to define an appropriate fitness function. In problems where only the side effects
of the program are of interest, the fitness function usually compares the effects of the
execution of a program in some suitable environments with a desired behaviour, often in

34

a very application-dependent manner. In many problems, however, the goal is finding a
function whose output has some desired property, e.g., it matches some target values (as
in the example given in Section 4) or it is optimum against some other criteria. This type
of problem is generally known as a symbolic regression problem.

Many people are familiar with the notion of regression, which is a technique used to
interpret experimental data. It consists in finding the coefficients of a predefined function
such that the function best fits the data. A problem with regression analysis is that, if
the fit is not good, the experimenter has to keep trying different functions until a good
model for the data is found. Also, in many domains there is a strong tradition of only
using linear or quadratic models, even though it is possible that the data would be better
fit by some other model. The problem of symbolic regression, instead, consists in finding a
general function (with its coefficients) that fits the given data points. Since GP does not
assume a priori a particular structure for the resulting function, it is well suited to this
sort of discovery task. Symbolic regression was one of the earliest applications of GP [203],
and continues to be a widely studied domain [49, 250, 136, 177].

The steps necessary to solve symbolic regression problems include the five preparatory
steps mentioned in Section 2. However, while in the example in Section 4 the data points
were computed using a simple formula, in most realistic situations the collection of an
appropriate set of data points is an important and sometimes complex task. Often, for
example, each point represents the (measured) values taken by some variables at a certain
time in some dynamic process or in a certain repetition of an experiment.

Consider, for example, the case of using GP to evolve a soft sensor [171]. The intent
is to evolve a function that will provide a reasonable estimate of what a sensor (in, say, a
production facility) would report, based on data from other actual sensors in the system.
This is typically done in cases where placing an actual sensor in that location would be
difficult or expensive for some reason. It is necessary, however, to place at least one instance
of such a sensor in a working system in order to collect the data needed to train and test
the GP system. Once such a sensor is placed, one would collect the values reported by
that sensor, and by all the other hard sensors that are available to the evolved function,
at various times, presumably covering the various conditions the evolved system will be
expected to act under.

Such experimental data typically come in large tables where numerous quantities are
reported. In many case which quantity is the dependent variable, i.e., the thing that we
want to predict (e.g., the soft sensor value), and which other quantities are the independent
variables, i.e., the information we want to use to make the prediction (e.g., the hard sensor
values), is pre-determined. If it is not, then the experimenter needs to make this decision
before GP can be applied. Finally, in some practical situations, the data tables include
hundreds or even thousands of variables. It is well-known, that in these cases the efficiency
and effectiveness of any machine learning or program induction method, including GP, can
dramatically drop as most of the variables are typically redundant or irrelevant, forcing the
system to focus considerable energy on isolating the key features. It is then necessary to
perform some form of feature selection, i.e., we need to decide which independent variables
to keep and which to leave out.

35

Table 2: Samples showing apparent size and location to both of Elvis’ eyes of his finger tip,
given various right arm actuator set points (4 degrees of freedom). Cf. Figure 15. When
the data are used for training, GP is asked to invert the mapping and evolve functions
from data collected by both cameras showing a target location to instructions to give to
Elvis’ four arm motors so that his arm moves to the target.

Arm actuator Left eye Right eye
x y size x y size

-376 -626 1000 -360 44 10 29 -9 12 25
-372 -622 1000 -380 43 7 29 -9 12 29
-377 -627 899 -359 43 9 33 -20 14 26
-385 -635 799 -319 38 16 27 -17 22 30
-393 -643 699 -279 36 24 26 -21 25 20
-401 -651 599 -239 32 32 25 -26 28 18
-409 -659 500 -200 32 35 24 -27 31 19
-417 -667 399 -159 31 41 17 -28 36 13
-425 -675 299 -119 30 45 25 -27 39 8
-433 -683 199 -79 31 47 20 -27 43 9
-441 -691 99 -39 31 49 16 -26 45 13

Continues for total of 691 lines

There are problems where more than one output (prediction) is required. For example,
Table 2 shows a dataset with four independent variables (left) and six dependent variables
(right). The data were collected for the purpose of solving an inverse kinematics problem
in the Elvis robot [245] (the robot is shown in Figure 15 during the acquisition of a data
sample). In situations like this, one can use GP individuals including multiple trees (as in
Figure 3), graph-based GP with multiple output nodes (see Section 6.2), linear GP with
multiple output registers (see Section 6.1), a single GP tree with primitives operating on
vectors, etc.

Once a suitable dataset is available, its dependent variables must all be represented
in the primitive set. What other terminals and functions this will include depends very
much on the type of the data being processed (are they numeric? strings? etc.) and is
often guided by information available to the experimenter on the process that generated
the data. If something is known (or strongly suspected) about the desired structure of the
evolved function (e.g., the data is known to be periodic, so the function should probably be
based on a something like sin), then applying some sort of constraint, like those discussed
in Section 5.4, may be beneficial.

What is common to virtually all symbolic regression problems is that the fitness func-
tion must measure the ability of each program to predict the value of the dependent variable

36

Figure 15: Elvis sitting with right hand outstretched. The apparent position and size of
the bright red laser attached to his finger tip is recorded (see Table 2). The data are then
used to train a GP to move the robot’s arm to a spot in three dimensions using only its
eyes.

given the values of the independent ones (for each data-point). So, most symbolic regres-
sion fitness functions tend to include sums over the (usually absolute or squared) errors
measured for each record in the dataset, as we did in Section 4.2.2.

The fourth preparatory step typically involves choosing a size for the population (which
is often done initially based on the perceived difficulty of the problem, and is then refined
based on the actual results of preliminary runs) and the balance between the selection
strength (normally tuned via the tournament size) and the intensity of variation (which
can be varied by varying the mutation and crossover rates, but many researchers tend to
keep these fixed to some standard values).

7.2 Human Competitive Results – the Humies

Getting machines to produce human-like results is the reason for the existence of the fields
of artificial intelligence and machine learning. However, it has always been very difficult to
assess how much progress these fields have made towards their ultimate goal. Alan Turing
understood that, to avoid human biases when assessing machines’ intelligence, there is a
need to evaluate their behaviour objectively. This led him to propose an imitation game,
now known as the Turing test [416]. Unfortunately, the Turing test is not usable in practice,
and so, there is a need for more workable objective tests of machine intelligence.

Koza [215] recently proposed to shift the attention from the notion of intelligence to
the notion of human competitiveness. A result cannot acquire the rating of “human com-
petitive” merely because it is endorsed by researchers inside the specialised fields that are

37

attempting to create machine intelligence. A result produced by an automated method
must earn the rating of “human competitive” independently of the fact that it was gener-
ated by an automated method.

Koza proposed that an automatically-created result should be considered “human-
competitive” if it satisfies at least one of these eight criteria:

1. The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.

2. The result is equal to or better than a result that was accepted as a new scientific
result at the time when it was published in a peer-reviewed scientific journal.

3. The result is equal to or better than a result that was placed into a database or archive
of results maintained by an internationally recognised panel of scientific experts.

4. The result is publishable in its own right as a new scientific result, independent of
the fact that the result was mechanically created.

5. The result is equal to or better than the most recent human-created solution to a
long-standing problem for which there has been a succession of increasingly better
human-created solutions.

6. The result is equal to or better than a result that was considered an achievement in
its field at the time it was first discovered.

7. The result solves a problem of indisputable difficulty in its field.

8. The result holds its own or wins a regulated competition involving human contestants
(in the form of either live human players or human-written computer programs).

These criteria are independent of and at arms-length from the fields of artificial intelligence,
machine learning, and GP.

Over the years, tens of results have passed the human-competitiveness test. Some
pre-2004 human-competitive results include (see [219] for a complete list):

• Creation of quantum algorithms including: a better-than-classical algorithm for a
database search problem and a solution to an AND/OR query problem [390, 391].

• Creation of a competitive soccer-playing program for the RoboCup 1997 competition
[262].

• Creation of algorithms for the transmembrane segment identification problem for
proteins [204, Sections 18.8 and 18.10] and [211, Sections 16.5 and 17.2].

• Creation of a sorting network for seven items using only 16 steps [211, Sections 21.4.4,
23.6, and 57.8.1].

38

• Synthesis of analogue circuits (with placement and routing, in some cases), including:
60- and 96-decibel amplifiers [211, Section 45.3]; circuits for squaring, cubing, square
root, cube root, logarithm, and Gaussian functions [211, Section 47.5.3]; a circuit for
time-optimal control of a robot [211, Section 48.3]; an electronic thermometer [211,
Section 49.3]; a voltage-current conversion circuit [218, Section 15.4.4].

• Creation of a cellular automata rule for the majority classification problem that is
better than all known rules written by humans [6].

• Synthesis of topology for controllers, including: a PID (proportional, integrative, and
derivative) [218, Section 9.2] and a PID-D2 (proportional, integrative, derivative, and
second derivative) [218, Section 3.7] controllers; PID tuning rules that outperform
the Ziegler-Nichols and Astrom-Hagglund tuning rules [218, Chapter 12]; three non-
PID controllers that outperform a PID controller that uses the Ziegler-Nichols or
Astrom-Hagglund tuning rules [218, Chapter 13].

In total [219] lists 36 human-competitive results. These include 23 cases where GP has
duplicated the functionality of a previously patented invention, infringed a previously
patented invention, or created a patentable new invention. Specifically, there are 15 exam-
ples where GP has created an entity that either infringes or duplicates the functionality of
a previously patented 20th-century invention, six instances where GP has done the same
with respect to an invention patented after January 1, 2000, and two cases where GP has
created a patentable new invention. The two new inventions are general-purpose controllers
that outperform controllers employing tuning rules that have been in widespread use in
industry for most of the 20th century.

Many of the pre-2004 results were obtained by Koza. However, since 2004, a competi-
tion is held annually at ACM’s Genetic and Evolutionary Computation Conference (termed
the “Human-Competitive awards - the ’Humies’ ”). The prize ($10 000) is awarded to ap-
plications that have produced automatically-created results which are equivalent to human
achievements or, better.

The Humies Prizes have typically been awarded to applications of EC to high-tech fields.
Many used GP. For example, the 2004 gold medals were given for the design, via GP, of
an antenna for deployment on NASA’s Space Technology 5 Mission (see Figure 16) [256]
and for evolutionary quantum computer programming [387]. There were 3 silver medals
in 2004: one for evolving local search heuristics for SAT using GP [114], one for the
application of GP to the synthesis of complex kinematic mechanisms [254], and one for
organisation design optimisation using GP [189, 190]. Also, four of the 2005 medals were
awarded for GP applications: the invention of optical lens systems [1, 209], the evolution
of quantum Fourier transform algorithm [271], evolving assembly programs for Core War
[68], and various high-performance game players for Backgammon, Robocode and Chess
endgame [17, 16, 145, 380]. In 2006 again GP scored a gold medal with the synthesis of
interest point detectors for image analysis [412, 413], while it scored a silver medal in 2007
with the evolution of an efficient search algorithm for the Mate-in-N problem in Chess [146]
(see Figure 17).

39

Figure 16: Award winning human-competitive antenna design produced by GP.

Note that many human competitive results were presented at the Humies 2004–2007
competitions (e.g., 11 of the 2004 entries were judged to be human competitive). However,
only the very best were awarded medals. So, at the time of writing we estimate that there
are at least something of the order of 60 human competitive results obtained by GP. This
shows GP’s potential as a powerful invention machine.

7.3 Image and Signal Processing

Rich Hampo was one of the first people from industry to consider using GP for signal
processing. He evolved algorithms for preprocessing electronic motor vehicle signals for
possible use in engine monitoring and control [137]. Several applications of GP for image
processing have been for military uses. E.g. Walter Tackett evolved algorithms to find tanks
in infrared images [400]. Daniel Howard evolved program to pick out ships from SAR radar
mounted on satellites in space [158] and to locate ground vehicles from airborne photo
reconnaissance [159]. He also used GP to process surveillance data for civilian purposes.
E.g. to predict motorway traffic jams from subsurface traffic speed measurements [157].
Using to satellite SAR radar, Jason Daida’s team evolved algorithms to find features in
polar sea ice [74]. Optical satellite images can also be used for environmental studies
[52] and for prospecting for valuable minerals [360]. Anna Esparcia Alcazar used GP to
find recurrent filters (including artificial neural networks ANN [101]) for one dimensional
electronic signals [377]. Local search (simulated annealing or gradient descent) can be used
to adjust or fine-tune “constant” values within the structure created by genetic search [384].
The group of Bir Bhanu has used GP to preprocess images, particularly of human faces,

40

Figure 17: Example mate-in-2 problem.

to find regions of interest, for subsequent analysis [445]. (See also [412].) A particular
strength of GP is its ability to take data from disparate sources [47, 399].

In New Zealand, Mengjie Zhang has been particularly active at evolving programs with
GP to visually classify objects (typically coins) [453]. He has also applied GP to human
speech [441]. “Parisian GP” is a system in which the image processing task is split across a
swarm of evolving agents (“flies”). In [259, 260] the flies reconstruct three-dimensions from
pairs of stereo images. In [259] as the flies buzz around in three-dimensions their position
is projected onto the left and right of a pair of stereo images. The fitness function tries
to minimise the discrepancy between the two images, thus encouraging the flies to settle
on visible surfaces in the 3–D space. So, the true 3–D space is inferred from pairs of 2–D
image taken from slightly different positions.

While the likes of Google have effectively indexed the written word. For speech and in
particular pictures, it has been much less effective. One area where GP might be applied
is in automatically indexing images. Some initial steps in this direction are given in [408].

To some extent extracting text from images (OCR) is almost a solved problem. With
well formed letters and digits this is now done with near 100% accuracy as a matter of
routine. However, many interesting cases remain [65] such as Arabic [196] and oriental
languages, handwriting [221, 79, 407, 117] (such as the MNIST examples) and other texts
[356] and musical scores [346].

The scope for applications of GP to image and signal processing is almost unbounded.
A promising area is medical imaging [318]. GP image techniques can also be used with
sonar signals [269]. Offline work on images, includes security and verification. For example,

41

the group of Asifullah Khan has used GP to detect image watermarks which have been
tampered with [417]. Whilst recent work by Yang Zhang [454] has incorporated multi-
objective fitness into GP image processing.

In 1999 Riccardo Poli, Stefano Cagnoni and others founded the annual European work-
shop on evolutionary computation in image analysis and signal processing (EvoIASP).
EvoIASP is held every year along with the EuroGP. Whilst not solely dedicated to GP,
many GP applications have been presented at EvoIASP.

7.4 Financial Trading, Time Series Prediction and Economic
Modelling

GP is very widely used in these areas and it is impossible to describe all its applications.
It this section we will hint at just a few areas.

Shu-Heng Chen has written more than 60 papers on using GP in finance and economics.
Recent papers include modelling of agents in stock markets [58], game theory [57], evolving
trading rules for the S&P 500 [448] and forecasting the Heng-Sheng index [59].

The “efficient markets hypothesis” is a tenet of economics. It is founded on the idea
that everyone in a market has “perfect information” and acts “rationally”. If the efficient
markets hypothesis held, then everyone would see the same value for items in the market
and so agree the same price. Without price differentials, there would be no money to be
made from the market itself. Whether it is trading potatoes in northern France or dollars
for yen it is clear that traders are not all equal and considerable doubt has been cast on
the efficient markets hypothesis. So, people continue to play the stock market. Game
theory has been a standard tool used by economists to try to understand markets but is
increasingly supplemented by simulations with both human and computerised agents. GP
in increasingly being used as part of these simulations of social systems.

Christopher Neely and Paul Weller of the US Federal Reserve Bank used GP to study
intraday technical trading of foreign exchange to suggest the market is “efficient” and
found no evidence of excess returns [293, 290, 292, 289]. This negative result was criticised
by Tarbert and her co-workers [268]. Later work by Neely et al. [294] suggested that
data after 1995 are consistent with Lo’s “Adaptive Markets Hypothesis” rather than the
efficient markets hypothesis. Note that here GP and computer tools are being used in a
novel data-driven approach to try and resolve issues which were previously a matter of
dogma.

From a more pragmatic viewpoint, Mak Kaboudan shows GP can forecast international
currency exchange rates [175], stocks [174] and stock returns [173]. Edward Tsang and his
co-workers continue to apply GP to a variety of financial arenas, including: betting [414],
forecasting stock prices [119], studying markets [167] and arbitrage [267]. The group of
Michael Dempster and HSBC also use GP in foreign exchange trading [82, 83, 15]. Nelishia
Pillay has used GP in social studies and teaching aids in education, e.g. [315]. As well as
trees [202] other types of GP have been used in finance, e.g. [296].

Since 1995 the International Conference on Computing in Economics and Finance

42

(CEF) has been held every year. It regularly attracts GP papers, many of which are
online. In 2007 Tony Brabazon and Michael O’Neill established the European workshop
on evolutionary computation in finance and economics (EvoFIN). EvoFIN is held with
EuroGP.

7.5 Industrial Process Control

Of course most industrialists have little time to spend on academic reporting. A notable
exception is Dow Chemical, where the group of Author Kordon has been very active
[51, 278, 198]. In [197] he describes where industrial GP stands now and how it will
progress. Another active collaboration is that between Miha Kovacic and Joze Balic, who
have used GP in the computer numerical control of industrial milling and cutting machinery
[199]. The partnership of Larry Deschaine and Frank Francone [111] is most famous for
their use of Discipulus [108] for detecting bomb fragments and unexploded ordnance UXO
[84]. Discipulus has been used as an aid in the development of control systems for rubbish
incinerators [86].

One of the earliest users of GP in control was Mark Willis’ Chemical Engineering group
in Newcastle. E.g. they used GP to model flow in a plasticating extruder [430]. They also
modelled extruding food [275] and control of chemical reactions in continuous stirred tank
reactors [372]. Peter Marenbach investigated GP in the control of biotech reactors [266].
In [431] Willis surveyed GP applications, including to control. Other GP applications to
plastic include [42]. Daniel Lewin has applied GP to the control of an integrated circuit
fabrication plant [251, 75]. Roberto Domingos worked on simulations of nuclear reactors
(PWRs to be exact) to devise better ways of preventing xenon oscillations [91]. GP has
also been used to identify which state a plant to be controlled is in (in order to decide
which of various alternative control laws to apply). For example, Peter Fleming’s group
in Sheffield used multiobjective GP [357, 151] to reduce the cost of running aircraft jet
engines [14, 102]. [4] surveys GP and other AI techniques applied in the electrical power
industry.

7.6 Medicine, Biology and Bioinformatics

GP has long been applied to medicine, biology and bioinformatics. Early work by Simon
Handley [139] and John Koza [210] used GP to make predictions about the behaviour and
properties of biological systems, principally proteins. Howard Oakley, a practising medical
doctor, used GP to model blood flow in toes [302] as part of his long term interests in frost
bite.

In 2002 Wolfgang Banzhaf and James A. Foster organised BioGEC: the first GECCO
workshop on biological applications of genetic and evolutionary computation. BioGEC
has become a bi-annual feature of the annual GECCO conference. Half a year later Elena
Marchiori and Dave Corne organised EvoBio: the European conference on evolutionary
computation, machine learning and data mining in bioinformatics. EvoBio is held every
year along side EuroGP. GP figures heavily in both BioGEC and EvoBIO.

43

GP is often used in data mining. Of particular medical interest are very wide data sets,
with many inputs per sample. Examples include infrared spectra [403, 168, 99, 418, 98,
129, 128, 141, 274], single nuclear polymorphisms [28, 375, 349] and Affymetrix GeneChip
microarray data [78, 234, 100, 149, 152, 156, 252, 253, 446].

Douglas Kell and his colleagues in Aberystwyth have had great success in applying GP
widely in bioinformatics (see infrared spectra above and [169, 123, 127, 439, 379, 184, 181,
183, 182, 77, 2]). Another very active group is that of Jason Moore and his colleagues at
Vanderbilt [287, 355, 288, 354].

Computational chemistry is widely used in the drug industry. The properties of simple
molecules can be calculated. However, the interactions between chemicals which might
be used as drugs and medicinal targets within the body are beyond exact calculation.
Therefore, there is great interest in the pharmaceutical industry in approximate in silico
models which attempt to predict either favourable or adverse interactions between proto-
drugs and biochemical molecules. Since these are computational models, they can be
applied very cheaply in advance of manufacture of chemicals, to decide which of the myriad
of chemicals might be worth further study. Potentially such models can make a huge impact
both in terms of money and time without being anywhere near 100% correct. Machine
learning and GP have both been tried. GP approaches include [104, 47, 29, 21, 130, 141,
424, 419, 144, 381, 124, 220].

7.7 Mixing GP with Other Techniques

GP can be hybridised with other techniques. Hitoshi Iba [161], Nikolay Nikolaev [295], and
Byoung-Tak Zhang [451] have incorporated information theoretic and minimum description
length ideas into GP fitness functions to provide a degree of regularisation and so avoid
over fitting (and bloat, see Section 9.3). As mentioned in Section 5.4.3 computer language
grammars can be incorporated into GP. Indeed Man Leung Wong [435, 433, 437, 434] has
had success integrating these with GP. The use of simulated annealing and hill climbing
to locally fine tune parts of solutions found by GP was described in Section 2.

7.8 GP to Create Searchers and Solvers – Hyper-heuristics

Hyper-heuristics could simply be defined as “heuristics to choose other heuristics” [44]. A
heuristic is considered as a rule of thumb or an educated guess that reduces the search
required to find a solution. The difference between metaheuristics and hyper-heuristics
is that the former operate directly on the problem search space with the goal of finding
optimal or near optimal solutions. The latter, instead, operate on the heuristics search
space (which consists of the heuristics used to solve the target problem). The goal then is
finding or generating high-quality heuristics for a problem, for a certain class of instances
of a problem, or even for a particular instance.

GP has been very successfully used as a hyperheuristic. For example, GP has evolved
competitive SAT solvers [113, 191, 20, 19], state-of-the-art or better than state-of-the-art

44

bin packing algorithms [45, 46, 342], particle swarm optimisers [335, 325], evolutionary
algorithms [303], and travelling-salesman-problem solvers [304, 185, 186, 187].

7.9 Artistic

Computers have long been used to create purely aesthetic artifacts. Much of today’s
computer art tends to ape traditional drawing and painting, producing static pictures on a
computer monitor. However, the immediate advantage of the computer screen – movement
– can also exploited. In both cases EC can and has been exploited. Indeed with evolution’s
capacity for unlimited variation, EC offers the artist the scope to produce ever changing
works. Some artists have also worked with sound.

The use of GP in computer art can be traced back at least to the work of Karl Sims
[383] and Bill Latham. Christian Jacob’s work [164, 165] provide many examples. Since
2003 EvoMUSART has been held every year with EuroGP. [273] considers the recent state
of play in evolutionary art and music. Many recent techniques will be described in [265].

Evolutionary music [410] has been dominated by Jazz [388] which is not to everyone’s
taste. An exception is Bach [103]. Most approaches to evolving music have made at least
some use of interactive evolution [401] in which the fitness of programs is provided by users,
often via the Internet [54, 5]. The limitation is almost always finding enough people willing
to participate [229]. Funes reports experiments which attracted thousands of people via
the Internet who were entertained by evolved Tron players [115]. Costelloe tried to reduce
the human burden in [69]. Algorithmic approaches are also possible [64, 162].

One of the sorrows of AI is that as soon as it works it stops being AI (and celebrated
as such) and becomes computer engineering. For example, the use of computer generated
images has recently become cost effective and is widely used in Hollywood. One of the
standard state-of-the-art techniques is the use of Craig Reynold’s swarming “boids” [350]
to create animations of large numbers of rapidly moving animals. This was first used in
“Cliffhanger” (1993) to animate a cloud of bats. Its use is now common place (herds of
wildebeest, schooling fish, etc.). In 1997 Craig was awarded an Oscar.

7.10 Entertainment and Computer Games

Today the major usage of computers is interactive games [344]. There has been a little
work on incorporating artificial intelligence into main stream commercial games. The
software owners are not keen on explaining exactly how much AI they use or giving away
sensitive information on how they use AI. Work on GP and games includes [16, 420]. Since
2004 the annual CEC conference has included sessions on EC in games. After chairing
the IEEE Symposium on Computational Intelligence and Games 2005, Essex University
Simon Lucas founded the IEEE computational intelligence society’s technical committee
on games. GP features heavily in the Games TC’s activities, e.g. Othello, Poker, Black
Gammon, Draughts, Chess, Ms Pac-Man, robotic football and radio controlled model car
racing.

45

7.11 Where can we Expect GP to Do Well?

GP and other EC methods have been especially productive in areas having some or all of
the following properties:

• The interrelationships among the relevant variables is unknown or poorly understood
(or where it is suspected that the current understanding may possibly be wrong).

• Finding the size and shape of the ultimate solution to the problem is a major part
of the problem.

• Large amounts of primary data requiring examination, classification, and integration
is available in computer readable form.

• There are good simulators to test the performance of tentative solutions to a problem,
but poor methods to directly obtain good solutions.

• Conventional mathematical analysis does not, or cannot, provide analytic solutions.

• An approximate solution is acceptable (or is the only result that is ever likely to be
obtained).

• Small improvements in performance are routinely measured (or easily measurable)
and highly prized.

The best predictor of future performance is the past. So, we should expect GP to continue
to be successful in application domains with these features.

8 Tricks of the Trade

8.1 Getting Started

Newcomers to the field of GP often ask themselves (and/or other more experienced genetic
programmers) questions such as:

1. What is the best way to get started with GP? Which papers should I read?

2. Should I implement my own GP system or should I use an existing package? If so,
what package should I use?

Let us start from question 1. A variety of sources of information about GP are available
(many of which are listed in the appendix). Consulting information available on the Web
is certainly a good way to get quick answers for a newbie who wants to know what GP
is. These answers, however, will often be too shallow for someone who really wants to
then apply GP to solve practical problems. People in this position should probably invest
some time going through more detailed accounts such [203, 26, 239] or some of the other

46

books in the appendix. Technical papers may be the next stage. The literature on GP is
now quite extensive. So, although this is easily accessible thanks to the complete online
bibliography, newcomers will often need to be selective in what they read. The objective
here may be different for different types of readers. Practitioners should probably identify
and read only papers which deal with the same problem they are interested in. Researchers
and PhD students interested in developing a deeper understanding of GP should also make
sure they identify and read as many seminal papers as possible, including papers or books
on empirical and theoretical studies on the inner mechanisms and behaviour of GP. These
are frequently cited in other papers and so can easily be identified.

The answer to question 2 depends on the particular experience and background of the
questioner. Implementing a simple GP system from scratch is certainly an excellent way
to make sure one really understands the mechanics of GP. In addition to being an excep-
tionally useful exercise, this will always result in programmers knowing their systems so
well that they will have no problems customising them for specific purposes (e.g., adding
new, application specific genetic operators or implementing unusual, knowledge-based ini-
tialisation strategies). All of this, however, requires reasonable programming skills and
the will to thoroughly test the resulting system until it fully behaves as expected. If the
skills or the time are not available, then the best way to get a working GP application
is to retrieve one of the many public-domain GP implementations and adapt this for the
user’s purposes. This process is faster, and good implementations are often quite robust,
efficient, well-documented and comprehensive. The small price to pay is the need to study
the available documentation and examples. These often explain also how to modify the
GP system to some extent. However, deeper modifications (such as the introduction of
new or unusual operators) will often require studying the actual source code of the system
and a substantial amount of trial and error. Good, publicly-available GP implementations
include: Lil-GP from Bill Punch, ECJ from Sean Luke and DGPC from David Andre.

While perhaps to some not as exciting as coding or running GP, a through search of
the literature can avoid “re-inventing the wheel”.

8.2 Presenting Results

It is so obvious that it is easy to forget one major advantage of GP: we create visible
programs. That is, the way they work is accessible. This need not be the case with other
approaches. So, when presenting GP results, as a matter of routine one should perhaps
always make a comprehensible slide or figure which contains the whole evolved program,2

trimming unneeded details (e.g., removing excess significant digits) and combining constant
terms. Naturally, after cleaning up the answer, one should make sure the program still
works.

If one’s goal is to find a comprehensible model, in practice it must be small. A large
model will not only be difficult to understand but also may over-fit the training data [122].
For this reason (and possibly others), one should use one of the anti-bloat mechanisms

2The program Lisp2dot can be of help in this.

47

described in Section 9.3.
There are methods to automatically simplify expressions (e.g., in Mathematica and

Emacs). However, since in general there is an exponentially large number of equivalent
expressions, automatic simplification is hard. Another way is to use GP. After GP has
found a suitable but large model, one can continue evolution changing the fitness function
to include a second objective: that the model be as small as possible [242]. GP can then
trim the trees but ensure the evolved program still fits the training data.

It is important to use the language that one’s customers, audience or readers use. For
example, if the fact that GP discovers a particular chemical is important, one should make
this fact standout, e.g. by using colours. Also, GP’s answer may have evolved as a tree
but, if the customers use Microsoft Excel, it may be worthwhile translating the tree into a
spreadsheet formula.

Also, one should try to discover how the customers intend to validate GP’s answer. Do
not let them invent some totally new data which has nothing to do with the data they
supplied for training (“just to see how well it does...”). Avoid customers with contrived
data. GP is not god, it knows nothing about things it has not seen. At the same time
users should be scrupulous about their own use of holdout data. GP is a very powerful
machine learning technique. With this comes the ever present danger of over fitting. One
should never allow performance on data reserved for validation to be be used to chose
which answer to present to the customer.

8.3 Reducing Fitness Evaluations/Increasing their Effectiveness

While admirers of linear GP will suggest that machine code GP is the ultimate in speed,
tree GP can be made faster in a number of ways. The first is to reduce the number of times
a tree is evaluated. Many applications find the fitness of trees by running them on multiple
training examples. However, ultimately the point of fitness evaluation is to make a binary
decision: does this individual get a child or not. Indeed usually a noisy selection technique
is used. (E.g. roulette wheel, SUS [22] or tournament selection.) Stochastic selection is
an essential part of genetic search but it necessarily injects noise into the vital decision
of which points in the search to proceed from and which to abandon. The overwhelming
proportion of GP effort (or indeed any EC technique) goes into adjusting the probability
of the binary decision as to whether each individual in the population should be allowed
to reproduce or not. If a program has already demonstrated it works very badly compared
to the rest of the population on a fraction of the available training data, it is likely not
to have children. Conversely, if it has already exceeded many programs in the population
after being tested on only a fraction of the training set, it is likely to have a child [242]. In
either case, it is apparent that we do not need to run it on the remaining training examples.
Teller and Andre developed this idea into an effective algorithm [406].

As well as the computational cost, there are other aspects of using all the training data
all the time. It gives rise to a static fitness function. Arguably this tends to evolve the
population into a cul-de-sac where the population is dominated by offspring of a single
initial program which did well of some fraction of the training data but was unable to fit

48

others. A static fitness function can easily have the effect that the other good programs
which perhaps did well on other parts of the training data get lower fitness scores and
fewer children.

With high selection pressure, it takes surprisingly little time for the best individual to
dominate the whole population. Goldberg [125] calls this the “take over time”. This can
be made quite formal [34, 93]. However, for tournament selection, a simple rule of thumb
is often sufficient. If T is the tournament size, about logT (Pop size) generations are needed
for the whole population to become descents of a single individual. E.g. if we use binary
tournaments (T = 2), then “take over” will require about 10 generation for a population
of 1024. Alternatively if we have a population of a million (106) and use ten individuals
in each tournament (T = 10) then after about six generations more or less everyone will
have the same great6 great5 great4 great3 grand2 mother1.

Chris Gathercole investigated a number of ways of changing which training examples to
use as the GP progressed [120, 121]. (Eric Siegel proposed a rather different implementation
in [382].) This juggles a number of interacting effects. Firstly, by using only a subset of
the available data, the GP fitness evaluation takes less time. Secondly, by changing which
examples are being used, the evolving population sees more of the training data and, so, is
less liable to over fit a fraction of it. Thirdly, by randomly changing the fitness function,
it becomes more difficult for evolution to produce an over specialised individual which
takes over the population at the expense of solutions which are viable on other parts of
the training data. Dynamic Sub Selection (DSS) appears to have been the most successful
of Gathercole’s suggested algorithms. It has been incorporated into Discipulus. Indeed a
huge data mining application [73] recently used DSS.

Where each fitness evaluation may take a long time, it may be attractive to interrupt
a long running program in order to let others run. In GP systems which allow recursion
or contain iterative elements [39, 436, 242, 432] it is common to enforce a time limit, a
limit on the number of instructions executed, or a bound on the number of times a loop
is executed. Sid Maxwell proposed [272] a solution to the question of what fitness to we
give to a program we have interrupted. He allowed each program in the population a
quantum of CPU time. When the program uses up its quantum it is check-pointed. When
the program is check-pointed sufficient information (principally the program counter and
stack) is saved so that it can be restarted from where it got to later. (Many multi-tasking
operating systems do something similar.) In MAxwell’s system, he assumed the program
gained fitness as it ran. E.g. each time is correctly processes a fitness case, its fitness
is incremented. So the fitness of a program is defined while it is running. Tournament
selection is then performed. If all members of the tournament have used the same number
of CPU quanta, then the program which is fitter is the winner. However, if a program has
used less CPU than the others (and has a lower fitness) then it is restarted from where it
was and is run until it has used as much CPU as the others. Then fitnesses are compared
in the normal way.

Astro Teller had a similar but slightly simpler approach: everyone in the population
was run for the same amount of time. When the allotted time elapses the program is
aborted and an answer extracted from it, regardless of weather it was ready or not. Astro

49

called this an “any time” approach [404]. This suits graph or linear GP where it is easy
to designate a register as the output register. The answer can be extracted from this
register or from an indexed memory cell at any point (including whilst the programming
is running). Other any time approaches include [389, 246].

A simple technique to speed up the evaluation of complex fitness functions is to organise
the fitness function into stages of progressively increasing computational cost. Individuals
are evaluated stage by stage. Each stage contributes to the overall fitness of a program.
However, individuals need to reach a minimum fitness value in each stage in order for them
to be allowed to progress to the next stage and acquire further fitness. Often different stages
represent different requirements and constraints imposed on solution.

Recently, a sophisticated technique, called backward chaining GP, has been proposed
[330, 331, 323, 332] that can radically reduce the number of fitness evaluations in runs of
GP (and other EAs) using tournament selection with small tournament sizes. Tournament
selection randomly draws programs from the population to construct tournaments, the
winners of which are then selected. Although this process is repeated many times in
each generation, when the tournaments are small there is a significant probability that an
individual in the current generation is never chosen to become a member of any tournament.
By reordering the way operations are performed in GP, backward chaining GP exploits this
not only to avoid the calculation of individuals that are never sampled, but also to achieve
higher fitness sooner.

8.4 Co-evolution

One way of viewing DSS is as automated co-evolution. In co-evolution there are multiple
evolving species (typically two) whose fitness depends upon the other species. (Of course,
like DSS, co-evolution can be applied to linear and other types of GP as well as tree
GP.) One attraction of co-evolution is that it effectively produces the fitness function for
us. There have been many successful applications of co-evolution [150, 16, 376, 367, 43,
38, 53, 432, 118, 90]. However, co-evolution complicates the already complex phenomena
taking place in the presence of dynamic fitness functions still further. Therefore, somewhat
reluctantly, at present it appears to be beneficial to use co-evolution only if an application
really requires it. Co-evolution may suffer from unstable populations. This can occur in
nature, oscillations in Canadian Lynx and Snowshoe Hares populations being a famous
example. There are various “hall of fame” techniques [116], which try to damp down
oscillations and prevent evolution driving competing species in circles.

8.5 Reducing Cost of Fitness with Caches

In computer hardware it is common to use data caches which automatically hold copies
of data locally in order to avoid the delays associated with fetching it from disk or over a
network every time it is needed. This can work well where a small amount of data is needed
many times over a short interval. Caches can also be used to store results of calculations,
thereby avoiding the re-calculation of data [138]. GP populations have enormous amounts

50

of common code [242, 244, 246]. This is after all how genetic search works: it promotes
the genetic material of fit individuals. So, typically in each generation we see many copies
of successful code. In a typical GP system, but by no means all GP systems, each subtree
has no side-effects. This means its results pass through its root node in a well organised
and easy to understand fashion. Thus, if we remember a subtree’s inputs and output when
it was run before, we can avoid re-executing code whenever we are required to run the
subtree again. Note this is true irrespective of whether we need to run the same subtree
inside a different individual or at a different time (i.e. a later generation). Thus, if we
stored the output with the root node, we need only run the subtree once, for a given set
of inputs. Whenever the interpreter comes to evaluate the subtree, it needs only to check
if the root contains a cache of the values the interpreter calculated last time, thus saving
considerable computation time. However, there is a problem: not only must the answer be
stored but the interpreter needs to know that the subtree’s inputs are the same too.

The common practices of GP come to our aid here. Usually every tree in the population
is run on exactly the same inputs for each of the fitness cases. Thus, for a cache to work,
the interpreter does not need to know in detail which inputs the subtree has or their exact
values corresponding to every value calculated by the subtree. It need only know which of
the fixed set of test cases was used.

A simple cache implementation is to store a vector of values returned by each subtree.
The vector is as long as the number of test cases. Whenever a subtree is created (i.e., in
the initial generation, by crossover or by mutations) the interpreter is run and the cache
of values for its root node is set. Note this is recursive, so caches can also be calculated
for subtrees within it at the same time. Now when the interpreter is run and comes to a
subtree’s root node, it will know which test case it is running and instead of interpreting the
subtree it simply retrieves the value it calculated using the test case’s number as an index
into the cache vector. This could be many generations after the subtree was originally
created.

If a subtree is created by mutation, then its cache of values will be initially empty and
will have to be calculated. However, this costs no more than without caches.

When subtrees are crossed over the subtree’s cache remains valid and so cache values
can be crossover like the code.

When code is inserted into an existing tree, be it by mutation or crossover, the chance
that the new code behaves identically to the old code is normally very small. This means
the caches of every node between the new code and the root node may be invalid. The
simplest thing is to re-evaluate them all. This sounds expensive, but remember the caches
in all the other parts of the individual remain valid and so can be used when the cache
above them is re-evaluated. Thus, in effect, if the crossed over code is inserted at level d
only d nodes need to be evaluated. Recent analysis [239, 334, 89, 63] has shown that GP
trees tend not to have symmetric shapes, and many leafs are very close to the root. Thus
in theory (and in practice) considerable computational saving can be made by using fitness
caches. Sutherland [276] is perhaps the best known GP system which has implemented
fitness caches. As well as the original DAG implementation [138] other work has included
[176, 63, 442].

51

In [242] we used fitness caches in evolved trees with side effects by exploiting syntax
rules about where in the code the side-effects could lie. The whole question of monitoring
how effective individual caches are, what their hit-rates are, etc. has been little explored.
In practice, in many common GP systems, impressive savings have been made by simple
implementations, with little monitoring and rudimentary garbage collection. While it is
possible to use hashing schemes to efficiently find common code, in practice assuming that
common code only arises because it was inherited from the same location (e.g. by crossing
over) is sufficient.

8.6 GP Running in Parallel

In contrast to much of computer science, EC can be readily run on parallel computer hard-
ware; indeed it is “embarrassingly parallel” [8]. For example, when Ian Turton [306] ran
GP on a Cray super computer he obtained about 30% of its theoretical peak performance,
embarrassing his supercomputer savvy colleagues who rarely got better than a few percent
out of it.

There are two important aspects of parallel evolutionary algorithms. These are equally
important but often confused. The first is the traditional aspect of parallel computing.
We port an existing algorithm onto a super computer so that it runs faster. The second
aspect comes from the biological inspiration for EC.

In nature everything happens in parallel. Individuals succeed or not in producing and
raising children at the same time as other members of their species. The individuals
are spread across oceans, lakes, rivers, plains, forests, mountain chains, etc. It was this
geographic spread that led Sewell Wright [440] to proposed that geography and changes to
it are of great importance to the formation of new species and so to natural evolution as
a whole.

While in nature geographically distributed populations are a necessity, in EC we have a
choice. We can run GP on parallel hardware so as to speed up runs, or we can distribute GP
populations over geographies so as obtain some of the benefits geographies bring to natural
evolution. In the following we will discuss both ideas. It is important to note, however,
that one does not need to use parallel hardware to use geographically distributed GP pop-
ulations. Although parallel hardware naturally lends itself to realise physically-distributed
populations, one can obtain similar benefits by using logically-distributed populations in a
single machine.

8.6.1 Master-slave GP

If the objective is purely to speed up runs, we may want our GP to work exactly the
same as it did on a single computer. This is possible, but to achieve it we have to be
very careful to ensure that even if some parts of the population are evaluated quicker, that
parallelisation does not change how we do selection and which GP individual crosses over
with the other. Probably the easiest way to implement this is the master-slave model.

52

(a) (b)

Figure 18: Spatially structured GP populations. (a) Toroidal grid of demes where each
deme (a node) contains a subpopulation and demes periodically exchange a small group
of high-fitness individuals using a grid of communication channels. (b) Fine-grained dis-
tributed GP, where each grid cell contains one individual and where the selection of a
mating partner for the individual in the centre cell is performed by executing a tour-
nament among randomly selected individuals (e.g., the individuals shaded) in its 3 × 3
neighbourhood.

In the master-slave model [311] breeding, selection crossover, mutation etc. are exactly
as on a single computer and only fitness evaluation is spread across a network of computers.
Each GP individual and its fitness cases are sent across the network to a compute node.
The central node waits for it to return the individual’s fitness. Since individuals and fitness
values are small, this can be quite efficient. The central node is an obvious bottle neck.
Also, a slow compute node or a lengthy fitness case will slow down the whole GP population,
since eventually its result will be needed before moving onto the next generation.

8.6.2 Geographically Distributed GP

As we have seen, unless some type of synchronisation or check pointing is imposed, e.g.
at the end of each generation, the parallel GP will not be running the same algorithm
as the single node version, and, so, it will almost certainly produce different answers.
If the population is divided up into subpopulations (known as demes [67, 88, 242]) and
the exchange of individuals among populations is limited both in terms of how many
individuals are allowed to migrate per generation and a geography that constraints which
populations can communicate with which, then parallelisation can bring benefits similar
to those found in nature by Sewell Wright. For example, it may be that with limited
migration between compute nodes, the evolved populations on adjacent nodes will diverge
and that this increased diversity may lead to better solutions.

When Koza first started using GP on a network of Transputers [7], David Andre exper-
imentally determined the best immigration rate for their problem. He suggested Transput-
ers arranged in an asynchronous 2–D toroidal square grid (such as the one in Figure 18a)

53

Figure 19: A global population [231]. Straight lines show connections between major sites
in a continuously evolving L-System.

should exchange 2% of their population with their four neighbours.
Densely connected grids have been widely adopted in parallel GP. Usually they allow

innovative partial solutions to quickly spread. However, the GA community reported better
results from less connected topologies, such as arranging the compute node’s populations in
a ring, so that they could transport genes only between between themselves and their two
neighbours [394]. Mitch Potter [343] argues in favour of spatial separation in populations
(see Figure 18b). Dave Goldberg [126] also suggests low migration rates. In [427] Darrell
Whitley includes some guidance on parallel GAs.

While many have glanced enviously at Koza’s 1000 node Beowulf [397], a super com-
puter [172, 31] is often not necessary. Many businesses and research centres leave comput-
ers permanently switched on. During the night their computational resources tend to be
wasted. This computing power can easily and efficiently be used to execute distributed GP
runs overnight. Typically GP does not demand a high performance bus to interconnect the
compute nodes, and, so, existing office Ethernet LANs are often sufficient. Whilst parallel
GP systems can be implemented using MPI [422] or PVM [105], the use of such tools is not
necessary: simple Unix commands and port-to-port HTTP is sufficient [340]. The popu-
lation can be split and stored on modest computers. With only infrequent interchange of
parts of the population or fitness values little bandwidth is needed. Indeed a global popula-
tion spread via the Internet [231], ala seti@home, is perfectly feasible [62]. (See Figure 19).
Other parallel GPs include [364, 362, 7, 107, 402, 270, 106, 70, 255, 135, 48, 55].

54

8.6.3 GP Running on GPUs

Modern PC graphics cards contain powerful Graphics Processing Units (GPUs) including
a large number of computing components. For example, it is not atypical to have 128
streaming processors on a single PCI graphics card. In the last few years there has been an
explosion of interest in porting scientific or general purpose computation to mass market
graphics cards [312].

Indeed, the principal manufactures (nVidia and ATI) claim faster than Moore’s Law
increase in performance, suggesting that GPU floating point performance will continue to
double every twelve months, rather than the 18-24 months observed [286] for electronic
circuits in general and personal computer CPUs in particular. In fact, the apparent failure
of PC CPUs to keep up with Moore’s law in the last few years makes GPU computing
even more attractive. Even today’s bottom of the range GPUs greatly exceed the floating
point performance of their hosts’ CPU. However, this speed comes at a price, since GPUs
provide a restricted type of parallel processing, often referred to a single instruction mul-
tiple data (SIMD) or single program multiple data (SPMD). Each of the many processors
simultaneously runs the same program on different data items.

There have been a few GP experiments with GPUs [261, 279, 95, 348, 140, 60, 233, 236].
So far, in GP, GPUs have just been used for fitness evaluation. Simon Harding used
the Microsoft research GPU development Direct X tools to allow him to compile a whole
population of Cartesian GP network programs into a GPU program [142] which was loaded
onto his Laptop’s GPU in order to run fitness cases. We used [233, 236] a SIMD interpreter
[172] written in C++ using RapidMind’s GCC OpenGL framework to simultaneously run
up to a quarter of a million GP trees on an nVidia GPU. A conventional tree GP S-
expression can be linearised. We used used reverse polish notation (RPN). I.e. post fix
notation, rather than pre-fix notation. RPN avoids recursive calls in the interpreter [233].
Only small modifications are needed to do crossover and mutation so that they act directly
on the RPN expressions. This means the same representation is used on both the host
and the GPU. In both Cartesian and tree GP the genetic operations are done by the host
CPU. Man-Leung Wong showed, for a genetic algorithm, these too can be done by the
GPU [438].

Although each of the GPU’s processors may be individually quite fast and the manu-
facturers claim huge aggregate FLOP ratings, the GPUs are optimised for graphics work.
In practice it is hard to keep all the processors fully loaded. Nevertheless 30 GFLOP s−1

has been achieved [236]. Given the differences in CPU and GPU architectures and clock
speeds, often the speedup from using a GPU rather than the host CPU is the most useful
statistic. This is obviously determined by many factors, including the relative importance
of amount of computation and size of data. The measured RPN tree speedups were 7.6 [236]
and 12.6 [233].

55

8.7 GP Trouble-shooting

A number of practical recommendations for GP work can be made. To a large extent the
advice in [195] and [203] remains sound. However, we also suggest:

• GP populations should be closely studied as they evolve. There are several properties
that can be easily measured which give indications of problems:

– Frequency of primitives. Recognising when a primitive has been completely lost
from the population (or its frequency has fallen to a low level, consistent with
the mutation rate) may help to diagnose problems.

– Population variety. If the variety – the number of distinct individuals in the
population – falls below 90% of the population size, this indicates there may be
a problem. However, a high variety does not mean the reverse. GP populations
often contain introns, and so programs which are not identical may behave
identically. Being different, these individuals contribute to a high variety, that
is a high variety need not indicate all is well. Measuring phenotypic variation
(i.e., diversity of behaviour) may also be useful.

• Measures should be taken to encourage population diversity. Panmictic steady-state
populations with tournament selection, reproduction and crossover may converge too
readily. The above-mentioned metrics may indicate if this is happening in a particular
case. Possible solutions include:

– Not using the reproduction operator.

– Addition of one or more mutation operators.

– Smaller tournament sizes and/or using uniform random selection (instead of the
standard negative tournaments) to decide which individuals to remove from the
population. Naturally, the latter means the selection scheme is no longer elitist.
It may be worthwhile forcing it to be elitist.

– Splitting large populations into semi-isolated demes.3

– Using fitness sharing to encourage the formation of many fitness niches.

• Use of fitness caches (either when executing an individual or between ancestors and
children) can reduce run time and may repay the additional work involved with using
them.

3What is meant by a “large population” has changed over time. In the early days of GP populations
of 1,000 or more could be considered large. However, CPU speeds and computer memory have increased
exponentially over time. So, at the time of writing it is not unusual to see populations of hundred of
thousands or millions of individuals being used in the solution of hard problems. Research indicates that
there are benefits in splitting populations into demes even for much smaller populations.

56

• Where GP run time is long, it is important to periodically save the current state of
the run. Should the system crash, the run can be restarted from part way through
rather than at the start. Care should be taken to save the entire state, so restarting
a run does not introduce any unknown variation. The bulk of the state to be saved is
the current population. This can be compressed, e.g., using gzip. While compression
can add a few percent to run time, reductions in disk space to less than one bit per
primitive in the population have been achieved.

9 Genetic Programming Theory

Most of this paper is about the mechanics of GP and its practical use for solving problems.
We have looked at GP from a problem-solving and engineering point of view. However,
GP is a non-deterministic searcher and, so, its behaviour varies from run to run. It is
also complex adaptive system which sometimes shows complex and unexpected behaviours
(such as bloat). So, it is only natural to be interested in GP also from the scientific point
of view. That is, we want to understand why can GP solve problems, how it does it, what
goes wrong when it cannot, what are the reasons for certain undesirable behaviours, what
can we do to get rid of them without introducing new (and perhaps even less desirable)
problems, and so on.

GP is a search technique that explores the space of computer programs. The search
for solutions to a problem starts from a group of points (random programs) in this search
space. Those points that are above average quality are then used to generate a new
generation of points through crossover, mutation, reproduction and possibly other genetic
operations. This process is repeated over and over again until a stopping criterion is
satisfied. If we could visualise this search, we would often find that initially the population
looks like a cloud of randomly scattered points, but that, generation after generation, this
cloud changes shape and moves in the search space. Because GP is a stochastic search
technique, in different runs we would observe different trajectories. These, however, would
show clear regularities which would provide us with a deep understanding of how the
algorithm is searching the program space for the solutions. We would probably readily see,
for example, why GP is successful in finding solutions in certain runs, and unsuccessful in
others. Unfortunately, it is normally impossible to exactly visualise the program search
space due to its high dimensionality and complexity, and so we cannot just use our senses
to understand GP.

9.1 Mathematical Models

In this situation, in order to gain an understanding of the behaviour of a GP system one
can perform many real runs and record the variations of certain numerical descriptors (like
the average fitness or the average size of the programs in the population at each generation,
the average number of inactive nodes, the average difference between parent and offspring
fitness, etc.). Then, one can try to suggest explanations about the behaviour of the system

57

which are compatible with (and could explain) the empirical observations. This exercise
is very error prone, though, because a genetic programming system is a complex adaptive
system with zillions of degrees of freedom. So, any small number of statistical descriptors
is likely to be able to capture only a tiny fraction of the complexities of such a system. This
is why in order to understand and predict the behaviour of GP (and indeed of most other
evolutionary algorithms) in precise terms we need to define and then study mathematical
models of evolutionary search.

Schema theories are among the oldest and the best known models of evolutionary
algorithms [154, 429]. Schema theories are based on the idea of partitioning the search
space into subsets, called schemata. They are concerned with modelling and explaining
the dynamics of the distribution of the population over the schemata. Modern GA schema
theory [395, 396] provides exact information about the distribution of the population at
the next generation in terms of quantities measured at the current generation, without
having to actually run the algorithm.4

The theory of schemata in GP has had a difficult childhood. Some excellent early efforts
led to different worst-case-scenario schema theorems [203, 3, 309, 425, 326, 358]. Only very
recently have the first exact schema theories become available [316, 320, 321] which give
exact formulations (rather than lower bounds) for the expected number of individuals
sampling a schema at the next generation. Initially [320, 321], these exact theories were
only applicable to GP with one-point crossover (see Section 2.4). However, more recently
they have been extended to the class of homologous crossovers [338] and to virtually all
types of crossovers that swap subtrees [336, 337], including standard GP crossover with and
without uniform selection of the crossover points, one-point crossover, context-preserving
crossover and size-fair crossover which have been described in Section 2.4, as well as more
constrained forms of crossover such as strongly-typed GP crossover (see Section 5.4.2), and
many others.

9.2 Search Spaces

Exact schema-based models of GP are probabilistic descriptions of the operations of selec-
tion, reproduction, crossover and mutation. They make it explicit how these operations
determine the areas of the program space that will be sampled by GP and with which
probability. However, these models treat the fitness function as a black box. That is, there
is no notion of the fact that in GP, unlike other evolutionary techniques, the fitness func-
tion involves the execution of computer programs with different input data. I.e., schema
theories do not tell us how fitness is distributed in the search space.

The characterisation of the space of computer programs explored by GP has been
another main topic of theoretical research [239].5 In this category are theoretical results

4Other models of evolutionary algorithms exist, such those based on Markov chain theory (e.g. [297, 76])
or on statistical mechanics (e.g. [345]). Only Markov models [341, 338, 284] have been applied to GP, but
they are not as developed as schema theory.

5Of course results describing the space of all possible programs are widely applicable, not only to GP
and other search based automatic programming techniques, but also to many other areas ranging from

58

0 10 20 30 40 50 60 70 80Three-Input Boolean equivalence class
1

31
63

91
127

151

201

255

Size

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

Figure 20: Proportion of NAND trees that yield each three-input functions. As circuit size
increases the distribution approaches a limit.

showing that the distribution of functionality of non Turing-complete programs approaches
a limit as program length increases. That is, although the number of programs of a
particular length grows exponentially with length, beyond a certain threshold the fraction
of programs implementing any particular functionality is effectively constant. For example,
in Figure 20 we plot the proportion of binary program trees composed of NAND gates
which implement each of the 223

= 256 Boolean functions of three inputs. Notice how, as
the length of programs increases, the proportion of programs implementing each function
approaches a limit. This does not happen by accident. There is a very substantial body of
empirical evidence indicating that this happens in a variety of other systems. In fact, we
have also been able to prove mathematically these convergence results for two important
forms of programs: Lisp (tree-like) S-expressions (without side effects) and machine code
programs without loops [239, 225, 226, 228, 227, 230]. Also, similar results were derived
for: a) cyclic (increment, decrement and NOP), b) bit flip computer, (flip bit and NOP),
c) any non-reversible computer, d) any reversible computer, e) CCNOT (Toffoli gate)
computer, f) quantum computers, g) the “average” computer and h) AND, NAND, OR,
NOR expressions (however, these are not Turing complete).

software engineering to theoretical computer science.

59

Recently [333], we started extending our results to Turing complete machine code pro-
grams. We considered a simple but realistic Turing complete machine code language, T7.
It includes: directly accessed bit addressable memory, an addition operator, an uncondi-
tional jump, a conditional branch and four copy instructions. We performed a mathemat-
ical analysis of the halting process based on a Markov chain model of program execution
and halting. The model can be used to estimate, for any given program length, important
quantities, such as the halting probability and the run time of halting programs. This
showed a scaling law indicating that the halting probability for programs of length L is of
order 1/

√
L, while the expected number of instructions executed by halting programs is of

order
√

L. In contrast to many proposed Markov models, this can be done very efficiently,
making it possible to compute these quantities for programs of tens of million instructions
in a few minutes. Experimental results confirmed the theory.

9.3 Bloat

There are a certain number of limits in GP: bloat, limited modularity of evolved solutions
and limited scalability of GP as the problem size increases. We briefly discuss the main
one, bloat, below.

Starting in the early 90s researchers began to notice that in addition to progressively
increasing their mean and best fitness, GP populations also showed certain other dynamics.
In particular, it was noted that very often the average size (number of nodes) of the
programs in a population, after a certain number of generations in which it was largely
static, at some point would start growing at a rapid pace. Typically the increase in program
size was not accompanied by any corresponding increase in fitness. The origin of this
phenomenon, which is know as bloat, has effectively been a mystery for over a decade.

Note that there are situations where one would expect to see program growth as part of
the process of solving a problem. For example, GP runs typically start from populations of
small random programs, and it may be necessary for the programs to grow in complexity
for them to be able to comply with all the fitness cases (a situation which often arises in
continuous symbolic regression problems). So, we should not equate bloat with growth.
We should only talk of bloat when there is growth without (significant) return in terms of
fitness.

Because of its surprising nature and of its practical effects (large programs are hard to
interpret, may have poor generalisation and are computationally expensive to evolve and
later use), bloat has been a subject of intense study in GP. As a result, many theories
have been proposed to explain bloat: replication accuracy theory, removal bias theory,
nature of program search spaces theory, etc. Unfortunately, only recently we have started
understanding the deep reasons for bloat. So, there is a great deal of confusion in the field
as to the reasons of (and the remedies for) bloat. For many people bloat is still a puzzle.

Let us briefly review these theories:

Replication accuracy theory [277]: This theory states that the success of a GP indi-
vidual depends on its ability to have offspring that are functionally similar to the

60

parent. So, GP evolves towards (bloated) representations that increase replication
accuracy.

Removal bias theory [386]: Inactive code (code that is not executed, or is executed but
its output is then discarded) in a GP tree is low in the tree, forming smaller-than-
average-size subtrees. Crossover events excising inactive subtrees produce offspring
with the same fitness as their parents. On average the inserted subtree is bigger than
the excised one, so such offspring are bigger than average.

Nature of program search spaces theory [237, 248]: Above a certain size, the dis-
tribution of fitnesses does not vary with size. Since there are more long programs,
the number of long programs of a given fitness is greater than the number of short
programs of the same fitness. Over time GP samples longer and longer programs
simply because there are more of them.

Crossover bias theory [334, 89]: On average, each application of subtree crossover re-
moves as much genetic material as it inserts. So, crossover in itself does not produce
growth or shrinkage. However, while the mean program size is unaffected, other
moments of the distribution are. In particular, we know that crossover pushes the
population towards a particular distribution of program sizes (a Lagrange distribu-
tion of the second kind), where small programs have a much higher frequency than
longer ones. For example, crossover generates is a very high proportion of single-node
individuals. In virtually all problems of practical interest, very small programs have
no chance of solving the problem. As a result, programs of above average length
have a selective advantage over programs of below average length. Consequently, the
mean program size increases.

Several effective techniques to control bloat have been proposed [248, 385]. E.g. size fair
crossover or size fair mutation [243, 71], Tarpeian bloat control [322], parsimony pressure
[450, 451, 452], or using many runs each lasting only a few generations. Generally the
use of multiple genetic operations, each making a small change, seems to help [307, 11].
There are also several mutation operators that may help control the average tree size in
the population while still introducing new genetic material. [192] proposes a mutation
operator which prevents the offspring’s depth being more then 15% larger than its parent.
[222] proposes two mutation operators in which the new random subtree is on average the
same size as the code it replaces. In Hoist mutation [194] the new subtree is selected from
the subtree being removed from the parent, guaranteeing that the new program will be
smaller than its parent. Shrink mutation [9] is a special case of subtree mutation where
the randomly chosen subtree is replaced by a randomly chosen terminal.

10 Conclusions

In his seminal 1948 paper entitled “Intelligent Machinery” [415] Turing identified three
ways by which human-competitive machine intelligence might be achieved. In connection

61

with one of those ways, Turing said:

“There is the genetical or evolutionary search by which a combination of
genes is looked for, the criterion being the survival value.”

Turing did not specify how to conduct the “genetical or evolutionary search” for machine
intelligence. In particular, he did not mention the idea of a population-based parallel search
in conjunction with sexual recombination (crossover) as described in John Holland’s 1975
book Adaptation in Natural and Artificial Systems [155]. However, in his 1950 paper
“Computing Machinery and Intelligence” [416], he did point out:

“We cannot expect to find a good child-machine at the first attempt. One
must experiment with teaching one such machine and see how well it learns.
One can then try another and see if it is better or worse. There is an obvious
connection between this process and evolution:

‘Structure of the child machine’ = Hereditary material
‘Changes of the child machine’ = Mutations

‘Natural selection’ = Judgement of the experimenter”

In other words, Turing perceived that one possibly productive approach to machine intelli-
gence would involve an evolutionary process in which a description of a computer program
(the hereditary material) undergoes progressive modification (mutation) under the guid-
ance of natural selection (i.e., selective pressure in the form of what we now call “fitness”).

Today, many decades later, we can see that indeed Turing was right. GP has started
fulfilling Turing’s dream by providing us with a systematic method, based on Darwinian
evolution, for getting computers to automatically solve hard real-life problems. To do so,
it simply requires a high-level statement of what needs to be done (and enough computing
power).

Turing also understood the need to evaluate objectively the behaviour exhibited by
machines, to avoid human biases when assessing their intelligence. This led him to propose
an imitation game, now known as the Turing test for machine intelligence, whose goals are
wonderfully summarised by Arthur Samuel’s position statement quoted in the introduction
of this paper. The eight criteria for human competitiveness we discussed in Section 7.2 are
motivated by the same goals.

At present GP is unable to produce computer programs that would pass the full Turing
test for machine intelligence, and it might not be ready for this immense task for centuries.
Nonetheless, thanks to the constant improvements in GP technology, in its theoretical
foundations and in computing power, GP has been able to solve tens of difficult problems
with human-competitive results (see Section 7.2). These are a small step towards fulfilling
Turing and Samuel’s dreams, but they are also early signs of things to come. It is, indeed,
arguable that in a few years’ time GP will be able to routinely and competently solve
important problems for us in a variety of application domains with human-competitive
performance. Genetic programming will then become an essential collaborator for many
human activities. This, we believe, will be a remarkable step forward towards achieving
true, human-competitive machine intelligence.

62

Acknowledgements

We would like to thank Rick Riolo for timely assistance.

Appendix: Resources

Following the publication of [203], the field of GP took off in about 1990 with a period of ex-
ponential growth common in the initial stages of successful technologies. Many influential
initial papers from that period can be found in the proceedings of the International Confer-
ence on Genetic Algorithms (ICGA-93, ICGA-95), the IEEE conferences on Evolutionary
Computation (EC-1994), and the Evolutionary Programming conference. A surprisingly
large number of these are now available online. After almost twenty years, GP has ma-
tured and is used in a wondrous array of applications. From banking [291] to betting [414],
from bomb detection [112] to architecture [308], from the steel industry to the environment
[166], from space [258] to biology [168], and many others (as we have seen in Section 7).
In 1996 it was possible to list (almost all) GP applications [241], but today the range is far
too great and here we simply list some GP resources, which, we hope, will guide readers
towards their goals.

Books

There are today more than 31 books written in English principally on GP or its appli-
cations with more being written. These start with John Koza’s “Genetic Programming”
1992 (often referred to as Jaws). Koza has published four books on GP: “Genetic Program-
ming II: Automatic Discovery of Reusable Programs” (1994) deals with ADFs; “Genetic
Programming 3” (1999) covers, in particular, the evolution of analogue circuits; “Genetic
Programming 4” (2003) uses GP for automatic invention. MIT Press published three vol-
umes in the series “Advances in Genetic Programming” (1994, 1996, 1999). The joint GP
/ genetic algorithms book series edited by John Koza and Dave Goldberg now contains 14
books starting with “Genetic Programming and Data Structures” [242]. Apart from Jaws,
these tended to be for the GP specialist. However, 1997 saw the introduction of the first
text book dedicated to GP [26]. Eiben [96] and Goldberg [125] provide general treatment
on evolutionary algorithms.

Other titles include: “Principia Evolvica – Simulierte Evolution mit Mathematica”
(in German) [163] (English version [165]), “Data Mining Using Grammar Based Genetic
Programming and Applications” [437], “Genetic Programming” (in Japanese) [160] and
“Humanoider: Sjavlarande robotar och artificiell intelligens” (in Swedish) [301].

Readers interested in mathematical and empirical analyses of GP behaviour may find
“Foundations of Genetic Programming” [239] useful.

63

Videos

Each of Koza’s four books has an accompanying illustrative video. These are now available
as a DVD. Furthermore a small set of videos on specific GP techniques and applications is
available from Google Video and YouTube.

Journals

In addition to GP’s own “Genetic Programming and Evolvable Machines” journal, “Evolu-
tionary Computation”, the “IEEE transaction on Evolutionary Computation”, “Complex
Systems” and many others publish GP articles. The GP bibliography lists a further 375
different journals worldwide that have published articles related to GP.

Conference Proceedings

EuroGP has been held every year since 1998. All EuroGP papers are available on line as
part of Springer’s LNCS series. The original annual “Genetic Programming” conference
was hosted by John Koza in 1996 in Stanford. Since 1999 it has been combined with the
International Conference on Genetic Algorithms to form GECCO. 98% of GECCO papers
are online. The Michigan based “Genetic Programming Theory and Practice” workshop
[353, 310, 449, 351] will shortly publish its fifth proceedings [352]. Other EC conferences,
such as CEC, PPSN, Evolution Artificielle and WSC, also regularly contain GP papers.

Examples

One of the reasons behind the success of GP is that it is easy to implement your own version.
People have coded GP in a huge range of different languages, e.g., Lisp, C, C++, Java,
JavaScript, Perl, Prolog, Mathematica, Pop-11, MATLAB, Fortran, Occam and Haskell.
Typically these evolve code which looks like a very cut down version of Lisp. However,
admires of grammars, claim the evolved language can be arbitrarily complex and certainly
programs in functional and other high level languages have been automatically evolved.
Conversely, many successful programs in machine code or low level languages have also
climbed from the primordial ooze of initial randomness.

Many GP implementations can be freely downloaded. Two that have been available
for a long time and remain popular are: Sean Luke’s ECJ (in Java) and Douglas Zonger’s
“little GP” lilGP (in C). A number of older unsupported tools can be found at ftp:

//cs.ucl.ac.uk/genetic/ftp.io.com/ The most prominent commercial implementation
remains Discipulus [108].

Online Resources

There is a lot of information available on the the world wide web, although, unfortunately,
Internet addresses (URLs) change rapidly. Therefore we simply name useful pages here
(rather than give their URL). A web search will usually quickly locate them.

64

At the time of writing, the GP bibliography, contains about 5000 GP entries. About
half the entries can be downloaded immediately. There are a variety of interfaces including
a graphical representation of GP’s collaborative network (see Figure 21). The HTML pages
are perhaps the easiest to use. They allow quick jumps between papers linked by authors,
show paper concentrations and in many cases direct paper downloads. The collection of
computer sciences bibliographies provides a comprehensive Lucene syntax search engine.
Bibtex and Refer files can also be searched but are primarily intended for direct inclusion
of bibliographic references in papers written in LaTeX and Microsoft Word, respectively.

Almost since the beginning there has been an open active email discussion list: the
GP discussion group, which is hosted by Yahoo! For more reflective discussions, the EC-
Digest comes out once a fortnight and often contains GP related announcements, while
the organisation behind GECCO also runs a quarterly “SIGEvolution” newsletter.

Koza’s http://www.genetic-programming.org/ contains a ton of useful information
for the novice, including a short tutorial on “What is Genetic Programming” and LISP
code for implementing GP, as in Genetic Programming [203].

References

[1] Sameer H. Al-Sakran, John R. Koza, and Lee W. Jones. Automated re-invention of a
previously patented optical lens system using genetic programming. In Maarten Kei-
jzer, Andrea Tettamanzi, Pierre Collet, Jano I. van Hemert, and Marco Tomassini,
editors, Proceedings of the 8th European Conference on Genetic Programming, vol-
ume 3447 of Lecture Notes in Computer Science, pages 25–37, Lausanne, Switzerland,
30 March - 1 April 2005. Springer.

[2] Jess Allen, Hazel M. Davey, David Broadhurst, Jim K. Heald, Jem J. Rowland,
Stephen G. Oliver, and Douglas B. Kell. High-throughput classification of yeast
mutants for functional genomics using metabolic footprinting. Nature Biotechnology,
21(6):692–696, June 2003.

[3] Lee Altenberg. Emergent phenomena in genetic programming. In Anthony V. Sebald
and Lawrence J. Fogel, editors, Evolutionary Programming — Proceedings of the
Third Annual Conference, pages 233–241, San Diego, CA, USA, 24-26 February
1994. World Scientific Publishing.

[4] Alexandre P. Alves da Silva and Pedro Jose Abrao. Applications of evolutionary
computation in electric power systems. In David B. Fogel, Mohamed A. El-Sharkawi,
Xin Yao, Garry Greenwood, Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors,
Proceedings of the 2002 Congress on Evolutionary Computation CEC2002, pages
1057–1062. IEEE Press, 2002.

[5] Daichi Ando, Palle Dahlsted, Mats Nordahl, and Hitoshi Iba. Interactive GP
with tree representation of classical music pieces. In Mario Giacobini, Anthony

65

Figure 21: Co-author connections within GP. Each of the 1141 red dots indicates an
author. The black lines links people who have co-authored one or more papers. (To
reduce clutter only links to first author are shown.) The online version is annotated by
JavaScript and contains hyperlinks to authors and their GP papers. The graph was created
by GraphViz twopi, which tries to place strongly connected people close together. It is the
“centrally connected component” [411] and contains approximately half of all GP papers.
The remaining papers are not linked by co-authorship to this graph. Several of the larger
unconnected graphs are also on line via the gp-bibliography www pages.

66

../gp-html/JohnKoza.html#197
../gp-html/SimonCRoberts.html#20
../gp-html/DipankarDasgupta.html#6
../gp-html/KalyanmoyDeb.html#9
../gp-html/ConorRyan.html#92
../gp-html/PaulJWalsh.html#6
../gp-html/JimBuckley.html#1
../gp-html/TonyCahill.html#1
../gp-html/Hans-PaulSchwefel.html#4
../gp-html/XinYao.html#6
../gp-html/NiallGriffith.html#1
../gp-html/PaddyHealy.html#1
../gp-html/AlanSheahan.html#1
../gp-html/EoinRyan.html#1
../gp-html/MartinPelikan.html#6
../gp-html/VladimirKvasnicka.html#2
../gp-html/JiriPospichal.html#2
../gp-html/FranzOppacher.html#18
../gp-html/MarkWineberg.html#3
../gp-html/RaphaelCrawford-Marks.html#3
../gp-html/JonKlein.html#9
../gp-html/MaartenKeijzer.html#43
../gp-html/MartinVButz.html#1
../gp-html/TinaYu.html#34
../gp-html/RickLRiolo.html#12
../gp-html/SevanGFicici.html#1
../gp-html/JorgeMuruzabal.html#1
../gp-html/AmeliaFernandez.html#1
../gp-html/KatyaRodriguez-Vazquez.html#19
../gp-html/AERuano.html#1
../gp-html/MarcoTomassini.html#51
../gp-html/GianluigiFolino.html#14
../gp-html/IanDempsey.html#7
../gp-html/MiguelNicolau.html#15
../gp-html/PhilMcMinn.html#1
../gp-html/GuentherRaidl.html#1
../gp-html/DirkThierens.html#4
../gp-html/EdwardPKTsang.html#18
../gp-html/JanAntolik.html#2
../gp-html/WilliamHHsu.html#7
../gp-html/PeterAndreae.html#12
../gp-html/HuayangJasonXie.html#7
../gp-html/ZhengRongYang.html#3
../gp-html/JingQiu.html#1
../gp-html/MaxHGarzon.html#5
../gp-html/LeeSpector.html#50
../gp-html/DavidEGoldberg.html#10
../gp-html/KumaraSastry.html#8
../gp-html/TerenceSoule.html#42
../gp-html/AlanPiszcz.html#6
../gp-html/SanjeevKumar.html#4
../gp-html/BradDolin.html#5
../gp-html/MaribelGarciaArenas.html#2
../gp-html/LaurIvan.html#9
../gp-html/JuanJulianMerelo.html#6
../gp-html/WilliamBLangdon.html#169
../gp-html/GuenterRudolph.html#3
../gp-html/Shie-YuiLiong.html#3
../gp-html/NitinMuttil.html#7
../gp-html/JanetTMcDonnell.html#1
../gp-html/ChristopherDClack.html#16
../gp-html/ManuelClergue.html#12
../gp-html/MichaelDefoinPlatel.html#4
../gp-html/MichaelDefoin-Platel.html#1
../gp-html/MarcSchoenauer.html#29
../gp-html/RobertoRossi.html#2
../gp-html/ValentinoLiberali.html#2
../gp-html/LeonardoVanneschi.html#35
../gp-html/FranciscoFernandezdeVega.html#31
../gp-html/EdmundBurke.html#18
../gp-html/StevenMGustafson.html#23
../gp-html/GermanGaleano.html#6
../gp-html/AWJayawardena.html#1
../gp-html/RobertBHeckendorn.html#7
../gp-html/JasonStevens.html#1
../gp-html/JosephHun-weiLee.html#2
../gp-html/PeterNordin.html#78
../gp-html/MagnusEkman.html#1
../gp-html/JulianFMiller.html#55
../gp-html/PeterThomson.html#5
../gp-html/DominicJob.html#2
../gp-html/VesselinKVassilev.html#4
../gp-html/HerbertJBernstein.html#7
../gp-html/Shu-HengChen.html#64
../gp-html/KristerWolff.html#16
../gp-html/JonasCarlsson.html#1
../gp-html/PierreCollet.html#15
../gp-html/GregoryValigiani.html#1
../gp-html/MortenHartmann.html#2
../gp-html/DarioFloreano.html#3
../gp-html/BernardBuxton.html#19
../gp-html/PhilipTreleaven.html#2
../gp-html/BastienChopard.html#5
../gp-html/OlivierVPictet.html#5
../gp-html/YinShan.html#11
../gp-html/JianyingLiu.html#1
../gp-html/WeiQuan.html#1
../gp-html/SylvainGelly.html#5
../gp-html/OlivierTeytaud.html#6
../gp-html/NicolasBredeche.html#7
../gp-html/MalikChami.html#4
../gp-html/JinLi.html#13
../gp-html/ArpitAAlmal.html#5
../gp-html/AnirbanPMitra.html#2
../gp-html/RamHDatar.html#2
../gp-html/DuncanMacLean.html#5
../gp-html/PeterFLenehan.html#2
../gp-html/ErickCantu-Paz.html#7
../gp-html/Dong-YeonCho.html#8
../gp-html/Kwang-HyunCho.html#1
../gp-html/NguyenXuanHoai.html#23
../gp-html/NguyenThiHien.html#2
../gp-html/RajkumarRoy.html#4
../gp-html/JoachimWegener.html#5
../gp-html/MitchellAPotter.html#3
../gp-html/AlanCSchultz.html#3
../gp-html/Li-ShanKang.html#15
../gp-html/Xue-songYan.html#1
../gp-html/StefanDroste.html#8
../gp-html/ChristianGagne.html#16
../gp-html/MarcParizeau.html#15
../gp-html/DavidWFry.html#2
../gp-html/RichardJCote.html#2
../gp-html/HaymHirsh.html#1
../gp-html/JianjunHu.html#23
../gp-html/ShaoboLi.html#1
../gp-html/MinPei.html#1
../gp-html/KarlHedman.html#1
../gp-html/AnneAuger.html#2
../gp-html/MengjieZhang.html#60
../gp-html/ChristopherFogelberg.html#3
../gp-html/FredrikLindblad.html#1
../gp-html/GiancarloMauri.html#3
../gp-html/WilliamPWorzel.html#16
../gp-html/RondalRosenberg.html#1
../gp-html/XiweiZhong.html#1
../gp-html/MassimilianoErba.html#1
../gp-html/MarcEbner.html#21
../gp-html/AndreasZell.html#3
../gp-html/PeterJohnAngeline.html#29
../gp-html/AdrianGrigore.html#1
../gp-html/ThomasDHaynes.html#34
../gp-html/SandipSen.html#13
../gp-html/RoseGamble.html#1
../gp-html/LeslieKnight.html#1
../gp-html/MicheleSebag.html#10
../gp-html/JustinianRosca.html#24
../gp-html/YunLi.html#9
../gp-html/GaryJGray.html#6
../gp-html/RebeccaThomson.html#1
../gp-html/MichaelLRaymer.html#1
../gp-html/LAKuhn.html#1
../gp-html/AdilRaja.html#1
../gp-html/ColinFlanagan.html#1
../gp-html/Una-MayO'Reilly.html#45
../gp-html/RDeaton.html#1
../gp-html/JornMehnen.html#5
../gp-html/ThomasMichelitsch.html#1
../gp-html/AlexanderHeffner.html#1
../gp-html/JurgenAlbert.html#2
../gp-html/MarkusReinhardt.html#1
../gp-html/HowardBarnum.html#6
../gp-html/TCharlesHodgman.html#1
../gp-html/JonathanDry.html#1
../gp-html/AustinKDoyle.html#1
../gp-html/XiKunWu.html#1
../gp-html/EvelyneLutton.html#16
../gp-html/YannLandrin-Schweitzer.html#2
../gp-html/ChristopherRStephens.html#12
../gp-html/RiccardoPoli.html#179
../gp-html/JamesAFoster.html#36
../gp-html/JoshCBongard.html#3
../gp-html/DarylEssam.html#21
../gp-html/JasonMDaida.html#43
../gp-html/PatrickJRauss.html#1
../gp-html/SergioAndresRojas.html#3
../gp-html/JulianYezidOlarte.html#2
../gp-html/DavidEnriqueSuarez.html#2
../gp-html/MichaelO'Neill.html#59
../gp-html/AnthonyBrabazon.html#25
../gp-html/JohnJamesCollins.html#7
../gp-html/YongXiang.html#2
../gp-html/TaoZeng.html#1
../gp-html/DaveCliff.html#3
../gp-html/HitoshiIba.html#87
../gp-html/HiromiWakaki.html#1
../gp-html/PabloJFunes.html#11
../gp-html/JurgenBranke.html#2
../gp-html/LeslieLuthi.html#2
../gp-html/WolfgangKantschik.html#6
../gp-html/RoderichGross.html#1
../gp-html/StefaniaBaglioni.html#1
../gp-html/CeliadaCostaPereira.html#1
../gp-html/DarioSorbello.html#1
../gp-html/ThomasKrantz.html#1
../gp-html/OscarLindberg.html#1
../gp-html/AndreaGBTettamanzi.html#10
../gp-html/AnikoEkart.html#17
../gp-html/ElizabethSklar.html#6
../gp-html/StevePhelps.html#5
../gp-html/JulieBeaulieu.html#1
../gp-html/Ho-SikSeok.html#4
../gp-html/Kwang-JuLee.html#4
../gp-html/AndreaArcuri.html#1
../gp-html/AndreLeier.html#5
../gp-html/PDwightKuo.html#1
../gp-html/KevinBurrage.html#1
../gp-html/JiachuanWang.html#4
../gp-html/JanisPTerpenny.html#3
../gp-html/IngoWegener.html#4
../gp-html/KatrinaMeagher.html#2
../gp-html/EdwardCarty.html#2
../gp-html/PeterKeenan.html#3
../gp-html/GunnarThorburn.html#1
../gp-html/RCMurphy.html#1
../gp-html/GulMuhammadKhan.html#2
../gp-html/JohnAnthonyRose.html#1
../gp-html/DRFranceschetti.html#1
../gp-html/EdgarGalvanLopez.html#4
../gp-html/RI_Bob_McKay.html#34
../gp-html/FelixStreichert.html#1
../gp-html/JeanLouchet.html#17
../gp-html/XavierProvot.html#2
../gp-html/DavidCrochemore.html#2
../gp-html/MichalBoccara.html#1
../gp-html/JohnFVesecky.html#9
../gp-html/RobertRBertram.html#6
../gp-html/DavidCorney.html#1
../gp-html/IanCParmee.html#5
../gp-html/KumarChellapilla.html#7
../gp-html/ChristianIgel.html#6
../gp-html/Hans-GeorgBeyer.html#9
../gp-html/MichaelDVose.html#1
../gp-html/NaohiroHondo.html#4
../gp-html/RichardAWatson.html#3
../gp-html/AnnaEsparcia-Alcazar.html#20
../gp-html/CJLokan.html#1
../gp-html/DavidPaull.html#2
../gp-html/RohanBaxter.html#1
../gp-html/AndreiBajurnow.html#2
../gp-html/VictorCiesielski.html#27
../gp-html/LionelCastillon.html#1
../gp-html/Jean-MarieRocchisant.html#1
../gp-html/MaudGuyon.html#2
../gp-html/Marie-JeanneLesot.html#2
../gp-html/RachelCavill.html#2
../gp-html/JamesAlfredWalker.html#9
../gp-html/MarkStephenson.html#2
../gp-html/SamanAmarasinghe.html#1
../gp-html/HugodeGaris.html#18
../gp-html/TatsumiFuruya.html#1
../gp-html/AndrzejBuller.html#5
../gp-html/HannesPlanatscher.html#1
../gp-html/DavidBFogel.html#6
../gp-html/LashonBBooker.html#1
../gp-html/JonathanDHommes.html#2
../gp-html/StevenJRoss.html#7
../gp-html/AndreasLoizides.html#1
../gp-html/MSlater.html#1
../gp-html/TimFuhner.html#1
../gp-html/ChristianJacob.html#13
../gp-html/MichaelESamples.html#6
../gp-html/MattPizzimenti.html#2
../gp-html/TerenceCFogarty.html#24
../gp-html/KitYanChan.html#3
../gp-html/ChristianSpieth.html#1
../gp-html/HolgerUlmer.html#1
../gp-html/JingxianYu.html#7
../gp-html/RGOnstott.html#1
../gp-html/DRLyzenga.html#1
../gp-html/DTWalker.html#1
../gp-html/StephenAStanhope.html#8
../gp-html/DELund.html#1
../gp-html/JeffreyJMcClain.html#2
../gp-html/DerrickSAmpy.html#2
../gp-html/MichaelHolczer.html#1
../gp-html/CatherineSGrasso.html#1
../gp-html/JohnAPolito2.html#5
../gp-html/ZbigniewMichalewicz.html#4
../gp-html/NealWagner.html#2
../gp-html/SiddharthaBhattacharyya.html#6
../gp-html/KumarMehta.html#1
../gp-html/EstebanRicalde.html#1
../gp-html/PeterAugustsson.html#1
../gp-html/MichaelRatanasavetavadhana.html#1
../gp-html/HsiaoleiLi.html#2
../gp-html/ShahbazAChaudhary.html#3
../gp-html/SethPYalcin.html#1
../gp-html/PaulMLitvak.html#1
../gp-html/GabrielAEickhoff.html#1
../gp-html/AdamMHilss.html#5
../gp-html/DavidJWard.html#4
../gp-html/ThiemoKrink.html#2
../gp-html/RasmusKUrsem.html#1
../gp-html/StephenLLong.html#3
../gp-html/RickyTang.html#2
../gp-html/DenisRobilliard.html#10
../gp-html/RichardSanter.html#1
../gp-html/PavankumarreddyKomireddy.html#1
../gp-html/ABeatrizGarmendia-Doval.html#3
../gp-html/KatsunoriShimohara.html#16
../gp-html/IvanTTanev.html#47
../gp-html/BryanHart.html#1
../gp-html/JeffryHalim.html#1
../gp-html/AdityaKumar.html#1
../gp-html/MarkHodges.html#1
../gp-html/SJBarrett.html#10
../gp-html/MatthewJByom.html#5
../gp-html/MichaelLHarrison.html#1
../gp-html/BradHarvey.html#2
../gp-html/TommasoFBersano-Begey.html#11
../gp-html/FrankLLudwig.html#2
../gp-html/PGKenny.html#1
../gp-html/EHDurfee.html#1
../gp-html/SimonParsons.html#4
../gp-html/PeterMcBurney.html#4
../gp-html/SteffenChristensen.html#3
../gp-html/JasonLohn.html#6
../gp-html/DerekSLinden.html#2
../gp-html/JamesPRice.html#11
../gp-html/WolfgangBanzhaf.html#111
../gp-html/AnnieSWu.html#4
../gp-html/YutakaInoue.html#2
../gp-html/TakahiroTohge.html#2
../gp-html/MikeJKeith.html#1
../gp-html/MartinCMartin.html#9
../gp-html/TakuyaIto.html#5
../gp-html/MasayukiKimura.html#1
../gp-html/SatoshiSato.html#3
../gp-html/AgnetaBergstrom.html#2
../gp-html/PatricijaJaksetic.html#2
../gp-html/MatsGNordahl.html#14
../gp-html/EduardLukschandl.html#7
../gp-html/TatianaKalganova.html#11
../gp-html/NicholasFreitagMcPhee.html#26
../gp-html/KlausWeinert.html#9
../gp-html/TobiasSurmann.html#2
../gp-html/MichaelPatrickJohnson.html#4
../gp-html/PattieMaes.html#3
../gp-html/TrevorDarrell.html#2
../gp-html/WilliamFPunch.html#10
../gp-html/AlexanderTopchy.html#1
../gp-html/BijanKHosraviani.html#3
../gp-html/Hong-QingCao.html#14
../gp-html/Yu-PingChen.html#7
../gp-html/YongyanChen.html#2
../gp-html/TaoGuo.html#2
../gp-html/HanxiYang.html#2
../gp-html/OtisLSmart.html#1
../gp-html/GeorgeVachtsevanos.html#1
../gp-html/LarryMDeschain.html#16
../gp-html/FredAZafran.html#1
../gp-html/JanardanJPatel.html#3
../gp-html/DavidAmick.html#1
../gp-html/RobertPettit.html#1
../gp-html/EdwardDilkes.html#1
../gp-html/LaureneVFausett.html#1
../gp-html/RonaldDGuthrie.html#1
../gp-html/JosephTGrimski.html#1
../gp-html/MJAdes.html#2
../gp-html/PhilipJonkergouw.html#1
../gp-html/EdKeedwell.html#2
../gp-html/Soon-ThiamKhu.html#3
../gp-html/ToponKumarPaul.html#3
../gp-html/KisungSeo.html#17
../gp-html/ErikGoodman.html#31
../gp-html/XinpingAi.html#1
../gp-html/RonaldCRosenberg.html#17
../gp-html/GuszEiben.html#12
../gp-html/EvaAlfaro-Cid.html#7
../gp-html/EuanWilliamMcGookin.html#1
../gp-html/DavidJamesMurray-Smith.html#7
../gp-html/MarkusConrads.html#2
../gp-html/NarendraPuppala.html#1
../gp-html/JensZiegler.html#7
../gp-html/JanBarnholt.html#1
../gp-html/Chang-anYuan.html#2
../gp-html/Jean-FrancoisDupuis.html#1
../gp-html/TianqingZhang.html#2
../gp-html/LeiDuan.html#1
../gp-html/GregorySHornby.html#25
../gp-html/SaraSilva.html#6
../gp-html/JonasAlmeida.html#1
../gp-html/StephenLSmith.html#8
../gp-html/YangZhang.html#3
../gp-html/SungBaeCho.html#12
../gp-html/Jin-HyukHong.html#6
../gp-html/PhyllisChong.html#5
../gp-html/PeterAlexanderWhigham.html#22
../gp-html/FriedrichRecknagel.html#4
../gp-html/JeromeCuendet.html#1
../gp-html/SergeyMalinchik.html#1
../gp-html/BelindaOrme.html#1
../gp-html/JosephARothermich.html#3
../gp-html/GiandomenicoSpezzano.html#15
../gp-html/RodneyFry.html#2
../gp-html/BomchulKim.html#1
../gp-html/NorikoTakamura.html#1
../gp-html/RMuhammadAtifAzad.html#14
../gp-html/MarkEBurke.html#1
../gp-html/AliRAnsari.html#2
../gp-html/MichaelWalsh.html#1
../gp-html/TimMcGloughlin.html#1
../gp-html/MartinAKeane.html#75
../gp-html/AndrewJMarek.html#1
../gp-html/WilliamDSmart.html#2
../gp-html/VladanBabovic.html#32
../gp-html/KJ_orgensen.html#1
../gp-html/GillesZumbach.html#2
../gp-html/FrankDFrancone.html#25
../gp-html/MarkusBrameier.html#16
../gp-html/MarioGiacobini.html#4
../gp-html/JeroenEggermont.html#15
../gp-html/AlainRacine.html#3
../gp-html/ClaudioMattiussi.html#1
../gp-html/MarkusWaibel.html#1
../gp-html/AndrewMTyrrell.html#24
../gp-html/GordonSHollingworth.html#2
../gp-html/FinbarLeahy.html#2
../gp-html/JosienHaan.html#1
../gp-html/JungseokShin.html#1
../gp-html/OrazioNicolotti.html#1
../gp-html/ValerieJGillet.html#1
../gp-html/AndreaKrings.html#1
../gp-html/DarrenVSGreen.html#1
../gp-html/ParagCPendharkar.html#1
../gp-html/ChangjieTang.html#6
../gp-html/TirthaRajGautam.html#1
../gp-html/AlbertoMoraglio.html#7
../gp-html/RolvSeehuus.html#3
../gp-html/DeborahFrincke.html#2
../gp-html/DanCostelloe.html#2
../gp-html/ShaojieQiao.html#1
../gp-html/SeanMcGarraghy.html#1
../gp-html/GayanWijesinghe.html#1
../gp-html/DirkWiesmann.html#2
../gp-html/DominicHeutelbeck.html#2
../gp-html/ThomasJansen.html#2
../gp-html/KarstenTinnefeld.html#1
../gp-html/KosukeImamura.html#5
../gp-html/RadovanOndas.html#3
../gp-html/SimonMLucas.html#9
../gp-html/AlexandrosAgapitos.html#5
../gp-html/JasonBobbin.html#1
../gp-html/ZhouKang.html#1
../gp-html/NanlinJin.html#6
../gp-html/EnriqueAlba.html#4
../gp-html/CarlosCotta.html#6
../gp-html/JoseMariaTroya.html#3
../gp-html/SameerHAl-Sakran.html#8
../gp-html/LeeWJones.html#9
../gp-html/Byoung-TakZhang.html#39
../gp-html/Jung-JibKim.html#1
../gp-html/LDarrellWhitley.html#11
../gp-html/LarryBull.html#12
../gp-html/JosephADriscoll.html#1
../gp-html/YukinoriKakazu.html#4
../gp-html/KojiNishikawa.html#1
../gp-html/HiroshiYokoi.html#1
../gp-html/HughWilson.html#1
../gp-html/MatthewRHyde.html#2
../gp-html/IMKarol.html#1
../gp-html/JamesCunhaWerner.html#18
../gp-html/NISilkou.html#1
../gp-html/EricBonabeau.html#2
../gp-html/PierLucaLanzi.html#5
../gp-html/NGLipnitskaya.html#1
../gp-html/RobertEKeller.html#10
../gp-html/SBHolden.html#1
../gp-html/CarlosArtemioCoelloCoello.html#5
../gp-html/AdilQureshi.html#4
../gp-html/KMathias.html#1
../gp-html/DDavis.html#1
../gp-html/KBalakrishnan.html#1
../gp-html/JenniferMcCormack.html#1
../gp-html/NatashaJonoska.html#3
../gp-html/PeterIRockett.html#3
../gp-html/KarlABenson.html#8
../gp-html/DanielHoward.html#26
../gp-html/JonathanERowe.html#16
../gp-html/PeterRLidwell.html#4
../gp-html/ZhuShi.html#1
../gp-html/OwenHolland.html#4
../gp-html/MarcosIvanQuintana-Hernandez.html#3
../gp-html/ElaClaridge.html#6
../gp-html/NancyJOlsen.html#2
../gp-html/DavidMReif.html#3
../gp-html/PeterANBosman.html#3
../gp-html/IanBurleigh.html#1
../gp-html/HitoshiHemmi.html#3
../gp-html/ThomasRBattenhouseJr.html#2
../gp-html/StefanoCagnoni.html#11
../gp-html/XiangdongPeng.html#1
../gp-html/AlexandreCastellini.html#1
../gp-html/Kyoung-MinKim.html#2
../gp-html/AlmaLiliaGarciaAlmanza.html#3
../gp-html/AldenHWright.html#9
../gp-html/Sung-SooLim.html#3
../gp-html/BradleyEJohanson.html#3
../gp-html/MouloudOussaidene.html#4
../gp-html/AjitNarayanan.html#2
../gp-html/JeffreyJWarren.html#4
../gp-html/NaokiMori.html#4
../gp-html/ElleryFussellCrane.html#2
../gp-html/DirkVArnold.html#2
../gp-html/ChristianBlum.html#2
../gp-html/PeterJBentley.html#9
../gp-html/Tuan-HaoHoang.html#11
../gp-html/MehmetEminAydin.html#2
../gp-html/EdwinDdeJong.html#6
../gp-html/HodLipson.html#12
../gp-html/XavierLlora.html#1
../gp-html/SpirosMancoridis.html#1
../gp-html/ShotaroKamio.html#6
../gp-html/Jean-PaulWatson.html#1
../gp-html/EckartZitzler.html#3
../gp-html/SeanLuke.html#27
../gp-html/CharlesHohn.html#1
../gp-html/JonathanFarris.html#1
../gp-html/GaryJackson.html#1
../gp-html/JamesAHendler.html#1
../gp-html/TomofumiHikage.html#1
../gp-html/MarcDubreuil.html#4
../gp-html/FredericGruau.html#13
../gp-html/LarryPyeatt.html#2
../gp-html/KameelQuatramaran.html#1
../gp-html/YvesLhuillier.html#1
../gp-html/PhilippeReitz.html#1
../gp-html/OlivierTemam.html#1
../gp-html/FrankHoffmann.html#3
../gp-html/OliverNelles.html#1
../gp-html/Jin-WuNam.html#1
../gp-html/Je-GunJoung.html#5
../gp-html/CarlosPaiz.html#1
../gp-html/WilliamJMydlowec.html#20
../gp-html/GuidoLanza.html#7
../gp-html/JohnO'Sullivan.html#1
../gp-html/Kwang-SeukJeong.html#1
../gp-html/WalterAldenTackett.html#8
../gp-html/AviramCarmi.html#2
../gp-html/VishweshVenkatraman.html#1
../gp-html/AndrewRowlandDalby.html#2
../gp-html/StefanLeggett.html#1
../gp-html/JonathanPage.html#6
../gp-html/WillSmart.html#19
../gp-html/PhilippeCollard.html#15
../gp-html/JieZuo.html#3
../gp-html/ChuanLi.html#1
../gp-html/An-longChen.html#1
../gp-html/BartIRylander.html#4
../gp-html/TJEuverman.html#2
../gp-html/WKowalczyk.html#2
../gp-html/EPeelen.html#1
../gp-html/AnargyrosSarafopoulos.html#4
../gp-html/XiaodongLi.html#2
../gp-html/DanielParrott.html#1
../gp-html/DanielLombranaGonzalezRodriguez.html#2
../gp-html/FSlisser.html#3
../gp-html/JAMWesseling.html#1
../gp-html/AEKoudijs.html#1
../gp-html/JoeriBekker.html#1
../gp-html/RobertGriffioen.html#1
../gp-html/EvertHaasdijk.html#2
../gp-html/JanoIvanHemert.html#9
../gp-html/ThomasSRay.html#9
../gp-html/ThomasBack.html#2
../gp-html/UHammel.html#1
../gp-html/BrianLam.html#2
../gp-html/JasonHMoore.html#26
../gp-html/BillCWhite.html#11
../gp-html/JingPeng.html#2
../gp-html/HongjianFan.html#1
../gp-html/SaoirseAmarteifio.html#3
../gp-html/LotharThiele.html#3
../gp-html/TobiasBlickle.html#7
../gp-html/DenisRochat.html#2
../gp-html/MarkusOlmer.html#2
../gp-html/Chuan-ShengWu.html#1
../gp-html/LiHuang.html#1
../gp-html/CeciliaDiChio.html#5
../gp-html/PaoloDiChio.html#1
../gp-html/JamesMButler.html#2
../gp-html/JoshuaCGilbert.html#1
../gp-html/EmanueleStomeo.html#1
../gp-html/Dong-WookLee.html#2
../gp-html/Chang-BongBan.html#1
../gp-html/Kwee-BoSim.html#2
../gp-html/RChau.html#1
../gp-html/HusseinAAbbass.html#7
../gp-html/GuillaumeCretin.html#3
../gp-html/JacquesLevy-Vehel.html#3
../gp-html/PhilippeGlevarec.html#3
../gp-html/CidricRoll.html#3
../gp-html/BaihaiZhang.html#2
../gp-html/HalStringer.html#1
../gp-html/MassimoSantini.html#1
../gp-html/JianjunYu.html#1
../gp-html/JindanYu.html#1
../gp-html/SaravanaMDhanasekaran.html#1
../gp-html/DebashisGhosh.html#1
../gp-html/ArulMChinnaiyan.html#1
../gp-html/VasantHonavar.html#2
../gp-html/MarkJakiela.html#1
../gp-html/RobertESmith.html#1
../gp-html/DirkBanscherus.html#2
../gp-html/PeterDittrich.html#9
../gp-html/MarkMMeysenburg.html#2
../gp-html/OmarAChaudhri.html#3
../gp-html/JonathanCKhoo.html#3
../gp-html/WendellSRichardson.html#1
../gp-html/RachelBHarrison.html#1
../gp-html/WilliamJSloat.html#1
../gp-html/JordanBPollack.html#31
../gp-html/PenousalMachado.html#7
../gp-html/FranciscoJoseBaptistaPereira.html#4
../gp-html/AmilcarCardoso.html#7
../gp-html/ScottJHarmon.html#1
../gp-html/EdwinRodriguez.html#1
../gp-html/ChristopherZhong.html#1
../gp-html/MarcStautner.html#4
../gp-html/ChristianWGLasarczyk.html#4
../gp-html/PeterGalos.html#1
../gp-html/AlessandroPerrucci.html#1
../gp-html/VarunAggarwal.html#4
../gp-html/AndreDias.html#2
../gp-html/NunoDuarte.html#1
../gp-html/JorgeTavares.html#2
../gp-html/BElfrink.html#1
../gp-html/LotharMSchmitt.html#1
../gp-html/KhaledMSBadran.html#1
../gp-html/CathyEscazut.html#2
../gp-html/J-LSegapeli.html#1
../gp-html/TakashiUozumi.html#9
../gp-html/KoichiOno.html#5
../gp-html/DaurenAkhmetov.html#2
../gp-html/YoshiharuMorotome.html#2
../gp-html/KikuoYuta.html#2
../gp-html/MichaelBrozozowski.html#1
../gp-html/BjornAndersson.html#2
../gp-html/PerSvensson.html#2
../gp-html/MichalJoachimczak.html#3
../gp-html/MichaelBrzozowski.html#1
../gp-html/PhillipWong.html#5
../gp-html/HiramAFirpi.html#4
../gp-html/MatthewSmith.html#1
../gp-html/PaulMassey.html#3
../gp-html/JohnAClark.html#4
../gp-html/SusanStepney.html#3
../gp-html/MarkHarman.html#5
../gp-html/KiarashMahdavi.html#1
../gp-html/Xiaoying_Sharon_Gao.html#5
../gp-html/Weijun_Norman_Lou.html#4
../gp-html/MatthewGSmith.html#4
../gp-html/MinhDucCao.html#1
../gp-html/MartinHelmer.html#1
../gp-html/MartinHemberg.html#10
../gp-html/FredericEPetry.html#4
../gp-html/DHKraft.html#1
../gp-html/MichaelDSchmidt.html#3
../gp-html/XinyeCai.html#3
../gp-html/MarkERoberts.html#4
../gp-html/RikardKarlsson.html#2
../gp-html/ClausdeCastroAranha.html#1
../gp-html/AlisonAMotsinger.html#4
../gp-html/ScottMDudek.html#2
../gp-html/MarylynDRitchie.html#9
../gp-html/StuCard.html#5
../gp-html/ChilukuriKMohan.html#4
../gp-html/AndreasBurgel.html#2
../gp-html/AndreSkusa.html#1
../gp-html/ThomasKron.html#1
../gp-html/ChristianKuck.html#1
../gp-html/GrantDick.html#2
../gp-html/ABelgasem.html#1
../gp-html/BenGeorge.html#1
../gp-html/VincenzoPagliarulo.html#1
../gp-html/YifengZhang.html#1
../gp-html/AmineHeddad.html#1
../gp-html/MariaGordin.html#1
../gp-html/TatsuyaNiwa.html#1
../gp-html/PhilippeDague.html#1
../gp-html/SanaBenHamida.html#1
../gp-html/BogdanStanciulescu.html#2
../gp-html/IgorBaradavka.html#2
../gp-html/ChristianMiccio.html#1
../gp-html/SJGould.html#1
../gp-html/JLanchares.html#3
../gp-html/AitorIbarra.html#1
../gp-html/HammadMajeed.html#8
../gp-html/KennethCSharman.html#23
../gp-html/Bin-TzongChie.html#5
../gp-html/Chih-ChienWang.html#1
../gp-html/JaimeGarces-Perez.html#1
../gp-html/DaleASchoenefeld.html#7
../gp-html/ErikHemberg.html#1
../gp-html/RogerLWainwright.html#9
../gp-html/SteveSmith.html#1
../gp-html/AndySong.html#5
../gp-html/ThomasLoveard.html#5
../gp-html/StefanBleuler.html#1
../gp-html/MartinBrack.html#1
../gp-html/ChiaHsuanYeh.html#45
../gp-html/JohnDuffy.html#6
../gp-html/Chih-ChiNi.html#1
../gp-html/Woh-ChiangLee.html#3
../gp-html/Hung-ShuoWang.html#1
../gp-html/Tzu-WenKuo.html#7
../gp-html/FelixKuhling.html#1
../gp-html/JohnMHall.html#1
../gp-html/Jean-LoupFlorens.html#1
../gp-html/AnnieLuciani.html#1
../gp-html/MikhailProkopenko.html#2
../gp-html/VadimGerasimov.html#2
../gp-html/WilliamSBush.html#2
../gp-html/EnzoBolis.html#1
../gp-html/StephenMWelch.html#1
../gp-html/PraveenKoduru.html#1
../gp-html/SanjoyDas.html#1
../gp-html/MargaretJEppstein.html#1
../gp-html/ConorGilligan.html#1
../gp-html/JoelSParker.html#7
../gp-html/LanceWHahn.html#11
../gp-html/ThomasMAune.html#2
../gp-html/HeinzMuhlenbein.html#11
../gp-html/ThiloMahning.html#1
../gp-html/GiovanniAdorni.html#5
../gp-html/FedericoBergenti.html#2
../gp-html/DaichiAndo.html#1
../gp-html/PalleDahlsted.html#1
../gp-html/MonicaMordonini.html#3
../gp-html/SebastienVerel.html#5
../gp-html/CyrilFonlupt.html#12
../gp-html/SebastienMahler.html#2
../gp-html/RobertMMacCallum.html#7
../gp-html/MalcolmLett.html#6
../gp-html/GregoryParis.html#3
../gp-html/TetsuyaHiguchi.html#2
../gp-html/EiichiTakahashi.html#1
../gp-html/PaulDarwen.html#2
../gp-html/CTeixeira.html#1
../gp-html/JonTimmis.html#1
../gp-html/MartynAmos.html#1
../gp-html/MikeCattolico.html#9
../gp-html/ErnestoCosta.html#14
../gp-html/GearoidMurphy.html#2
../gp-html/MartinBaptist.html#1
../gp-html/JavierRodriguezUthurburu.html#1
../gp-html/GuangChen.html#1
../gp-html/JohnRWoodward.html#12
../gp-html/CindySFGoh.html#1
../gp-html/AmundTveit.html#2
../gp-html/OleEdsberg.html#1
../gp-html/DanaHBallard.html#8
../gp-html/AndrasMarkus.html#2
../gp-html/SandorZoltanNemeth.html#5
../gp-html/JoseALozano.html#1
../gp-html/JamesSmith.html#3
../gp-html/JuanJMerelo-Guervos.html#1
../gp-html/JohnABullinaria.html#1
../gp-html/JavierEchauz.html#3
../gp-html/LeeABecker.html#6
../gp-html/MatthewJStreeter.html#22
../gp-html/CarlosMFonseca.html#3
../gp-html/WalterAKosters.html#5
../gp-html/PeterTinoAtaKaban.html#1
../gp-html/PeterWilson.html#2
../gp-html/DylanMawhinney.html#3
../gp-html/XiangLi.html#6
../gp-html/AndrewInnes.html#2
../gp-html/SabuJohn.html#2
../gp-html/SudipRegmi.html#2
../gp-html/SharadRRegmi.html#1
../gp-html/JohnMamutil.html#1
../gp-html/ConradShyu.html#3
../gp-html/LukeSheneman.html#2
../gp-html/JurgenTeich.html#2
../gp-html/ShuvraSBhattacharyya.html#1
../gp-html/MichaelJCavaretta.html#1
../gp-html/AlexandreLemieux.html#1
../gp-html/ChristianReinhold.html#1
../gp-html/TomLenaerts.html#3
../gp-html/GerardKian-MengGoh.html#1
../gp-html/SannaPoyhonen.html#1
../gp-html/AlexandreTermier.html#1
../gp-html/JoostKok.html#4
../gp-html/VirginieMarion-Poty.html#1
../gp-html/HongweiLiu.html#4
../gp-html/NateBarney.html#1
../gp-html/HabibouMaitournam.html#3
../gp-html/BertrandLamy.html#2
../gp-html/FrancoisJouve.html#2
../gp-html/PeterJFleming.html#10
../gp-html/GiuliaIori.html#1
../gp-html/PaulYung.html#1
../gp-html/WeiWei.html#1
../gp-html/RuiLiu.html#1
../gp-html/San-youZeng.html#1
../gp-html/CristopherTMGraae.html#1
../gp-html/JanetClegg.html#1
../gp-html/AndreaValsecchi.html#1
../gp-html/YuriPirola.html#2
../gp-html/MWahde.html#1
../gp-html/JPettersson.html#1
../gp-html/HSandholt.html#1
../gp-html/PabloMoscato.html#1
../gp-html/RFWalker.html#1
../gp-html/MCGerrets.html#1
../gp-html/HuguesJuille.html#9
../gp-html/MichaelATerry.html#1
../gp-html/LiJiang.html#1
../gp-html/JMendias.html#1
../gp-html/TimGordon.html#1
../gp-html/KeithMSullivan.html#1
../gp-html/RHermida.html#1
../gp-html/MarcinLPilat.html#2
../gp-html/ScottBrave.html#8
../gp-html/StefanKlahold.html#2
../gp-html/RobertFeldt.html#8
../gp-html/MoonyoungKang.html#1
../gp-html/XuanNguyen.html#1
../gp-html/BorisMitavskiy.html#3
../gp-html/AmineMBoumaza.html#3
../gp-html/MingaJiang.html#3
../gp-html/DavidHill.html#1
../gp-html/DuaneDJohnson.html#1
../gp-html/PascalBellon.html#1
../gp-html/DavidMHalliday.html#2
../gp-html/Dong-KyunKim.html#2
../gp-html/Gea-JaeJoo.html#2
../gp-html/AlexandreDevert.html#2
../gp-html/CEvans.html#2
../gp-html/SteffenFrank.html#2
../gp-html/StephenLLee.html#1
../gp-html/GeorgeMellick.html#1
../gp-html/AlanRobinson.html#5
../gp-html/JensBusch.html#2
../gp-html/ColinReeves.html#3
../gp-html/RobertCattral.html#1
../gp-html/DCHill.html#2
../gp-html/JPNorton.html#2
../gp-html/IPratt.html#2
../gp-html/DRees.html#2
../gp-html/ZhunFan.html#15
../gp-html/JMSanchez.html#10
../gp-html/JuanAntonioGomez.html#3
../gp-html/LBucher.html#1
../gp-html/LauraMRoa.html#1
../gp-html/DwightDeugo.html#2
../gp-html/JimAlves-Foss.html#1
../gp-html/ChristopherHarris.html#8
../gp-html/ClaraPizzuti.html#13
../gp-html/HabibGKhosroshahi.html#1
../gp-html/SomakRaychaudhury.html#1
../gp-html/AidaMartin.html#1
../gp-html/JIHidalgo.html#3
../gp-html/JoseLuisGuisado.html#1
../gp-html/XiaoliLi.html#2
../gp-html/DavidWCorne.html#1
../gp-html/BertrandDanielDunay.html#3
../gp-html/PeterOhm.html#3
../gp-html/Ju-HyunKwak.html#1
../gp-html/Chang-HoonLee.html#1
../gp-html/Ha-YoungJang.html#2
../gp-html/CyrilleLambert.html#1
../gp-html/JoaoCarlosFigueiraPujol.html#12
../gp-html/BillBuckles.html#4
../gp-html/ManuAhluwalia.html#7
../gp-html/YWen.html#1
../gp-html/JensNiehaus.html#3
../gp-html/AmrMohamedMahmoudKhairatRadi.html#11
../gp-html/VArkov.html#1
../gp-html/MarianneO'Driscoll.html#1
../gp-html/StephenMcKenna.html#1
../gp-html/FredericRaynal.html#4
../gp-html/SireeshaBesetti.html#1
../gp-html/MichaelKorkin.html#1
../gp-html/FelixGers.html#1
../gp-html/NorbertoEijaNawa.html#1
../gp-html/MichaelHough.html#1
../gp-html/JonathanDinerstein.html#1
../gp-html/RavichandraSriram.html#1
../gp-html/Yuh-PyngShieh.html#1
../gp-html/Chung-ChingTai.html#1
../gp-html/AWMinns.html#2
../gp-html/MichaelBAbbott.html#2
../gp-html/StefanWappler.html#2
../gp-html/WeiYan.html#3
../gp-html/DavidPersson.html#1
../gp-html/PerSkoglund.html#1
../gp-html/DanWiklund.html#1
../gp-html/KeithLDowning.html#5
../gp-html/DavidRodriguezAquilera.html#1
../gp-html/JoeHarrington.html#1
../gp-html/HengLiu.html#2
../gp-html/Jean-PhilippeDrecourt.html#3
../gp-html/PeterFriisHansen.html#1
../gp-html/SheriMMarkose.html#5
../gp-html/HakanEr.html#3
../gp-html/AbdelSalhi.html#5
../gp-html/MarkPLine.html#1
../gp-html/GrahamKendall.html#12
../gp-html/KantaVekaria.html#2
../gp-html/MichaelALones.html#9
../gp-html/TaroYabuki.html#3
../gp-html/EricSiegel.html#10
../gp-html/MarcDRichards.html#2
../gp-html/ForrestBennett.html#59
../gp-html/JRossBeveridge.html#2
../gp-html/GregManassero.html#1
../gp-html/MRosskopf.html#1
../gp-html/UdoFeldkamp.html#1
../gp-html/KohsukeYanai.html#6
../gp-html/TaisukeSato.html#11
../gp-html/TakioKarita.html#1
../gp-html/TishihideNozoe.html#1
../gp-html/KanjiUeda.html#1
../gp-html/TakashiSasaki.html#1
../gp-html/NikolayNikolaev.html#21
../gp-html/MakotoTerao.html#1
../gp-html/JonnyFarringdon.html#4
../gp-html/BenjaminDoerr.html#1
../gp-html/TimKovacs.html#1
../gp-html/FrankNeumann.html#1
../gp-html/KennethOwenStanley.html#1
../gp-html/ThomasStutzle.html#1
../gp-html/JeanineGraf.html#1
../gp-html/LawrenceDavis.html#2
../gp-html/RussellKStandish.html#9
../gp-html/StewartWWilson.html#2
../gp-html/KathrynADowsland.html#2
../gp-html/AndrewHWatson.html#4
../gp-html/DPyle.html#1
../gp-html/RichardAHoover.html#1
../gp-html/JosephNSkibinski.html#1
../gp-html/JanosDPinter.html#2
../gp-html/YanivBernstein.html#1
../gp-html/JonathanMarcus.html#1
../gp-html/MatthewFarrell.html#1
../gp-html/PaulAlbuquerque.html#1
../gp-html/ChristianMazza.html#1
../gp-html/GuyAMeadows.html#2
../gp-html/ChristianWolf.html#2
../gp-html/MelissaCMcKay.html#1
../gp-html/SethBlanchard.html#1
../gp-html/MasahiroMurakawa.html#1
../gp-html/KenjiToda.html#1
../gp-html/FrancescoArchetti.html#2
../gp-html/StefanoLanzeni.html#2
../gp-html/EnzaMessina.html#2
../gp-html/PeterMartin.html#10
../gp-html/MartijnvanderVaart.html#1
../gp-html/MartijnDJWitsenburg.html#1
../gp-html/NikolaSNikolov.html#1
../gp-html/SebastienPrudent.html#2
../gp-html/JimEngle-Warnick.html#2
../gp-html/IvarSiccama.html#2
../gp-html/MakotoIwashita.html#1
../gp-html/PeterFCrapper.html#5
../gp-html/DavidAndre.html#65
../gp-html/AstroTeller.html#22
../gp-html/Young-SirkAhn.html#1
../gp-html/DavidBooth.html#2
../gp-html/JamesCubillo.html#2
../gp-html/JulianTogelius.html#1
../gp-html/JessenYu.html#20
../gp-html/WilliamComisky.html#1
../gp-html/AndreeRoss.html#1
../gp-html/DanielSawitzki.html#1
../gp-html/ChristianAue.html#1
../gp-html/SimonHarding.html#4
../gp-html/PedroJNSilva.html#1
../gp-html/Yao-TingTseng.html#1
../gp-html/ArturoHernandez-Aguirre.html#4
../gp-html/HughWilliams.html#1
../gp-html/AlainRatle.html#5
../gp-html/BrianSMulloy.html#1
../gp-html/RobertSSavit.html#1
../gp-html/DouglasZongker.html#2
../gp-html/WMRand.html#1
../gp-html/FredrikSamuelsson.html#2
../gp-html/KathleenRMcKeown.html#3
../gp-html/AlexanderDChaffee.html#1
../gp-html/FrederikThiele.html#1
../gp-html/EricAWollesen.html#2
../gp-html/YanLi.html#1
../gp-html/MagnusHolmlund.html#2
../gp-html/EricModen.html#2
../gp-html/ToddMytkowicz.html#1
../gp-html/DuongNguyen.html#1
../gp-html/DavidRome.html#1
../gp-html/SEStevensJr.html#1
../gp-html/HenrikBorgvall.html#2
../gp-html/LarsNohle.html#2
../gp-html/EleazarEskin.html#1
../gp-html/AndreasRonge.html#1
../gp-html/JonathanRoughgarden.html#2
../gp-html/FrankDunlap.html#4
../gp-html/MarcoDorigo.html#3
../gp-html/YoshihikoHasegawa.html#3
../gp-html/StanleyPhillipsGotshall.html#1
../gp-html/Kyung-JoongKim.html#1
../gp-html/KyleIraHarrington.html#2
../gp-html/HughMallinson.html#1
../gp-html/JeffreyLHutchings.html#4
../gp-html/StephenLBade.html#4
../gp-html/JamieMarconi.html#1
../gp-html/CarlosOliver-Morales.html#4
../gp-html/JoshuaLPayne.html#1
../gp-html/RussellThomason.html#2
../gp-html/JimRutherford.html#2
../gp-html/DaveWilkinson.html#2
../gp-html/DeyiXie.html#1
../gp-html/DongpingQian.html#2
../gp-html/YuejinMa.html#1
../gp-html/MLMJansen.html#2
../gp-html/ClarissaVanHoyweghen.html#1
../gp-html/KatjaVerbeeck.html#1
../gp-html/ThomasWeinbrenner.html#3
../gp-html/AAlmaini.html#1
../gp-html/YunZhang.html#4
../gp-html/MarcSegond.html#1
../gp-html/AchimMenges.html#1
../gp-html/EduardoSanchez.html#1
../gp-html/KelliKRyckman.html#1
../gp-html/CornelisJanBiesheuvel.html#2
../gp-html/DiederickEGrobbee.html#1
../gp-html/WangGang.html#1
../gp-html/AlbertoCuestaCanada.html#1
../gp-html/VictorOduguwa.html#1
../gp-html/ATiwari.html#1
../gp-html/BernardManderick.html#1
../gp-html/KarelGMMoons.html#1
../gp-html/JohnDickinson.html#2
../gp-html/MohamedBahyBader-El-Den.html#1
../gp-html/JianShen.html#1
../gp-html/ErinaSakamoto.html#4
../gp-html/MoutazKhouja.html#1
../gp-html/ChristopherSCoffey.html#2
../gp-html/ManuelaVeloso.html#9
../gp-html/StephenDignum.html#5
../gp-html/RobRoyMcGregor.html#1
../gp-html/AdamAlpern.html#2
../gp-html/KilianStoffel.html#3
../gp-html/NikhilSwamy.html#2
../gp-html/Hans-MichaelVoigt.html#1
../gp-html/MitsuoGen.html#1
../gp-html/ShahramPezeshk.html#1
../gp-html/RyanMoore.html#1
../gp-html/ChristopherHPerry.html#3
../gp-html/EleanorGRieffel.html#6
../gp-html/FranzRothlauf.html#4
../gp-html/MarieCarolineOetzel.html#2
../gp-html/HideyukiMitsuhashi.html#2
../gp-html/ShugoHamahashi.html#2
../gp-html/KojiKyoda.html#1
../gp-html/HirokiUeda.html#1
../gp-html/HiroakiKitano.html#1
../gp-html/LiviuPanait.html#9
../gp-html/GabrielCatalinBalan.html#1
../gp-html/ChauMDoan.html#1
../gp-html/MarkFeinstein.html#1
../gp-html/NatalioKrasnogor.html#5
../gp-html/GabiEscuela.html#1
../gp-html/GirishRamachandran.html#2
../gp-html/PeterTesta.html#1
../gp-html/ShinAndo.html#3
../gp-html/SimonMGreenwold.html#2
../gp-html/RaymondElliotLevitt.html#1
../gp-html/ColinMFrayn.html#2
../gp-html/ClaesAndersson.html#1
../gp-html/MatthewWKessler.html#2
../gp-html/GabrielaOchoa.html#1
../gp-html/NicolasNavet.html#1
../gp-html/NilsSvangard.html#5
../gp-html/StefanLloyd.html#3
../gp-html/ClasWihlborg.html#1
../gp-html/Andre'daMottaSallesBarreto.html#1
../gp-html/Kwok-WingChau.html#2
../gp-html/GuntherRRaidl.html#2
../gp-html/DagangWei.html#1
../gp-html/HuanZhang.html#1
../gp-html/JamesShipman.html#1
../gp-html/OscarStiffelman.html#7
../gp-html/ThangCNguyen.html#3
../gp-html/ThomasSHuang.html#3
../gp-html/JiangtaoQiu.html#2
../gp-html/CatherineAdley.html#1
../gp-html/RobertCleary.html#3
../gp-html/GustavoRomero.html#2
../gp-html/MajaJMataric.html#2
../gp-html/PedroACastillo.html#1
../gp-html/FatimaRateb.html#1
../gp-html/MingfangZhu.html#1
../gp-html/AlbertoPrieto.html#1
../gp-html/ShuchengDai.html#1
../gp-html/MartinKreutz.html#1
../gp-html/MarcToussaint.html#1
../gp-html/JeremyKubica.html#2
../gp-html/MarkPritchard.html#1
../gp-html/UrveshBhowan.html#4
../gp-html/PeterKralicek.html#1
../gp-html/RichardBrankin.html#3
../gp-html/ClareBatesCongdon.html#3
../gp-html/EmilyFGreenfest.html#1
../gp-html/Septor.html#1
../gp-html/JohannesHDKeukelaar.html#2
../gp-html/SalahYaseenEl-Bakry.html#1
../gp-html/HenrikMadsen.html#1
../gp-html/JamesAHilder.html#1
../gp-html/Chung-ChihLiao.html#4
../gp-html/JasonTKriesel.html#1
../gp-html/KennethEKinnearJr.html#8
../gp-html/TSadasivan.html#1
../gp-html/SopeTaiwo.html#1
../gp-html/HughGlaser.html#3
../gp-html/DavidDeRoure.html#3
../gp-html/ChristianZerbi.html#1
../gp-html/JoelOlsen.html#1
../gp-html/KristoferSundenRingner.html#1
../gp-html/AndersEriksson.html#1
../gp-html/WildeJohanna.html#1
../gp-html/MohitKPrasad.html#1
../gp-html/SDavidMorley.html#2
../gp-html/SzilveszterJuhos.html#1
../gp-html/MukundSeshadri.html#4
../gp-html/MBartley.html#1
../gp-html/ArlindoFerreiradaSilva.html#6
../gp-html/AnaPaulaNevesFSilva.html#4
../gp-html/MichaelIles.html#1
../gp-html/KenoAlbrecht.html#1
../gp-html/RobinMatthews.html#2
../gp-html/LucSteels.html#1
../gp-html/JustinDarwinMiller.html#1
../gp-html/NicholasJHopper.html#4
../gp-html/MartijnCJBot.html#6
../gp-html/MitchellLReierson.html#2
../gp-html/JohnGalloway.html#1
../gp-html/AlexJarvis.html#1
../gp-html/VanioSlavov.html#8
../gp-html/LilianMdeMenezes.html#2
../gp-html/JamesRNeil.html#1

Brabazon, Stefano Cagnoni, Gianni A. Di Caro, Rolf Drechsler, Muddassar Farooq,
Andreas Fink, Evelyne Lutton, Penousal Machado, Stefan Minner, Michael O’Neill,
Juan Romero, Franz Rothlauf, Giovanni Squillero, Hideyuki Takagi, A. Sima Uyar,
and Shengxiang Yang, editors, Applications of Evolutionary Computing, EvoWork-
shops2007: EvoCOMNET, EvoFIN, EvoIASP, EvoInteraction, EvoMUSART, EvoS-
TOC, EvoTransLog, volume 4448 of LNCS, pages 577–584, Valencia, Spain, 11-13
April 2007. Springer Verlag.

[6] David Andre, Forrest H Bennett III, and John R. Koza. Discovery by genetic pro-
gramming of a cellular automata rule that is better than any known rule for the
majority classification problem. In John R. Koza, David E. Goldberg, David B. Fo-
gel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 3–11, Stanford University, CA, USA, 28–31 July 1996.
MIT Press.

[7] David Andre and John R. Koza. Parallel genetic programming: A scalable imple-
mentation using the transputer network architecture. In Peter J. Angeline and K. E.
Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 16, pages 317–
338. MIT Press, Cambridge, MA, USA, 1996.

[8] David Andre and John R. Koza. A parallel implementation of genetic program-
ming that achieves super-linear performance. Information Sciences, 106(3-4):201–
218, 1998.

[9] Peter J. Angeline. An investigation into the sensitivity of genetic programming to
the frequency of leaf selection during subtree crossover. In John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 21–29, Stanford University, CA,
USA, 28–31 July 1996. MIT Press.

[10] Peter J. Angeline. Subtree crossover: Building block engine or macromutation?
In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of
the Second Annual Conference, pages 9–17, Stanford University, CA, USA, 13-16
July 1997. Morgan Kaufmann.

[11] Peter J. Angeline. Multiple interacting programs: A representation for evolving
complex behaviors. Cybernetics and Systems, 29(8):779–806, November 1998.

[12] Peter J. Angeline and K. E. Kinnear, Jr., editors. Advances in Genetic Programming
2. MIT Press, Cambridge, MA, USA, 1996.

[13] Peter J. Angeline and Jordan B. Pollack. The evolutionary induction of subroutines.
In Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,
pages 236–241, Bloomington, Indiana, USA, 1992. Lawrence Erlbaum.

67

[14] V. Arkov, C. Evans, P. J. Fleming, D. C. Hill, J. P. Norton, I. Pratt, D. Rees, and
K. Rodriguez-Vazquez. System identification strategies applied to aircraft gas turbine
engines. Annual Reviews in Control, 24(1):67–81, 2000.

[15] Mark P. Austin, Graham Bates, Michael A. H. Dempster, Vasco Leemans, and
Stacy N. Williams. Adaptive systems for foreign exchange trading. Quantitative
Finance, 4(4):37–45, August 2004.

[16] Yaniv Azaria and Moshe Sipper. GP-gammon: Genetically programming backgam-
mon players. Genetic Programming and Evolvable Machines, 6(3):283–300, Septem-
ber 2005. Published online: 12 August 2005.

[17] Yaniv Azaria and Moshe Sipper. Using GP-gammon: Using genetic programming to
evolve backgammon players. In Maarten Keijzer, Andrea Tettamanzi, Pierre Collet,
Jano I. van Hemert, and Marco Tomassini, editors, Proceedings of the 8th European
Conference on Genetic Programming, volume 3447 of Lecture Notes in Computer
Science, pages 132–142, Lausanne, Switzerland, 30 March - 1 April 2005. Springer.

[18] Vladan Babovic. Emergence, evolution, intelligence; Hydroinformatics - A study
of distributed and decentralised computing using intelligent agents. A. A. Balkema
Publishers, Rotterdam, Holland, 1996.

[19] Mohamed Bader-El-Den and Riccardo Poli. Generating sat local-search heuristics us-
ing a gp hyper-heuristic framework. In Proceedings of Evolution Artificielle, October
2007.

[20] Mohamed Bahy Bader-El-Den and Riccardo Poli. A GP-based hyper-heuristic frame-
work for evolving 3-SAT heuristics. In Dirk Thierens, Hans-Georg Beyer, Josh
Bongard, Jurgen Branke, John Andrew Clark, Dave Cliff, Clare Bates Congdon,
Kalyanmoy Deb, Benjamin Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller,
Jason Moore, Frank Neumann, Martin Pelikan, Riccardo Poli, Kumara Sastry, Ken-
neth Owen Stanley, Thomas Stutzle, Richard A Watson, and Ingo Wegener, editors,
GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary
computation, volume 2, pages 1749–1749, London, 7-11 July 2007. ACM Press.

[21] William Bains, Richard Gilbert, Lilya Sviridenko, Jose-Miguel Gascon, Robert Scof-
fin, Kris Birchall, Inman Harvey, and John Caldwell. Evolutionary computational
methods to predict oral bioavailability QSPRs. Current Opinion in Drug Discovery
and Development, 5(1):44–51, January 2002.

[22] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In
John J. Grefenstette, editor, Proceedings of the Second International Conference on
Genetic Algorithms and their Application, pages 14–21, Cambridge, MA, USA, 1987.
Lawrence Erlbaum Associates.

68

[23] Joze Balic. Flexible Manufacturing Systems; Development - Structure - Operation
- Handling - Tooling. Manufacturing technology. DAAAM International, Vienna,
1999.

[24] Wolfgang Banzhaf. Genetic programming for pedestrians. In Stephanie Forrest, ed-
itor, Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-
93, page 628, University of Illinois at Urbana-Champaign, 17-21 July 1993. Morgan
Kaufmann.

[25] Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar,
Mark Jakiela, and Robert E. Smith, editors. GECCO-99: Proceedings of the Genetic
and Evolutionary Computation Conference, Orlando, Florida, USA, 13-17 July 1999.
Morgan Kaufmann.

[26] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic
Programming – An Introduction; On the Automatic Evolution of Computer Programs
and its Applications. Morgan Kaufmann, San Francisco, CA, USA, January 1998.

[27] Wolfgang Banzhaf, Riccardo Poli, Marc Schoenauer, and Terence C. Fogarty, editors.
Genetic Programming, volume 1391 of LNCS, Paris, 14-15 April 1998. Springer-
Verlag.

[28] S. J. Barrett. Recurring analytical problems within drug discovery and development.
In Tobias Scheffer and Ulf Leser, editors, Data Mining and Text Mining for Bioin-
formatics: Proceedings of the European Workshop, pages 6–7, Dubrovnik, Croatia,
22 September 2003. Invited talk.

[29] S. J. Barrett and W. B. Langdon. Advances in the application of machine learning
techniques in drug discovery, design and development. In Ashutosh Tiwari, Joshua
Knowles, Erel Avineri, Keshav Dahal, and Rajkumar Roy, editors, Applications of
Soft Computing: Recent Trends, Advances in Soft Computing, pages 99–110, On the
World Wide Web, 19 September - 7 October 2005 2006. Springer.

[30] Forrest H Bennett III. Automatic creation of an efficient multi-agent architecture
using genetic programming with architecture-altering operations. In John R. Koza,
David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual Conference, pages 30–38, Stanford University,
CA, USA, 28–31 July 1996. MIT Press.

[31] Forrest H Bennett III, John R. Koza, James Shipman, and Oscar Stiffelman. Build-
ing a parallel computer system for $18,000 that performs a half peta-flop per day. In
Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar,
Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference, volume 2, pages 1484–1490, Orlando, Florida,
USA, 13-17 July 1999. Morgan Kaufmann.

69

[32] Hans-Georg Beyer, Una-May O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian
Blum, Eric W. Bonabeau, Erick Cantu-Paz, Dipankar Dasgupta, Kalyanmoy Deb,
James A. Foster, Edwin D. de Jong, Hod Lipson, Xavier Llora, Spiros Mancoridis,
Martin Pelikan, Guenther R. Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Wat-
son, and Eckart Zitzler, editors. GECCO 2005: Proceedings of the 2005 conference
on Genetic and evolutionary computation, Washington DC, USA, 25-29 June 2005.
ACM Press.

[33] Bir Bhanu, Yingqiang Lin, and Krzysztof Krawiec. Evolutionary Synthesis of Pattern
Recognition Systems. Monographs in Computer Science. Springer-Verlag, New York,
2005.

[34] Tobias Blickle. Theory of Evolutionary Algorithms and Application to System Syn-
thesis. PhD thesis, Swiss Federal Institute of Technology, Zurich, November 1996.

[35] Anthony Brabazon and Michael O’Neill. Biologically Inspired Algorithms for Finan-
cial Modelling. Natural Computing Series. Springer, 2006.

[36] Markus Brameier and Wolfgang Banzhaf. A comparison of linear genetic program-
ming and neural networks in medical data mining. IEEE Transactions on Evolution-
ary Computation, 5(1):17–26, February 2001.

[37] Markus Brameier and Wolfgang Banzhaf. Linear Genetic Programming. Number
XVI in Genetic and Evolutionary Computation. Springer, 2007.

[38] Markus Brameier, Josien Haan, Andrea Krings, and Robert M MacCallum. Auto-
matic discovery of cross-family sequence features associated with protein function.
BMC bioinformatics [electronic resource], 7(16), January 12 2006.

[39] Scott Brave. Evolving recursive programs for tree search. In Peter J. Angeline and
K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 10, pages
203–220. MIT Press, Cambridge, MA, USA, 1996.

[40] Scott Brave and Annie S. Wu, editors. Late Breaking Papers at the 1999 Genetic
and Evolutionary Computation Conference, Orlando, Florida, USA, 13 July 1999.

[41] Miran Brezocnik. Uporaba genetskega programiranja v inteligentnih proizvodnih sis-
temih. University of Maribor, Faculty of mechanical engineering, Maribor, Slovenia,
2000.

[42] Miran Brezocnik, Joze Balic, and Leo Gusel. Artificial intelligence approach to de-
termination of flow curve. Journal for technology of plasticity, 25(1-2):1–7, 2000.

[43] Gunnar Buason, Nicklas Bergfeldt, and Tom Ziemke. Brains, bodies, and beyond:
Competitive co-evolution of robot controllers, morphologies and environments. Ge-
netic Programming and Evolvable Machines, 6(1):25–51, March 2005.

70

[44] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-
heuristics: an emerging direction in modern search technology. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, pages 457–474. Kluwer Aca-
demic Publishers, 2003.

[45] E. K. Burke, M. R. Hyde, and G. Kendall. Evolving bin packing heuristics with
genetic programming. In Thomas Philip Runarsson, Hans-Georg Beyer, Edmund
Burke, Juan J. Merelo-Guervos, L. Darrell Whitley, and Xin Yao, editors, Parallel
Problem Solving from Nature - PPSN IX, volume 4193 of LNCS, pages 860–869,
Reykjavik, Iceland, 9-13 September 2006. Springer-Verlag.

[46] Edmund K. Burke, Matthew R. Hyde, Graham Kendall, and John Woodward. Auto-
matic heuristic generation with genetic programming: evolving a jack-of-all-trades or
a master of one. In Dirk Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen Branke,
John Andrew Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy Deb, Benjamin
Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller, Jason Moore, Frank Neumann,
Martin Pelikan, Riccardo Poli, Kumara Sastry, Kenneth Owen Stanley, Thomas Stut-
zle, Richard A Watson, and Ingo Wegener, editors, GECCO ’07: Proceedings of the
9th annual conference on Genetic and evolutionary computation, volume 2, pages
1559–1565, London, 7-11 July 2007. ACM Press.

[47] B. F. Buxton, W. B. Langdon, and S. J. Barrett. Data fusion by intelligent classifier
combination. Measurement and Control, 34(8):229–234, October 2001.

[48] Stefano Cagnoni, Federico Bergenti, Monica Mordonini, and Giovanni Adorni. Evolv-
ing binary classifiers through parallel computation of multiple fitness cases. IEEE
Transactions on Systems, Man and Cybernetics - Part B, 35(3):548–555, June 2005.

[49] Weihua Cai, Arturo Pacheco-Vega, Mihir Sen, and K. T. Yang. Heat transfer cor-
relations by symbolic regression. International Journal of Heat and Mass Transfer,
49(23-24):4352–4359, November 2006.

[50] Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis, Rajkumar Roy,
Una-May O’Reilly, Hans-Georg Beyer, Russell K. Standish, Graham Kendall, Stew-
art W. Wilson, Mark Harman, Joachim Wegener, Dipankar Dasgupta, Mitchell A.
Potter, Alan C. Schultz, Kathryn A. Dowsland, Natasha Jonoska, and Julian F.
Miller, editors. Genetic and Evolutionary Computation – GECCO 2003, Part I, vol-
ume 2723 of Lecture Notes in Computer Science, Chicago, IL, USA, 12-16 July 2003.
Springer.

[51] Flor Castillo, Arthur Kordon, and Guido Smits. Robust pareto front genetic pro-
gramming parameter selection based on design of experiments and industrial data.
In Rick L. Riolo, Terence Soule, and Bill Worzel, editors, Genetic Programming The-
ory and Practice IV, volume 5 of Genetic and Evolutionary Computation, chapter 2,
pages –. Springer, Ann Arbor, 11-13 May 2006.

71

[52] Malik Chami and Denis Robilliard. Inversion of oceanic constituents in case I and
II waters with genetic programming algorithms. Applied Optics, 41(30):6260–6275,
October 2002.

[53] Alastair Channon. Unbounded evolutionary dynamics in a system of agents that ac-
tively process and transform their environment. Genetic Programming and Evolvable
Machines, 7(3):253–281, October 2006.

[54] Dennis L. Chao and Stephanie Forrest. Information immune systems. Genetic Pro-
gramming and Evolvable Machines, 4(4):311–331, December 2003.

[55] Sin Man Cheang, Kwong Sak Leung, and Kin Hong Lee. Genetic parallel pro-
gramming: Design and implementation. Evolutionary Computation, 14(2):129–156,
Summer 2006.

[56] Shu-Heng Chen, editor. Genetic Algorithms and Genetic Programming in Computa-
tional Finance. Kluwer Academic Publishers, Dordrecht, July 2002.

[57] Shu-Heng Chen, John Duffy, and Chia-Hsuan Yeh. Equilibrium selection via adap-
tation: Using genetic programming to model learning in a coordination game. The
Electronic Journal of Evolutionary Modeling and Economic Dynamics, 15 January
2002.

[58] Shu-Heng Chen and Chung-Chih Liao. Agent-based computational modeling of the
stock price-volume relation. Information Sciences, 170(1):75–100, 18 February 2005.

[59] Shu-Heng Chen, Hung-Shuo Wang, and Byoung-Tak Zhang. Forecasting high-
frequency financial time series with evolutionary neural trees: The case of heng-
sheng stock index. In Hamid R. Arabnia, editor, Proceedings of the International
Conference on Artificial Intelligence, IC-AI ’99, volume 2, pages 437–443, Las Ve-
gas, Nevada, USA, 28 June-1 July 1999. CSREA Press.

[60] Darren M. Chitty. A data parallel approach to genetic programming using pro-
grammable graphics hardware. In Dirk Thierens, Hans-Georg Beyer, Josh Bongard,
Jurgen Branke, John Andrew Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy
Deb, Benjamin Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller, Jason Moore,
Frank Neumann, Martin Pelikan, Riccardo Poli, Kumara Sastry, Kenneth Owen
Stanley, Thomas Stutzle, Richard A Watson, and Ingo Wegener, editors, GECCO
’07: Proceedings of the 9th annual conference on Genetic and evolutionary computa-
tion, volume 2, pages 1566–1573, London, 7-11 July 2007. ACM Press.

[61] Sung-Bae Cho, Nguyen Xuan Hoai, and Yin Shan, editors. Proceedings of The First
Asian-Pacific Workshop on Genetic Programming, Rydges (lakeside) Hotel, Can-
berra, Australia, 8 December 2003.

72

[62] Fuey Sian Chong and W. B. Langdon. Java based distributed genetic programming
on the internet. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H.
Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings
of the Genetic and Evolutionary Computation Conference, volume 2, page 1229,
Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann. Full text in technical
report CSRP-99-7.

[63] Vic Ciesielski and Xiang Li. Analysis of genetic programming runs. In R I Mckay
and Sung-Bae Cho, editors, Proceedings of The Second Asian-Pacific Workshop on
Genetic Programming, Cairns, Australia, 6-7 December 2004.

[64] Rudi Cilibrasi, Paul Vitanyi, and Ronald de Wolf. Algorithmic clustering of music
based on string compression. Computer Music Journal, 28(4):49–67, Winter 2004.

[65] Rudi Cilibrasi and Paul M. B. Vitanyi. Clustering by compression. IEEE Transac-
tions on Information Theory, 51(4):1523–1545, April 2005.

[66] Pierre Collet, Marco Tomassini, Marc Ebner, Steven Gustafson, and Anikó Ekárt,
editors. Proceedings of the 9th European Conference on Genetic Programming, vol-
ume 3905 of Lecture Notes in Computer Science, Budapest, Hungary, 10 - 12 April
2006. Springer.

[67] Robert J. Collins. Studies in Artificial Evolution. PhD thesis, UCLA, Artificial Life
Laboratory, Department of Computer Science, University of California, Los Angeles,
LA CA 90024, USA, 1992.

[68] F. Corno, E. Sanchez, and G. Squillero. Evolving assembly programs: how games
help microprocessor validation. Evolutionary Computation, IEEE Transactions on,
9(6):695–706, 2005.

[69] Dan Costelloe and Conor Ryan. Towards models of user preferences in interactive mu-
sical evolution. In Dirk Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen Branke,
John Andrew Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy Deb, Benjamin
Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller, Jason Moore, Frank Neumann,
Martin Pelikan, Riccardo Poli, Kumara Sastry, Kenneth Owen Stanley, Thomas Stut-
zle, Richard A Watson, and Ingo Wegener, editors, GECCO ’07: Proceedings of the
9th annual conference on Genetic and evolutionary computation, volume 2, pages
2254–2254, London, 7-11 July 2007. ACM Press.

[70] Kyle Cranmer and R. Sean Bowman. PhysicsGP: A genetic programming approach
to event selection. Computer Physics Communications, 167(3):165–176, 1 May 2005.

[71] Raphael Crawford-Marks and Lee Spector. Size control via size fair genetic opera-
tors in the PushGP genetic programming system. In W. B. Langdon, E. Cantú-Paz,
K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph,
J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and

73

N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 733–739, New York, 9-13 July 2002. Morgan Kauf-
mann Publishers.

[72] Ronald L. Crepeau. Genetic evolution of machine language software. In Justinian P.
Rosca, editor, Proceedings of the Workshop on Genetic Programming: From Theory
to Real-World Applications, pages 121–134, Tahoe City, California, USA, 9 July 1995.

[73] Robert Curry, Peter Lichodzijewski, and Malcolm I. Heywood. Scaling genetic pro-
gramming to large datasets using hierarchical dynamic subset selection. IEEE Trans-
actions on Systems, Man, and Cybernetics: Part B - Cybernetics, 37(4):1065–1073,
August 2007.

[74] Jason M. Daida, Jonathan D. Hommes, Tommaso F. Bersano-Begey, Steven J. Ross,
and John F. Vesecky. Algorithm discovery using the genetic programming paradigm:
Extracting low-contrast curvilinear features from SAR images of arctic ice. In Pe-
ter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming
2, chapter 21, pages 417–442. MIT Press, Cambridge, MA, USA, 1996.

[75] Eyal Dassau, Benyamin Grosman, and Daniel R. Lewin. Modeling and temper-
ature control of rapid thermal processing. Computers and Chemical Engineering,
30(4):686–697, 15 February 2006.

[76] Thomas E. Davis and Jose C. Principe. A Markov chain framework for the simple
genetic algorithm. Evolutionary Computation, 1(3):269–288, 1993.

[77] Jennifer P. Day, Douglas B. Kell, and Gareth W. Griffith. Differentiation of phytoph-
thora infestans sporangia from other airborne biological particles by flow cytometry.
Applied and Environmental Microbiology, 68(1):37–45, January 2002.

[78] Janaina S. de Sousa, Lalinka de C. T. Gomes, George B. Bezerra, Leandro N. de
Castro, and Fernando J. Von Zuben. An immune-evolutionary algorithm for mul-
tiple rearrangements of gene expression data. Genetic Programming and Evolvable
Machines, 5(2):157–179, June 2004.

[79] C. De Stefano, A. Della Cioppa, and A. Marcelli. Character preclassification based
on genetic programming. Pattern Recognition Letters, 23(12):1439–1448, 2002.

[80] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms. Wiley,
2001.

[81] Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg Beyer, Edmund
Burke, Paul Darwen, Dipankar Dasgupta, Dario Floreano, James Foster, Mark
Harman, Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea Tettamanzi, Dirk
Thierens, and Andy Tyrrell, editors. Genetic and Evolutionary Computation –
GECCO-2004, Part I, volume 3102 of Lecture Notes in Computer Science, Seattle,
WA, USA, 26-30 June 2004. Springer-Verlag.

74

[82] M. A. H. Dempster and C. M. Jones. A real-time adaptive trading system using
genetic programming. Quantitative Finance, 1:397–413, 2000.

[83] M. A. H. Dempster, Tom W. Payne, Yazann Romahi, and G. W. P. Thompson.
Computational learning techniques for intraday FX trading using popular technical
indicators. IEEE Transactions on Neural Networks, 12(4):744–754, July 2001.

[84] Larry Deschaine. Using information fusion, machine learning, and global optimisation
to increase the accuracy of finding and understanding items interest in the subsurface.
GeoDrilling International, (122):30–32, May 2006.

[85] Larry M. Deschaine, Richard A. Hoover, Joseph N. Skibinski, Janardan J. Patel,
Frank Francone, Peter Nordin, and M. J. Ades. Using machine learning to com-
pliment and extend the accuracy of UXO discrimination beyond the best reported
results of the jefferson proving ground technology demonstration. In 2002 Advanced
Technology Simulation Conference, San Diego, CA, USA, 14-18 April 2002.

[86] Larry M. Deschaine, Janardan J. Patel, Ronald D. Guthrie, Joseph T. Grimski,
and M. J. Ades. Using linear genetic programming to develop a C/C++ simulation
model of a waste incinerator. In M. Ades, editor, Advanced Technology Simulation
Conference, Seattle, 22-26 April 2001.

[87] Patrik D’haeseleer. Context preserving crossover in genetic programming. In Pro-
ceedings of the 1994 IEEE World Congress on Computational Intelligence, volume 1,
pages 256–261, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

[88] Patrik D’haeseleer and Jason Bluming. Effects of locality in individual and population
evolution. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming,
chapter 8, pages 177–198. MIT Press, 1994.

[89] Stephen Dignum and Riccardo Poli. Generalisation of the limiting distribution of
program sizes in tree-based genetic programming and analysis of its effects on bloat.
In Dirk Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen Branke, John Andrew
Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy Deb, Benjamin Doerr, Tim
Kovacs, Sanjeev Kumar, Julian F. Miller, Jason Moore, Frank Neumann, Martin
Pelikan, Riccardo Poli, Kumara Sastry, Kenneth Owen Stanley, Thomas Stutzle,
Richard A Watson, and Ingo Wegener, editors, GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary computation, volume 2, pages 1588–
1595, London, 7-11 July 2007. ACM Press.

[90] J. U. Dolinsky, I. D. Jenkinson, and G. J. Colquhoun. Application of genetic program-
ming to the calibration of industrial robots. Computers in Industry, 58(3):255–264,
April 2007.

[91] Roberto P. Domingos, Roberto Schirru, and Aquilino Senra Martinez. Soft computing
systems applied to PWR’s xenon. Progress in Nuclear Energy, 46(3-4):297–308, 2005.

75

[92] Dimitris C. Dracopoulos. Evolutionary Learning Algorithms for Neural Adaptive
Control. Perspectives in Neural Computing. Springer Verlag, P.O. Box 31 13 40,
D-10643 Berlin, Germany, August 1997.

[93] Stefan Droste, Thomas Jansen, Günter Rudolph, Hans-Paul Schwefel, Karsten Tin-
nefeld, and Ingo Wegener. Theory of evolutionary algorithms and genetic program-
ming. In Hans-Paul Schwefel, Ingo Wegener, and Klaus Weinert, editors, Advances in
Computational Intelligence: Theory and Practice, Natural Computing Series, chap-
ter 5, pages 107–144. Springer, 2003.

[94] Marc Ebner, Michael O’Neill, Anikó Ekárt, Leonardo Vanneschi, and Anna Isabel
Esparcia-Alcázar, editors. Proceedings of the 10th European Conference on Genetic
Programming, volume 4445 of Lecture Notes in Computer Science, Valencia, Spain,
11 - 13 April 2007. Springer.

[95] Marc Ebner, Markus Reinhardt, and Jürgen Albert. Evolution of vertex and pixel
shaders. In Maarten Keijzer, Andrea Tettamanzi, Pierre Collet, Jano I. van Hemert,
and Marco Tomassini, editors, Proceedings of the 8th European Conference on Ge-
netic Programming, volume 3447 of Lecture Notes in Computer Science, pages 261–
270, Lausanne, Switzerland, 30 March - 1 April 2005. Springer.

[96] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer,
2003.

[97] Sven E. Eklund. A massively parallel GP engine in VLSI. In David B. Fogel,
Mohamed A. El-Sharkawi, Xin Yao, Garry Greenwood, Hitoshi Iba, Paul Marrow,
and Mark Shackleton, editors, Proceedings of the 2002 Congress on Evolutionary
Computation CEC2002, pages 629–633. IEEE Press, 2002.

[98] David I. Ellis, David Broadhurst, and Royston Goodacre. Rapid and quantitative
detection of the microbial spoilage of beef by fourier transform infrared spectroscopy
and machine learning. Analytica Chimica Acta, 514(2):193–201, 2004.

[99] David I. Ellis, David Broadhurst, Douglas B. Kell, Jem J. Rowland, and Royston
Goodacre. Rapid and quantitative detection of the microbial spoilage of meat by
fourier transform infrared spectroscopy and machine learning. Applied and Environ-
mental Microbiology, 68(6):2822–2828, June 2002.

[100] R. Eriksson and B. Olsson. Adapting genetic regulatory models by genetic program-
ming. Biosystems, 76(1-3):217–227, 2004.

[101] Anna I. Esparcia-Alcazar and Kenneth C. Sharman. Genetic programming techniques
that evolve recurrent neural networks architectures for signal processing. In IEEE
Workshop on Neural Networks for Signal Processing, Seiko, Kyoto, Japan, September
1996.

76

[102] C. Evans, P. J. Fleming, D. C. Hill, J. P. Norton, I. Pratt, D. Rees, and K. Rodriguez-
Vazquez. Application of system identification techniques to aircraft gas turbine en-
gines. Control Engineering Practice, 9(2):135–148, 2001.

[103] Francine Federman, Gayle Sparkman, and Stephanie Watt. Representation of music
in a learning classifier system utilizing bach chorales. In Wolfgang Banzhaf, Ja-
son Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and
Robert E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation
Conference, volume 1, page 785, Orlando, Florida, USA, 13-17 July 1999. Morgan
Kaufmann.

[104] Michael J. Felton. Survival of the fittest in drug design. Modern Drug Discovery,
3(9):49–50, November/December 2000.

[105] F. Fernandez, J. M. Sanchez, M. Tomassini, and J. A. Gomez. A parallel genetic
programming tool based on PVM. In J. Dongarra, E. Luque, and T. Margalef,
editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Proceedings of the 6th European PVM/MPI Users’ Group Meeting, volume 1697 of
Lecture Notes in Computer Science, pages 241–248, Barcelona, Spain, September
1999. Springer-Verlag.

[106] Francisco Fernandez, Marco Tomassini, and Leonardo Vanneschi. An empirical study
of multipopulation genetic programming. Genetic Programming and Evolvable Ma-
chines, 4(1):21–51, March 2003.

[107] Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano. A scalable cellular
implementation of parallel genetic programming. IEEE Transactions on Evolutionary
Computation, 7(1):37–53, February 2003.

[108] James A. Foster. Review: Discipulus: A commercial genetic programming system.
Genetic Programming and Evolvable Machines, 2(2):201–203, June 2001.

[109] James A. Foster, Evelyne Lutton, Julian Miller, Conor Ryan, and Andrea G. B. Tet-
tamanzi, editors. Genetic Programming, Proceedings of the 5th European Conference,
EuroGP 2002, volume 2278 of LNCS, Kinsale, Ireland, 3-5 April 2002. Springer-
Verlag.

[110] Frank D. Francone, Markus Conrads, Wolfgang Banzhaf, and Peter Nordin. Ho-
mologous crossover in genetic programming. In Wolfgang Banzhaf, Jason Daida,
Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E.
Smith, editors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence, volume 2, pages 1021–1026, Orlando, Florida, USA, 13-17 July 1999. Morgan
Kaufmann.

[111] Frank D. Francone and Larry M. Deschaine. Getting it right at the very start –
building project models where data is expensive by combining human expertise,

77

machine learning and information theory. In 2004 Business and Industry Symposium,
Washington, DC, April 2004.

[112] Frank D. Francone, Larry M. Deschaine, and Jeffrey J. Warren. Discrimination of
munitions and explosives of concern at F.E. warren AFB using linear genetic pro-
gramming. In Dirk Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen Branke,
John Andrew Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy Deb, Benjamin
Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller, Jason Moore, Frank Neumann,
Martin Pelikan, Riccardo Poli, Kumara Sastry, Kenneth Owen Stanley, Thomas Stut-
zle, Richard A Watson, and Ingo Wegener, editors, GECCO ’07: Proceedings of the
9th annual conference on Genetic and evolutionary computation, volume 2, pages
1999–2006, London, 7-11 July 2007. ACM Press.

[113] Alex Fukunaga. Automated discovery of composite SAT variable selection heuristics.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages
641–648, 2002.

[114] Alex S. Fukunaga. Evolving local search heuristics for SAT using genetic program-
ming. In Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg Beyer,
Edmund Burke, Paul Darwen, Dipankar Dasgupta, Dario Floreano, James Foster,
Mark Harman, Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea Tettamanzi,
Dirk Thierens, and Andy Tyrrell, editors, Genetic and Evolutionary Computation –
GECCO-2004, Part II, volume 3103 of Lecture Notes in Computer Science, pages
483–494, Seattle, WA, USA, 26-30 June 2004. Springer-Verlag.

[115] Pablo Funes, Elizabeth Sklar, Hugues Juille, and Jordan Pollack. Animal-animat
coevolution: Using the animal population as fitness function. In Rolf Pfeifer, Bruce
Blumberg, Jean-Arcady Meyer, and Stewart W. Wilson, editors, From Animals to
Animats 5: Proceedings of the Fifth International Conference on Simulation of Adap-
tive Behavior., pages 525–533, Zurich, Switzerland, August 17-21 1998. MIT Press.

[116] Pablo Funes, Elizabeth Sklar, Hugues Juille, and Jordan Pollack. Animal-animat
coevolution: Using the animal population as fitness function. In Rolf Pfeifer, Bruce
Blumberg, Jean-Arcady Meyer, and Stewart W. Wilson, editors, From Animals to
Animats 5: Proceedings of the Fifth International Conference on Simulation of Adap-
tive Behavior, pages 525–533, Zurich, Switzerland, August 17-21 1998. MIT Press.

[117] Christian Gagne and Marc Parizeau. Genetic engineering of hierarchical fuzzy re-
gional representations for handwritten character recognition. International Journal
on Document Analysis and Recognition, 8(4):223–231, September 2006.

[118] Christian Gagné and Marc Parizeau. Co-evolution of nearest neighbor classifiers.
International Journal of Pattern Recognition and Artificial Intelligence, 21(5):921–
946, August 2007.

78

[119] Alma Lilia Garcia-Almanza and Edward P. K. Tsang. Forecasting stock prices using
genetic programming and chance discovery. In 12th International Conference On
Computing In Economics And Finance, page number 489, July 2006.

[120] Chris Gathercole and Peter Ross. Dynamic training subset selection for supervised
learning in genetic programming. In Yuval Davidor, Hans-Paul Schwefel, and Rein-
hard Männer, editors, Parallel Problem Solving from Nature III, volume 866 of LNCS,
pages 312–321, Jerusalem, 9-14 October 1994. Springer-Verlag.

[121] Chris Gathercole and Peter Ross. Tackling the boolean even N parity problem with
genetic programming and limited-error fitness. In John R. Koza, Kalyanmoy Deb,
Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors,
Genetic Programming 1997: Proceedings of the Second Annual Conference, pages
119–127, Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[122] Sylvain Gelly, Olivier Teytaud, Nicolas Bredeche, and Marc Schoenauer. Universal
consistency and bloat in GP. Revue d’Intelligence Artificielle, 20(6):805–827, 2006.
Issue on New Methods in Machine Learning. Theory and Applications.

[123] Richard J. Gilbert, Royston Goodacre, Andrew M. Woodward, and Douglas B. Kell.
Genetic programming: A novel method for the quantitative analysis of pyrolysis mass
spectral data. ANALYTICAL CHEMISTRY, 69(21):4381–4389, 1997.

[124] Al Globus, John Lawton, and Todd Wipke. Automatic molecular design using evolu-
tionary techniques. In Al Globus and Deepak Srivastava, editors, The Sixth Foresight
Conference on Molecular Nanotechnology, Westin Hotel in Santa Clara, CA, USA,
November 12-15, 1998 1998.

[125] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

[126] David E. Goldberg, Hillol Kargupta, Jeffrey Horn, and Erick Cantu-Paz. Critical
deme size for serial and parallel genetic algorithms. Technical report, Illinois Genetic
Algorithms Laboratory, Department of General Engineering, University of Illinois at
Urbana-Champaign, Il 61801, USA, 1995. IlliGAL Report no 95002.

[127] R. Goodacre and R. J. Gilbert. The detection of caffeine in a variety of beverages us-
ing curie-point pyrolysis mass spectrometry and genetic programming. The Analyst,
124:1069–1074, 1999.

[128] Royston Goodacre. Explanatory analysis of spectroscopic data using machine learn-
ing of simple, interpretable rules. Vibrational Spectroscopy, 32(1):33–45, 5 August
2003. A collection of Papers Presented at Shedding New Light on Disease: Optical
Diagnostics for the New Millennium (SPEC 2002) Reims, France 23-27 June 2002.

79

[129] Royston Goodacre, Beverley Shann, Richard J. Gilbert, Eadaoin M. Timmins,
Aoife C. McGovern, Bjorn K. Alsberg, Douglas B. Kell, and Niall A. Logan. The
detection of the dipicolinic acid biomarker in bacillus spores using curie-point py-
rolysis mass spectrometry and fourier-transform infrared spectroscopy. Analytical
Chemistry, 72(1):119–127, 1 January 2000.

[130] Royston Goodacre, Seetharaman Vaidyanathan, Warwick B. Dunn, George G. Har-
rigan, and Douglas B. Kell. Metabolomics by numbers: acquiring and understanding
global metabolite data. Trends in Biotechnology, 22(5):245–252, 1 May 2004.

[131] F. Gruau. Neural Network Synthesis using Cellular Encoding and the Genetic Al-
gorithm. PhD thesis, Laboratoire de l’Informatique du Parallilisme, Ecole Normale
Supirieure de Lyon, France, 1994.

[132] F. Gruau and D. Whitley. Adding learning to the cellular development process: a
comparative study. Evolutionary Computation, 1(3):213–233, 1993.

[133] Frederic Gruau. Genetic micro programming of neural networks. In Kenneth E.
Kinnear, Jr., editor, Advances in Genetic Programming, chapter 24, pages 495–518.
MIT Press, 1994.

[134] Frederic Gruau. On using syntactic constraints with genetic programming. In Pe-
ter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming
2, chapter 19, pages 377–394. MIT Press, Cambridge, MA, USA, 1996.

[135] Steven Gustafson and Edmund K. Burke. The speciating island model: An alterna-
tive parallel evolutionary algorithm. Journal of Parallel and Distributed Computing,
66(8):1025–1036, August 2006. Parallel Bioinspired Algorithms.

[136] Steven Gustafson, Edmund K. Burke, and Natalio Krasnogor. On improving genetic
programming for symbolic regression. In David Corne, Zbigniew Michalewicz, Marco
Dorigo, Gusz Eiben, David Fogel, Carlos Fonseca, Garrison Greenwood, Tan Kay
Chen, Guenther Raidl, Ali Zalzala, Simon Lucas, Ben Paechter, Jennifier Willies,
Juan J. Merelo Guervos, Eugene Eberbach, Bob McKay, Alastair Channon, Ashutosh
Tiwari, L. Gwenn Volkert, Dan Ashlock, and Marc Schoenauer, editors, Proceedings
of the 2005 IEEE Congress on Evolutionary Computation, volume 1, pages 912–919,
Edinburgh, UK, 2-5 September 2005. IEEE Press.

[137] R. J. Hampo and K. A. Marko. Application of genetic programming to control of
vehicle systems. In Proceedings of the Intelligent Vehicles ’92 Symposium, 1992. June
29 - July 1, 1992, Detroit, Mi, USA.

[138] S. Handley. On the use of a directed acyclic graph to represent a population of
computer programs. In Proceedings of the 1994 IEEE World Congress on Compu-
tational Intelligence, volume 1, pages 154–159, Orlando, Florida, USA, 27-29 June
1994. IEEE Press.

80

[139] Simon Handley. Automatic learning of a detector for alpha-helices in protein se-
quences via genetic programming. In Stephanie Forrest, editor, Proceedings of the
5th International Conference on Genetic Algorithms, ICGA-93, pages 271–278, Uni-
versity of Illinois at Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann.

[140] Simon Harding and Wolfgang Banzhaf. Fast genetic programming on GPUs. In
Marc Ebner, Michael O’Neill, Anikó Ekárt, Leonardo Vanneschi, and Anna Isabel
Esparcia-Alcázar, editors, Proceedings of the 10th European Conference on Genetic
Programming, volume 4445 of Lecture Notes in Computer Science, pages 90–101,
Valencia, Spain, 11 - 13 April 2007. Springer.

[141] George G. Harrigan, Roxanne H. LaPlante, Greg N. Cosma, Gary Cockerell, Royston
Goodacre, Jane F. Maddox, James P. Luyendyk, Patricia E. Ganey, and Robert A.
Roth. Application of high-throughput fourier-transform infrared spectroscopy in
toxicology studies: contribution to a study on the development of an animal model
for idiosyncratic toxicity. Toxicology Letters, 146(3):197–205, 2 February 2004.

[142] Christopher Harris and Bernard Buxton. GP-COM: A distributed, component-based
genetic programming system in C++. In John R. Koza, David E. Goldberg, David B.
Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the
First Annual Conference, page 425, Stanford University, CA, USA, 28–31 July 1996.
MIT Press.

[143] Brad Harvey, James Foster, and Deborah Frincke. Towards byte code genetic pro-
gramming. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon,
Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings of the
Genetic and Evolutionary Computation Conference, volume 2, page 1234, Orlando,
Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[144] Samiul Hasan, Sabine Daugelat, P. S. Srinivasa Rao, and Mark Schreiber. Prioritiz-
ing genomic drug targets in pathogens: Application to mycobacterium tuberculosis.
PLoS Computational Biology, 2(6):e61, June 2006.

[145] Ami Hauptman and Moshe Sipper. GP-endchess: Using genetic programming to
evolve chess endgame players. In Maarten Keijzer, Andrea Tettamanzi, Pierre Collet,
Jano I. van Hemert, and Marco Tomassini, editors, Proceedings of the 8th European
Conference on Genetic Programming, volume 3447 of Lecture Notes in Computer
Science, pages 120–131, Lausanne, Switzerland, 30 March - 1 April 2005. Springer.

[146] Ami Hauptman and Moshe Sipper. Evolution of an efficient search algorithm for
the mate-in-N problem in chess. In Marc Ebner, Michael O’Neill, Anikó Ekárt,
Leonardo Vanneschi, and Anna Isabel Esparcia-Alcázar, editors, Proceedings of the
10th European Conference on Genetic Programming, volume 4445 of Lecture Notes
in Computer Science, pages 78–89, Valencia, Spain, 11 - 13 April 2007. Springer.

81

[147] Thomas Haynes, Roger Wainwright, Sandip Sen, and Dale Schoenefeld. Strongly
typed genetic programming in evolving cooperation strategies. In L. Eshelman,
editor, Genetic Algorithms: Proceedings of the Sixth International Conference
(ICGA95), pages 271–278, Pittsburgh, PA, USA, 15-19 July 1995. Morgan Kauf-
mann.

[148] Thomas D. Haynes, Dale A. Schoenefeld, and Roger L. Wainwright. Type inheritance
in strongly typed genetic programming. In Peter J. Angeline and K. E. Kinnear, Jr.,
editors, Advances in Genetic Programming 2, chapter 18, pages 359–376. MIT Press,
Cambridge, MA, USA, 1996.

[149] A Geert Heidema, Jolanda M A Boer, Nico Nagelkerke, Edwin C M Mariman,
Daphne L van der A, and Edith J M Feskens. The challenge for genetic epidemiolo-
gists: how to analyze large numbers of SNPs in relation to complex diseases. BMC
Genetics, 7(23), April 21 2006.

[150] W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an optimiza-
tion procedure. In Christopher G. Langton, Charles E. Taylor, J. Doyne Farmer, and
Steen Rasmussen, editors, Artificial Life II, volume X of Santa Fe Institute Studies
in the Sciences of Complexity, pages 313–324. Addison-Wesley, Santa Fe Institute,
New Mexico, USA, February 1990 1992.

[151] Mark P. Hinchliffe and Mark J. Willis. Dynamic systems modelling using genetic
programming. Computers & Chemical Engineering, 27(12):1841–1854, 2003.

[152] Shinn-Ying Ho, Chih-Hung Hsieh, Hung-Ming Chen, and Hui-Ling Huang. Inter-
pretable gene expression classifier with an accurate and compact fuzzy rule base for
microarray data analysis. Biosystems, 85(3):165–176, September 2006.

[153] Nguyen Xuan Hoai, R. I. McKay, and H. A. Abbass. Tree adjoining grammars,
language bias, and genetic programming. In Conor Ryan, Terence Soule, Maarten
Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic Program-
ming, Proceedings of EuroGP’2003, volume 2610 of LNCS, pages 335–344, Essex,
14-16 April 2003. Springer-Verlag.

[154] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, USA, 1975.

[155] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press,
1992. First Published by University of Michigan Press 1975.

[156] Jin-Hyuk Hong and Sung-Bae Cho. The classification of cancer based on DNA mi-
croarray data that uses diverse ensemble genetic programming. Artificial Intelligence
In Medicine, 36(1):43–58, January 2006.

82

[157] Daniel Howard and Simon C. Roberts. Incident detection on highways. In Una-May
O’Reilly, Tina Yu, Rick L. Riolo, and Bill Worzel, editors, Genetic Programming
Theory and Practice II, chapter 16, pages 263–282. Springer, Ann Arbor, 13-15 May
2004.

[158] Daniel Howard, Simon C. Roberts, and Richard Brankin. Target detection in imagery
by genetic programming. Advances in Engineering Software, 30(5):303–311, 1999.

[159] Daniel Howard, Simon C. Roberts, and Conor Ryan. Pragmatic genetic programming
strategy for the problem of vehicle detection in airborne reconnaissance. Pattern
Recognition Letters, 27(11):1275–1288, August 2006. Evolutionary Computer Vision
and Image Understanding.

[160] Hitoshi Iba. Genetic Programming. Tokyo Denki University Press, 1996.

[161] Hitoshi Iba, Hugo de Garis, and Taisuke Sato. Genetic programming using a mini-
mum description length principle. In Kenneth E. Kinnear, Jr., editor, Advances in
Genetic Programming, chapter 12, pages 265–284. MIT Press, 1994.

[162] Yoshiyuki Inagaki. On synchronized evolution of the network of automata. IEEE
Transactions on Evolutionary Computation, 6(2):147–158, April 2002.

[163] Christian Jacob. Principia Evolvica – Simulierte Evolution mit Mathematica.
dpunkt.verlag, Heidelberg, Germany, August 1997.

[164] Christian Jacob. The art of genetic programming. IEEE Intelligent Systems,
15(3):83–84, May-June 2000.

[165] Christian Jacob. Illustrating Evolutionary Computation with Mathematica. Morgan
Kaufmann, 2001.

[166] Kwang-Seuk Jeong, Dong-Kyun Kim, Peter Whigham, and Gea-Jae Joo. Modelling
microcystis aeruginosa bloom dynamics in the nakdong river by means of evolution-
ary computation and statistical approach. Ecological Modelling, 161(1-2):67–78, 1
March 2003.

[167] Nanlin Jin and Edward Tsang. Co-adaptive strategies for sequential bargaining
problems with discount factors and outside options. In Proceedings of the 2006 IEEE
Congress on Evolutionary Computation, pages 7913–7920, Vancouver, 6-21 July 2006.
IEEE Press.

[168] Helen E. Johnson, Richard J. Gilbert, Michael K. Winson, Royston Goodacre,
Aileen R. Smith, Jem J. Rowland, Michael A. Hall, and Douglas B. Kell. Explana-
tory analysis of the metabolome using genetic programming of simple, interpretable
rules. Genetic Programming and Evolvable Machines, 1(3):243–258, July 2000.

83

[169] Alun Jones, Daniella Young, Janet Taylor, Douglas B. Kell, and Jem J Rowland.
Quantification of microbial productivity via multi-angle light scattering and super-
vised learning. Biotechnology and Bioengineering, 59(2):131–143, 20 July 1998.

[170] Proceedings of the 2001 Congress on Evolutionary Computation CEC2001, COEX,
World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-30 May
2001. IEEE Press.

[171] Elsa Jordaan, Arthur Kordon, Leo Chiang, and Guido Smits. Robust inferential
sensors based on ensemble of predictors generated by genetic programming. In Xin
Yao, Edmund Burke, Jose A. Lozano, Jim Smith, Juan J. Merelo-Guervós, John A.
Bullinaria, Jonathan Rowe, Peter Tiňo Ata Kabán, and Hans-Paul Schwefel, editors,
Parallel Problem Solving from Nature - PPSN VIII, volume 3242 of LNCS, pages
522–531, Birmingham, UK, 18-22 September 2004. Springer-Verlag.

[172] Hugues Juille and Jordan B. Pollack. Massively parallel genetic programming. In
Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming
2, chapter 17, pages 339–358. MIT Press, Cambridge, MA, USA, 1996.

[173] M. Kaboudan. A measure of time series predictability using genetic programming
applied to stock returns. Journal of Forecasting, 18:345–357, 1999.

[174] M. A. Kaboudan. Genetic programming prediction of stock prices. Computational
Economics, 6(3):207–236, December 2000.

[175] Mak Kaboudan. Extended daily exchange rates forecasts using wavelet temporal
resolutions. New Mathematics and Natural Computing, 1:79–107, 2005.

[176] Maarten Keijzer. Efficiently representing populations in genetic programming. In
Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming
2, chapter 13, pages 259–278. MIT Press, Cambridge, MA, USA, 1996.

[177] Maarten Keijzer. Scaled symbolic regression. Genetic Programming and Evolvable
Machines, 5(3):259–269, September 2004.

[178] Maarten Keijzer, Mike Cattolico, Dirk Arnold, Vladan Babovic, Christian Blum,
Peter Bosman, Martin V. Butz, Carlos Coello Coello, Dipankar Dasgupta, Sevan G.
Ficici, James Foster, Arturo Hernandez-Aguirre, Greg Hornby, Hod Lipson, Phil
McMinn, Jason Moore, Guenther Raidl, Franz Rothlauf, Conor Ryan, and Dirk
Thierens, editors. GECCO 2006: Proceedings of the 8th annual conference on Ge-
netic and evolutionary computation, Seattle, Washington, USA, 8-12 July 2006. ACM
Press.

[179] Maarten Keijzer, Una-May O’Reilly, Simon M. Lucas, Ernesto Costa, and Terence
Soule, editors. Genetic Programming 7th European Conference, EuroGP 2004, Pro-
ceedings, volume 3003 of LNCS, Coimbra, Portugal, 5-7 April 2004. Springer-Verlag.

84

[180] Maarten Keijzer, Andrea Tettamanzi, Pierre Collet, Jano I. van Hemert, and Marco
Tomassini, editors. Proceedings of the 8th European Conference on Genetic Program-
ming, volume 3447 of Lecture Notes in Computer Science, Lausanne, Switzerland, 30
March - 1 April 2005. Springer.

[181] Douglas Kell. Defence against the flood. Bioinformatics World, pages 16–18, Jan-
uary/February 2002.

[182] Douglas B. Kell. Genotype-phenotype mapping: genes as computer programs. Trends
in Genetics, 18(11):555–559, November 2002.

[183] Douglas B. Kell. Metabolomics and machine learning: Explanatory analysis of com-
plex metabolome data using genetic programming to produce simple, robust rules.
Molecular Biology Reports, 29(1-2):237–241, 2002.

[184] Douglas B. Kell, Robert M. Darby, and John Draper. Genomic computing. ex-
planatory analysis of plant expression profiling data using machine learning. Plant
Physiology, 126(3):943–951, July 2001.

[185] R. E. Keller and R. Poli. Linear genetic programming of metaheuristics. In Dirk
Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen Branke, John Andrew Clark,
Dave Cliff, Clare Bates Congdon, Kalyanmoy Deb, Benjamin Doerr, Tim Kovacs,
Sanjeev Kumar, Julian F. Miller, Jason Moore, Frank Neumann, Martin Pelikan,
Riccardo Poli, Kumara Sastry, Kenneth Owen Stanley, Thomas Stutzle, Richard A
Watson, and Ingo Wegener, editors, GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, volume 2, pages 1753–1753,
London, 7-11 July 2007. ACM Press.

[186] Robert E. Keller and Riccardo Poli. Cost-benefit investigation of a genetic-
programming hyperheuristic. In Proceedings of Evolution Artificielle, October 2007.

[187] Robert E. Keller and Riccardo Poli. Linear genetic programming of parsimonious
metaheuristics. In Proceedings of IEEE Congress on Evolutionary Computation
(CEC), September 2007.

[188] Didier Keymeulen, Adrian Stoica, Jason Lohn, and Ricardo S. Zebulum, editors. The
Third NASA/DoD workshop on Evolvable Hardware, Long Beach, California, 12-14
July 2001. IEEE Computer Society.

[189] Bijan KHosraviani. Organization design optimization using genetic programming.
In John R. Koza, editor, Genetic Algorithms and Genetic Programming at Stanford
2003, pages 109–117. Stanford Bookstore, Stanford, California, 94305-3079 USA, 4
December 2003.

85

[190] Bijan KHosraviani, Raymond E. Levitt, and John R. Koza. Organization design
optimization using genetic programming. In Maarten Keijzer, editor, Late Break-
ing Papers at the 2004 Genetic and Evolutionary Computation Conference, Seattle,
Washington, USA, 26 July 2004.

[191] Raihan H. Kibria and You Li. Optimizing the initialization of dynamic decision
heuristics in DPLL SAT solvers using genetic programming. In Pierre Collet, Marco
Tomassini, Marc Ebner, Steven Gustafson, and Anikó Ekárt, editors, Proceedings
of the 9th European Conference on Genetic Programming, volume 3905 of Lecture
Notes in Computer Science, pages 331–340, Budapest, Hungary, 10 - 12 April 2006.
Springer.

[192] Kenneth E. Kinnear, Jr. Evolving a sort: Lessons in genetic programming. In
Proceedings of the 1993 International Conference on Neural Networks, volume 2,
pages 881–888, San Francisco, USA, 28 March-1 April 1993. IEEE Press.

[193] Kenneth E. Kinnear, Jr., editor. Advances in Genetic Programming. MIT Press,
Cambridge, MA, 1994.

[194] Kenneth E. Kinnear, Jr. Fitness landscapes and difficulty in genetic programming.
In Proceedings of the 1994 IEEE World Conference on Computational Intelligence,
volume 1, pages 142–147, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

[195] Kenneth E. Kinnear, Jr. A perspective on the work in this book. In Kenneth E.
Kinnear, Jr., editor, Advances in Genetic Programming, chapter 1, pages 3–19. MIT
Press, 1994.

[196] Tim J. Klassen and Malcolm I. Heywood. Towards the on-line recognition of arabic
characters. In Proceedings of the 2002 International Joint Conference on Neural
Networks IJCNN’02, pages 1900–1905, Hilton Hawaiian Village Hotel, Honolulu,
Hawaii, 12-17 May 2002. IEEE Press.

[197] Arthur Kordon. Evolutionary computation at dow chemical. SIGEVOlution, 1(3):4–
9, September 2006.

[198] Arthur Kordon, Flor Castillo, Guido Smits, and Mark Kotanchek. Application is-
sues of genetic programming in industry. In Tina Yu, Rick L. Riolo, and Bill Worzel,
editors, Genetic Programming Theory and Practice III, volume 9 of Genetic Pro-
gramming, chapter 16, pages 241–258. Springer, Ann Arbor, 12-14 May 2005.

[199] Miha Kovacic and Joze Balic. Evolutionary programming of a CNC cutting ma-
chine. International journal for advanced manufacturing technology, 22(1-2):118–124,
September 2003.

[200] J. Koza. Genetic programming: A paradigm for genetically breeding populations of
computer programs to solve problems. Technical Report STAN-CS-90-1314, Dept.
of Computer Science, Stanford University, June 1990.

86

[201] J. R. Koza. Hierarchical genetic algorithms operating on populations of computer
programs. In N. S. Sridharan, editor, Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence IJCAI-89, volume 1, pages 768–774, Detroit,
MI, USA, 20-25 August 1989. Morgan Kaufmann.

[202] John R. Koza. A genetic approach to econometric modeling. In Sixth World Congress
of the Econometric Society, Barcelona, Spain, 1990.

[203] John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[204] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts, May 1994.

[205] John R. Koza. Genetic Programming II Videotape: The next generation. MIT Press,
55 Hayward Street, Cambridge, MA, USA, 1994.

[206] John R. Koza, editor. Late Breaking Papers at the Genetic Programming 1996 Con-
ference Stanford University July 28-31, 1996, Stanford University, CA, USA, 28–31
July 1996. Stanford Bookstore.

[207] John R. Koza, editor. Late Breaking Papers at the 1997 Genetic Programming Con-
ference, Stanford University, CA, USA, 13–16 July 1997. Stanford Bookstore.

[208] John R. Koza, editor. Late Breaking Papers at the 1998 Genetic Programming Con-
ference, University of Wisconsin, Madison, WI, USA, 22-25 July 1998. Omni Press.

[209] John R. Koza, Sameer H. Al-Sakran, and Lee W. Jones. Automated re-invention of
six patented optical lens systems using genetic programming. In Hans-Georg Beyer,
Una-May O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum, Eric W.
Bonabeau, Erick Cantu-Paz, Dipankar Dasgupta, Kalyanmoy Deb, James A. Foster,
Edwin D. de Jong, Hod Lipson, Xavier Llora, Spiros Mancoridis, Martin Pelikan,
Guenther R. Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Watson, and Eckart
Zitzler, editors, GECCO 2005: Proceedings of the 2005 conference on Genetic and
evolutionary computation, volume 2, pages 1953–1960, Washington DC, USA, 25-29
June 2005. ACM Press.

[210] John R. Koza and David Andre. Classifying protein segments as transmembrane
domains using architecture-altering operations in genetic programming. In Peter J.
Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chap-
ter 8, pages 155–176. MIT Press, Cambridge, MA, USA, 1996.

[211] John R. Koza, David Andre, Forrest H Bennett III, and Martin Keane. Genetic
Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman, April
1999.

87

[212] John R. Koza, David Andre, Forrest H Bennett III, and Martin A. Keane. Use of
automatically defined functions and architecture-altering operations in automated
circuit synthesis using genetic programming. In John R. Koza, David E. Goldberg,
David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings
of the First Annual Conference, pages 132–149, Stanford University, CA, USA, 28–31
July 1996. MIT Press.

[213] John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick
Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Confer-
ence, University of Wisconsin, Madison, WI, USA, 22-25 July 1998. Morgan Kauf-
mann.

[214] John R. Koza, Forrest H Bennett III, David Andre, and Martin A. Keane. Automated
WYWIWYG design of both the topology and component values of electrical circuits
using genetic programming. In John R. Koza, David E. Goldberg, David B. Fogel,
and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 123–131, Stanford University, CA, USA, 28–31 July 1996.
MIT Press.

[215] John R. Koza, Forrest H Bennett III, and Oscar Stiffelman. Genetic programming as
a Darwinian invention machine. In Riccardo Poli, Peter Nordin, William B. Langdon,
and Terence C. Fogarty, editors, Genetic Programming, Proceedings of EuroGP’99,
volume 1598 of LNCS, pages 93–108, Goteborg, Sweden, 26-27 May 1999. Springer-
Verlag.

[216] John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi
Iba, and Rick L. Riolo, editors. Genetic Programming 1997: Proceedings of the
Second Annual Conference, Stanford University, CA, USA, 13-16 July 1997. Morgan
Kaufmann.

[217] John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors. Genetic
Programming 1996: Proceedings of the First Annual Conference, Stanford University,
CA, USA, 28–31 July 1996. MIT Press.

[218] John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu,
and Guido Lanza. Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers, 2003.

[219] John R. Koza and Riccardo Poli. Genetic programming. In Edmund K. Burke and
Graham Kendall, editors, Search Methodologies: Introductory Tutorials in Optimiza-
tion and Decision Support Techniques, chapter 5. Springer, 2005.

[220] N. Krasnogor. Self generating metaheuristics in bioinformatics: The proteins struc-
ture comparison case. Genetic Programming and Evolvable Machines, 5(2):181–201,
June 2004.

88

[221] Krzysztof Krawiec. Evolutionary Feature Programming: Cooperative learning for
knowledge discovery and computer vision. Number 385. Wydawnictwo Politechniki
Poznanskiej, Poznan University of Technology, Poznan, Poland, 2004.

[222] W. B. Langdon. The evolution of size in variable length representations. In 1998
IEEE International Conference on Evolutionary Computation, pages 633–638, An-
chorage, Alaska, USA, 5-9 May 1998. IEEE Press.

[223] W. B. Langdon. Scaling of program tree fitness spaces. Evolutionary Computation,
7(4):399–428, Winter 1999.

[224] W. B. Langdon. Size fair and homologous tree genetic programming crossovers. In
Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar,
Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference, volume 2, pages 1092–1097, Orlando, Florida,
USA, 13-17 July 1999. Morgan Kaufmann.

[225] W. B. Langdon. Convergence rates for the distribution of program outputs. In W. B.
Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F.
Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conference, pages 812–819, New York, 9-13 July
2002. Morgan Kaufmann Publishers.

[226] W. B. Langdon. How many good programs are there? How long are they? In
Kenneth A. De Jong, Riccardo Poli, and Jonathan E. Rowe, editors, Foundations of
Genetic Algorithms VII, pages 183–202, Torremolinos, Spain, 4-6 September 2002.
Morgan Kaufmann. Published 2003.

[227] W. B. Langdon. Convergence of program fitness landscapes. In E. Cantú-Paz,
J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish,
G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C.
Schultz, K. Dowsland, N. Jonoska, and J. Miller, editors, Genetic and Evolution-
ary Computation – GECCO-2003, volume 2724 of LNCS, pages 1702–1714, Chicago,
12-16 July 2003. Springer-Verlag.

[228] W. B. Langdon. The distribution of reversible functions is Normal. In Rick L. Riolo
and Bill Worzel, editors, Genetic Programming Theory and Practise, chapter 11,
pages 173–188. Kluwer, 2003.

[229] W. B. Langdon. Global distributed evolution of L-systems fractals. In Maarten
Keijzer, Una-May O’Reilly, Simon M. Lucas, Ernesto Costa, and Terence Soule,
editors, Genetic Programming, Proceedings of EuroGP’2004, volume 3003 of LNCS,
pages 349–358, Coimbra, Portugal, 5-7 April 2004. Springer-Verlag.

89

[230] W. B. Langdon. The distribution of amorphous computer outputs. In Susan Stepney
and Stephen Emmott, editors, The Grand Challenge in Non-Classical Computation:
International Workshop, York, UK, 18-19 April 2005.

[231] W. B. Langdon. Pfeiffer – A distributed open-ended evolutionary system. In Bruce
Edmonds, Nigel Gilbert, Steven Gustafson, David Hales, and Natalio Krasnogor, ed-
itors, AISB’05: Proceedings of the Joint Symposium on Socially Inspired Computing
(METAS 2005), pages 7–13, University of Hertfordshire, Hatfield, UK, 12-15 April
2005. SSAISB 2005 Convention.

[232] W. B. Langdon. Mapping non-conventional extensions of genetic programming. In
Cristian S. Calude, Michael J. Dinneen, Gheorghe Paun, Grzegorz Rozenberg, and
Susan Stepney, editors, Unconventional Computing 2006, volume 4135 of LNCS,
pages 166–180, York, 4-8 September 2006. Springer-Verlag.

[233] W. B. Langdon and W. Banzhaf. A SIMD interpreter for genetic programming on
GPU graphics cards. In preparation, 3 July 2007.

[234] W. B. Langdon and B. F. Buxton. Genetic programming for mining DNA chip data
from cancer patients. Genetic Programming and Evolvable Machines, 5(3):251–257,
September 2004.

[235] W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakr-
ishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz,
J. F. Miller, E. Burke, and N. Jonoska, editors. GECCO 2002: Proceedings of the Ge-
netic and Evolutionary Computation Conference, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

[236] W. B. Langdon and A. P. Harrison. GP on SPMD parallel graphics hardware for
mega bioinformatics data mining. In preparation.

[237] W. B. Langdon and R. Poli. Fitness causes bloat. In P. K. Chawdhry, R. Roy,
and R. K. Pant, editors, Soft Computing in Engineering Design and Manufacturing,
pages 13–22. Springer-Verlag London, 23-27 June 1997.

[238] W. B. Langdon and R. Poli. The halting probability in von Neumann architectures.
In Pierre Collet, Marco Tomassini, Marc Ebner, Steven Gustafson, and Anikó Ekárt,
editors, Proceedings of the 9th European Conference on Genetic Programming, vol-
ume 3905 of Lecture Notes in Computer Science, pages 225–237, Budapest, Hungary,
10 - 12 April 2006. Springer.

[239] W. B. Langdon and Riccardo Poli. Foundations of Genetic Programming. Springer-
Verlag, 2002.

[240] W. B. Langdon, Riccardo Poli, Peter Nordin, and Terry Fogarty, editors. Late-
Breaking Papers of EuroGP-99, Goteborg, Sweden, 26-27 May 1999.

90

[241] William B. Langdon. A bibliography for genetic programming. In Peter J. Angeline
and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter B,
pages 507–532. MIT Press, Cambridge, MA, USA, 1996.

[242] William B. Langdon. Genetic Programming and Data Structures: Genetic Program-
ming + Data Structures = Automatic Programming!, volume 1 of Genetic Program-
ming. Kluwer, Boston, 24 April 1998.

[243] William B. Langdon. Size fair and homologous tree genetic programming crossovers.
Genetic Programming and Evolvable Machines, 1(1/2):95–119, April 2000.

[244] William B. Langdon and Wolfgang Banzhaf. Repeated sequences in linear genetic
programming genomes. Complex Systems, 15(4):285–306, 2005.

[245] William B. Langdon and Peter Nordin. Evolving hand-eye coordination for a hu-
manoid robot with machine code genetic programming. In Julian F. Miller, Marco
Tomassini, Pier Luca Lanzi, Conor Ryan, Andrea G. B. Tettamanzi, and William B.
Langdon, editors, Genetic Programming, Proceedings of EuroGP’2001, volume 2038
of LNCS, pages 313–324, Lake Como, Italy, 18-20 April 2001. Springer-Verlag.

[246] William B. Langdon and Riccardo Poli. Mapping non-conventional extensions of
genetic programming. Natural Computing. Invited contribution to special issue on
Unconventional computing.

[247] William B. Langdon and Riccardo Poli. On turing complete T7 and MISC F–
4 program fitness landscapes. In Dirk V. Arnold, Thomas Jansen, Michael D.
Vose, and Jonathan E. Rowe, editors, Theory of Evolutionary Algorithms, number
06061 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 5-10 February 2006.
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany. <http://drops.dagstuhl.de/opus/volltexte/2006/595> [date of
citation: 2006-01-01].

[248] William B. Langdon, Terry Soule, Riccardo Poli, and James A. Foster. The evolution
of size and shape. In Lee Spector, William B. Langdon, Una-May O’Reilly, and
Peter J. Angeline, editors, Advances in Genetic Programming 3, chapter 8, pages
163–190. MIT Press, Cambridge, MA, USA, June 1999.

[249] Kwong Sak Leung, Kin Hong Lee, and Sin Man Cheang. Genetic parallel program-
ming - evolving linear machine codes on a multiple-ALU processor. In Sazali Yaacob,
R. Nagarajan, and Ali Chekima, editors, Proceedings of International Conference on
Artificial Intelligence in Engineering and Technology - ICAIET 2002, pages 207–213.
Universiti Malaysia Sabah, June 2002.

[250] T. L. Lew, A. B. Spencer, F. Scarpa, K. Worden, A. Rutherford, and F. Hemez.
Identification of response surface models using genetic programming. Mechanical
Systems and Signal Processing, 20(8):1819–1831, November 2006.

91

[251] Daniel R. Lewin, Sivan Lachman-Shalem, and Benyamin Grosman. The role of
process system engineering (PSE) in integrated circuit (IC) manufacturing. Control
Engineering Practice, 15(7):793–802, July 2006. Special Issue on Award Winning
Applications, 2005 IFAC World Congress.

[252] Li Li, Wei Jiang, Xia Li, Kathy L. Moser, Zheng Guo, Lei Du, Qiuju Wang, Eric J.
Topol, Qing Wang, and Shaoqi Rao. A robust hybrid between genetic algorithm and
support vector machine for extracting an optimal feature gene subset. Genomics,
85(1):16–23, January 2005.

[253] Ricardo Linden and Amit Bhaya. Evolving fuzzy rules to model gene expression.
Biosystems, 88(1-2):76–91, March 2007.

[254] Hod Lipson. How to draw a straight line using a GP: Benchmarking evolutionary
design against 19th century kinematic synthesis. In Maarten Keijzer, editor, Late
Breaking Papers at the 2004 Genetic and Evolutionary Computation Conference,
Seattle, Washington, USA, 26 July 2004.

[255] Weiguo Liu and Bertil Schmidt. Mapping of hierarchical parallel genetic algorithms
for protein folding onto computational grids. IEICE Transactions on Information
and Systems, E89-D(2):589–596, 2006.

[256] Jason Lohn, Gregory Hornby, and Derek Linden. Evolutionary antenna design for a
NASA spacecraft. In Una-May O’Reilly, Tina Yu, Rick L. Riolo, and Bill Worzel,
editors, Genetic Programming Theory and Practice II, chapter 18, pages 301–315.
Springer, Ann Arbor, 13-15 May 2004.

[257] Jason Lohn, Adrian Stoica, and Didier Keymeulen, editors. The Second NASA/DoD
Workshop on Evolvable Hardware, Palo Alto, California, 13-15 July 2000. IEEE Com-
puter Society.

[258] Jason D. Lohn, Gregory S. Hornby, and Derek S. Linden. Rapid re-evolution of an
X-band antenna for NASA’s space technology 5 mission. In Tina Yu, Rick L. Riolo,
and Bill Worzel, editors, Genetic Programming Theory and Practice III, volume 9
of Genetic Programming, chapter 5, pages 65–78. Springer, Ann Arbor, 12-14 May
2005.

[259] Jean Louchet. Using an individual evolution strategy for stereovision. Genetic Pro-
gramming and Evolvable Machines, 2(2):101–109, June 2001.

[260] Jean Louchet, Maud Guyon, Marie-Jeanne Lesot, and Amine Boumaza. Dynamic
flies: a new pattern recognition tool applied to stereo sequence processing. Pattern
Recognition Letters, 23(1-3):335–345, January 2002.

[261] Jörn Loviscach and Jennis Meyer-Spradow. Genetic programming of vertex shaders.
In M. Chover, H. Hagen, and D. Tost, editors, Proceedings of EuroMedia 2003, pages
29–31, 2003.

92

[262] Sean Luke. Evolving soccerbots: A retrospective. In Proceedings of the 12th Annual
Conference of the Japanese Society for Artificial Intelligence, 1998.

[263] Sean Luke. Two fast tree-creation algorithms for genetic programming. IEEE Trans-
actions on Evolutionary Computation, 4(3):274–283, September 2000.

[264] Eduard Lukschandl, Henrik Borgvall, Lars Nohle, Mats Nordahl, and Peter Nordin.
Distributed java bytecode genetic programming. In Riccardo Poli, Wolfgang Banzhaf,
William B. Langdon, Julian F. Miller, Peter Nordin, and Terence C. Fogarty, editors,
Genetic Programming, Proceedings of EuroGP’2000, volume 1802 of LNCS, pages
316–325, Edinburgh, 15-16 April 2000. Springer-Verlag.

[265] Penousal Machado and Juan Romero, editors. The Art of Artificial Evolution.
Springer, 2008.

[266] Peter Marenbach. Using prior knowledge and obtaining process insight in data based
modelling of bioprocesses. System Analysis Modelling Simulation, 31:39–59, 1998.

[267] Sheri Markose, Edward Tsang, Hakan Er, and Abdel Salhi. Evolutionary arbitrage
for FTSE-100 index options and futures. In Proceedings of the 2001 Congress on
Evolutionary Computation CEC2001, pages 275–282, COEX, World Trade Center,
159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-30 May 2001. IEEE Press.

[268] John Paul Marney, D. Miller, Colin Fyfe, and Heather F. E. Tarbert. Risk adjusted
returns to technical trading rules: a genetic programming approach. In 7th Interna-
tional Conference of Society of Computational Economics, Yale, 28-29 June 2001.

[269] Martin C. Martin. Evolving visual sonar: Depth from monocular images. Pattern
Recognition Letters, 27(11):1174–1180, August 2006. Evolutionary Computer Vision
and Image Understanding.

[270] Peter Martin. A hardware implementation of a genetic programming system using
FPGAs and Handel-C. Genetic Programming and Evolvable Machines, 2(4):317–343,
December 2001.

[271] Paul Massey, John A. Clark, and Susan Stepney. Evolution of a human-competitive
quantum fourier transform algorithm using genetic programming. In Hans-Georg
Beyer, Una-May O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum,
Eric W. Bonabeau, Erick Cantu-Paz, Dipankar Dasgupta, Kalyanmoy Deb, James A.
Foster, Edwin D. de Jong, Hod Lipson, Xavier Llora, Spiros Mancoridis, Martin Pe-
likan, Guenther R. Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Watson, and
Eckart Zitzler, editors, GECCO 2005: Proceedings of the 2005 conference on Genetic
and evolutionary computation, volume 2, pages 1657–1663, Washington DC, USA,
25-29 June 2005. ACM Press.

93

[272] Sidney R. Maxwell III. Experiments with a coroutine model for genetic programming.
In Proceedings of the 1994 IEEE World Congress on Computational Intelligence,
volume 1, pages 413–417a, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

[273] Jon McCormack. New challenges for evolutionary music and art. SIGEvolution,
1(1):5–11, April 2006.

[274] Aoife C. McGovern, David Broadhurst, Janet Taylor, Naheed Kaderbhai, Michael K.
Winson, David A. Small, Jem J. Rowland, Douglas B. Kell, and Royston Goodacre.
Monitoring of complex industrial bioprocesses for metabolite concentrations using
modern spectroscopies and machine learning: Application to gibberellic acid produc-
tion. Biotechnology and Bioengineering, 78(5):527–538, 5 June 2002.

[275] Ben McKay, Mark Willis, Dominic Searson, and Gary Montague. Nonlinear contin-
uum regression: an evolutionary approach. Transactions of the Institute of Measure-
ment and Control, 22(2):125–140, 2000.

[276] Nicholas Freitag McPhee, Nicholas J. Hopper, and Mitchell L. Reierson. Suther-
land: An extensible object-oriented software framework for evolutionary computa-
tion. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb,
Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and
Rick Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual
Conference, page 241, University of Wisconsin, Madison, Wisconsin, USA, 22-25
July 1998. Morgan Kaufmann.

[277] Nicholas Freitag McPhee and Justin Darwin Miller. Accurate replication in genetic
programming. In L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth
International Conference (ICGA95), pages 303–309, Pittsburgh, PA, USA, 15-19
July 1995. Morgan Kaufmann.

[278] Peter Kip Mercure, Guido F. Smits, and Arthur Kordon. Empirical emulators for
first principle models. In AIChE Fall Annual Meeting, Reno Hilton, 6 November
2001.

[279] Jennis Meyer-Spradow and Jörn Loviscach. Evolutionary design of BRDFs. In
M. Chover, H. Hagen, and D. Tost, editors, Eurographics 2003 Short Paper Pro-
ceedings, pages 301–306, 2003.

[280] Julian Miller, Marco Tomassini, Pier Luca Lanzi, Conor Ryan, Andrea G. B. Tet-
tamanzi, and William B. Langdon, editors. Genetic Programming, Proceedings of
EuroGP’2001, volume 2038 of LNCS, Lake Como, Italy, 18-20 April 2001. Springer-
Verlag.

[281] Julian F. Miller. An empirical study of the efficiency of learning boolean functions
using a cartesian genetic programming approach. In Wolfgang Banzhaf, Jason Daida,
Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E.

94

Smith, editors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence, volume 2, pages 1135–1142, Orlando, Florida, USA, 13-17 July 1999. Morgan
Kaufmann.

[282] Julian F. Miller and Stephen L. Smith. Redundancy and computational efficiency in
cartesian genetic programming. IEEE Transactions on Evolutionary Computation,
10(2):167–174, April 2006.

[283] Julian F. Miller, Adrian Thompson, Peter Thomson, and Terence C. Fogarty, editors.
Proceedings of the Third International Conference on Evolvable Systems, ICES 2000,
volume 1801 of LNCS, Edinburgh, Scotland, UK, 17-19 April 2000. Springer-Verlag.

[284] Boris Mitavskiy and Jon Rowe. Some results about the markov chains associated to
GPs and to general EAs. Theoretical Computer Science, 361(1):72–110, 28 August
2006.

[285] David J. Montana. Strongly typed genetic programming. Evolutionary Computation,
3(2):199–230, 1995.

[286] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, 1965.

[287] Jason H. Moore, Joel S. Parker, Nancy J. Olsen, and Thomas M. Aune. Symbolic
discriminant analysis of microarray data in automimmune disease. Genetic Epidemi-
ology, 23:57–69, 2002.

[288] Alison A Motsinger, Stephen L Lee, George Mellick, and Marylyn D Ritchie. GPNN:
Power studies and applications of a neural network method for detecting gene-gene
interactions in studies of human disease. BMC bioinformatics [electronic resource],
7(1):39–39, January 25 2006.

[289] Christopher J. Neely. Risk-adjusted, ex ante, optimal technical trading rules in equity
markets. International Review of Economics and Finance, 12(1):69–87, Spring 2003.

[290] Christopher J. Neely and Paul A. Weller. Technical trading rules in the european
monetary system. Journal of International Money and Finance, 18(3):429–458, 1999.

[291] Christopher J. Neely and Paul A. Weller. Predicting exchange rate volatility: Genetic
programming vs. GARCH and risk metrics. Working Paper 2001-009B, Economic,
Research, Federal Reserve Bank of St. Louis, 411 Locust Street, St. Louis, MO 63102-
0442, USA, September 2001.

[292] Christopher J. Neely and Paul A. Weller. Technical analysis and central bank in-
tervention. Journal of International Money and Finance, 20(7):949–970, December
2001.

95

[293] Christopher J. Neely, Paul A. Weller, and Rob Dittmar. Is technical analysis in the
foreign exchange market profitable? A genetic programming approach. The Journal
of Financial and Quantitative Analysis, 32(4):405–426, December 1997.

[294] Christopher J. Neely, Paul A. Weller, and Joshua M. Ulrich. The adaptive markets
hypothesis: evidence from the foreign exchange market. Working Paper 2006-046B,
Federal Reserve Bank of St. Louis, Research Division, P.O. Box 442, St. Louis, MO
63166, USA, August 2006. Revised March 2007.

[295] Nikolay Nikolaev and Hitoshi Iba. Adaptive Learning of Polynomial Networks Genetic
Programming, Backpropagation and Bayesian Methods. Number 4 in Genetic and
Evolutionary Computation. Springer, 2006. June.

[296] Nikolay Y. Nikolaev and Hitoshi Iba. Genetic programming of polynomial models
for financial forecasting. In Shu-Heng Chen, editor, Genetic Algorithms and Genetic
Programming in Computational Finance, chapter 5, pages 103–123. Kluwer Academic
Press, 2002.

[297] Allen E. Nix and Michael D. Vose. Modeling genetic algorithms with Markov chains.
Annals of Mathematics and Artificial Intelligence, 5:79–88, 1992.

[298] Peter Nordin. A compiling genetic programming system that directly manipulates the
machine code. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming,
chapter 14, pages 311–331. MIT Press, 1994.

[299] Peter Nordin. Evolutionary Program Induction of Binary Machine Code and its
Applications. PhD thesis, der Universitat Dortmund am Fachereich Informatik, 1997.

[300] Peter Nordin, Wolfgang Banzhaf, and Frank D. Francone. Efficient evolution of ma-
chine code for CISC architectures using instruction blocks and homologous crossover.
In Lee Spector, William B. Langdon, Una-May O’Reilly, and Peter J. Angeline, ed-
itors, Advances in Genetic Programming 3, chapter 12, pages 275–299. MIT Press,
Cambridge, MA, USA, June 1999.

[301] Peter Nordin and Wilde Johanna. Humanoider: Sjavlarande robotar och artificiell
intelligens. Liber, 2003.

[302] Howard Oakley. Two scientific applications of genetic programming: Stack filters
and non-linear equation fitting to chaotic data. In Kenneth E. Kinnear, Jr., editor,
Advances in Genetic Programming, chapter 17, pages 369–389. MIT Press, 1994.

[303] Mihai Oltean. Evolving evolutionary algorithms using linear genetic programming.
Evolutionary Computation, 13(3):387–410, Fall 2005.

[304] Mihai Oltean and D. Dumitrescu. Evolving TSP heuristics using multi expression
programming. In Marian Bubak, Geert Dick van Albada, Peter M. A. Sloot, and

96

Jack Dongarra, editors, Computational Science - ICCS 2004: 4th International Con-
ference, Part II, volume 3037 of Lecture Notes in Computer Science, pages 670–673,
Krakow, Poland, 6-9 June 2004. Springer-Verlag.

[305] Michael O’Neill and Conor Ryan. Grammatical Evolution: Evolutionary Automatic
Programming in a Arbitrary Language, volume 4 of Genetic programming. Kluwer
Academic Publishers, 2003.

[306] S. Openshaw and I. Turton. Building new spatial interaction models using genetic
programming. In T. C. Fogarty, editor, Evolutionary Computing, Lecture Notes in
Computer Science, Leeds, UK, 11-13 April 1994. Springer-Verlag.

[307] Una-May O’Reilly. An Analysis of Genetic Programming. PhD thesis, Carleton Uni-
versity, Ottawa-Carleton Institute for Computer Science, Ottawa, Ontario, Canada,
22 September 1995.

[308] Una-May O’Reilly and Martin Hemberg. Integrating generative growth and evo-
lutionary computation for form exploration. Genetic Programming and Evolvable
Machines, 8(2):163–186, June 2007. Special issue on developmental systems.

[309] Una-May O’Reilly and Franz Oppacher. The troubling aspects of a building block
hypothesis for genetic programming. In L. Darrell Whitley and Michael D. Vose,
editors, Foundations of Genetic Algorithms 3, pages 73–88, Estes Park, Colorado,
USA, 31 July–2 August 1994. Morgan Kaufmann. Published 1995.

[310] Una-May O’Reilly, Tina Yu, Rick L. Riolo, and Bill Worzel, editors. Genetic Pro-
gramming Theory and Practice II, volume 8 of Genetic Programming, Ann Arbor,
MI, USA, 13-15 May 2004. Springer.

[311] Mouloud Oussaidène, Bastien Chopard, Olivier V. Pictet, and Marco Tomassini.
Parallel genetic programming and its application to trading model induction. Parallel
Computing, 23(8):1183–1198, August 1997.

[312] John D. Owens, David, Naga Govindaraju, Mark Harris, Jens Kruger, Aaron E.
Lefohn, and Timothy J. Purcell. A survey of general-purpose computation on graph-
ics hardware. Computer Graphics Forum, 26(1):80–113, March 2007.

[313] Daniel Parrott, Xiaodong Li, and Vic Ciesielski. Multi-objective techniques in genetic
programming for evolving classifiers. In David Corne, Zbigniew Michalewicz, Marco
Dorigo, Gusz Eiben, David Fogel, Carlos Fonseca, Garrison Greenwood, Tan Kay
Chen, Guenther Raidl, Ali Zalzala, Simon Lucas, Ben Paechter, Jennifier Willies,
Juan J. Merelo Guervos, Eugene Eberbach, Bob McKay, Alastair Channon, Ashutosh
Tiwari, L. Gwenn Volkert, Dan Ashlock, and Marc Schoenauer, editors, Proceedings
of the 2005 IEEE Congress on Evolutionary Computation, volume 2, pages 1141–
1148, Edinburgh, UK, 2-5 September 2005. IEEE Press.

97

[314] Tim Perkis. Stack-based genetic programming. In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, volume 1, pages 148–153, Orlando,
Florida, USA, 27-29 June 1994. IEEE Press.

[315] Nelishia Pillay. Evolving solutions to ASCII graphics programming problems in in-
telligent programming tutors. In Rajendra Akerkar, editor, International Conference
on Applied Artificial Intelligence (ICAAI’2003), pages 236–243, Fort Panhala, Kol-
hapur, India, 15-16 December 2003. TMRF.

[316] R. Poli. Hyperschema theory for GP with one-point crossover, building blocks, and
some new results in GA theory. In Riccardo Poli, Wolfgang Banzhaf, William B.
Langdon, Julian F. Miller, Peter Nordin, and Terence C. Fogarty, editors, Genetic
Programming, Proceedings of EuroGP’2000, volume 1802 of LNCS, pages 163–180,
Edinburgh, 15-16 April 2000. Springer-Verlag.

[317] Riccardo Poli. Discovery of symbolic, neuro-symbolic and neural networks with par-
allel distributed genetic programming. Technical Report CSRP-96-14, University of
Birmingham, School of Computer Science, August 1996. Presented at 3rd Inter-
national Conference on Artificial Neural Networks and Genetic Algorithms, ICAN-
NGA’97.

[318] Riccardo Poli. Genetic programming for image analysis. In John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 363–368, Stanford University, CA,
USA, 28–31 July 1996. MIT Press.

[319] Riccardo Poli. Parallel distributed genetic programming. In David Corne, Marco
Dorigo, and Fred Glover, editors, New Ideas in Optimization, Advanced Topics in
Computer Science, chapter 27, pages 403–431. McGraw-Hill, Maidenhead, Berkshire,
England, 1999.

[320] Riccardo Poli. Exact schema theorem and effective fitness for GP with one-point
crossover. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and
H.-G. Beyer, editors, Proceedings of the Genetic and Evolutionary Computation Con-
ference, pages 469–476, Las Vegas, July 2000. Morgan Kaufmann.

[321] Riccardo Poli. Exact schema theory for genetic programming and variable-length
genetic algorithms with one-point crossover. Genetic Programming and Evolvable
Machines, 2(2):123–163, 2001.

[322] Riccardo Poli. A simple but theoretically-motivated method to control bloat in
genetic programming. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward
Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic Programming, Proceedings
of EuroGP’2003, volume 2610 of LNCS, pages 204–217, Essex, 14-16 April 2003.
Springer-Verlag.

98

[323] Riccardo Poli. Tournament selection, iterated coupon-collection problem, and
backward-chaining evolutionary algorithms. In Alden H. Wright, Michael D. Vose,
Kenneth A. De Jong, and Lothar M. Schmitt, editors, Foundations of Genetic Algo-
rithms 8, volume 3469 of Lecture Notes in Computer Science, pages 132–155, Aizu-
Wakamatsu City, Japan, 5-9 January 2005. Springer-Verlag.

[324] Riccardo Poli, Wolfgang Banzhaf, William B. Langdon, Julian F. Miller, Peter
Nordin, and Terence C. Fogarty, editors. Genetic Programming, Proceedings of Eu-
roGP’2000, volume 1802 of LNCS, Edinburgh, 15-16 April 2000. Springer-Verlag.

[325] Riccardo Poli, Cecilia Di Chio, and William B. Langdon. Exploring extended particle
swarms: a genetic programming approach. In Hans-Georg Beyer, Una-May O’Reilly,
Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum, Eric W. Bonabeau, Erick Cantu-
Paz, Dipankar Dasgupta, Kalyanmoy Deb, James A. Foster, Edwin D. de Jong, Hod
Lipson, Xavier Llora, Spiros Mancoridis, Martin Pelikan, Guenther R. Raidl, Terence
Soule, Andy M. Tyrrell, Jean-Paul Watson, and Eckart Zitzler, editors, GECCO
2005: Proceedings of the 2005 conference on Genetic and evolutionary computation,
volume 1, pages 169–176, Washington DC, USA, 25-29 June 2005. ACM Press.

[326] Riccardo Poli and W. B. Langdon. A new schema theory for genetic programming
with one-point crossover and point mutation. In John R. Koza, Kalyanmoy Deb,
Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors,
Genetic Programming 1997: Proceedings of the Second Annual Conference, pages
278–285, Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[327] Riccardo Poli, W. B. Langdon, Marc Schoenauer, Terry Fogarty, and Wolfgang
Banzhaf, editors. Late Breaking Papers at EuroGP’98: the First European Workshop
on Genetic Programming, Paris, France, 14-15 April 1998.

[328] Riccardo Poli and William B. Langdon. On the search properties of different crossover
operators in genetic programming. In John R. Koza, Wolfgang Banzhaf, Kumar Chel-
lapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E.
Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Pro-
ceedings of the Third Annual Conference, pages 293–301, University of Wisconsin,
Madison, Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

[329] Riccardo Poli and William B. Langdon. Schema theory for genetic programming with
one-point crossover and point mutation. Evolutionary Computation, 6(3):231–252,
1998.

[330] Riccardo Poli and William B. Langdon. Running genetic programming backward. In
Rick L. Riolo, Bill Worzel, and Tina Yu, editors, Genetic Programming Theory and
Practice. Kluwer, 2005.

[331] Riccardo Poli and William B. Langdon. Running genetic programming backward. In
Tina Yu, Rick L. Riolo, and Bill Worzel, editors, Genetic Programming Theory and

99

Practice III, volume 9 of Genetic Programming, chapter 9, pages 125–140. Springer,
Ann Arbor, 12-14 May 2005.

[332] Riccardo Poli and William B. Langdon. Backward-chaining evolutionary algorithms.
Artificial Intelligence, 170(11):953–982, August 2006.

[333] Riccardo Poli and William B. Langdon. Efficient markov chain model of machine
code program execution and halting. In Rick L. Riolo, Terence Soule, and Bill
Worzel, editors, Genetic Programming Theory and Practice IV, volume 5 of Genetic
and Evolutionary Computation, chapter 13. Springer, Ann Arbor, 11-13 May 2006.

[334] Riccardo Poli, William B. Langdon, and Stephen Dignum. On the limiting distribu-
tion of program sizes in tree-based genetic programming. In Marc Ebner, Michael
O’Neill, Anikó Ekárt, Leonardo Vanneschi, and Anna Isabel Esparcia-Alcázar, edi-
tors, Proceedings of the 10th European Conference on Genetic Programming, volume
4445 of Lecture Notes in Computer Science, pages 193–204, Valencia, Spain, 11 - 13
April 2007. Springer.

[335] Riccardo Poli, William B. Langdon, and Owen Holland. Extending particle swarm
optimisation via genetic programming. In Maarten Keijzer, Andrea Tettamanzi,
Pierre Collet, Jano I. van Hemert, and Marco Tomassini, editors, Proceedings of the
8th European Conference on Genetic Programming, volume 3447 of Lecture Notes in
Computer Science, pages 291–300, Lausanne, Switzerland, 30 March - 1 April 2005.
Springer.

[336] Riccardo Poli and Nicholas Freitag McPhee. General schema theory for genetic
programming with subtree-swapping crossover: Part I. Evolutionary Computation,
11(1):53–66, March 2003.

[337] Riccardo Poli and Nicholas Freitag McPhee. General schema theory for genetic
programming with subtree-swapping crossover: Part II. Evolutionary Computation,
11(2):169–206, June 2003.

[338] Riccardo Poli, Nicholas Freitag McPhee, and Jonathan E. Rowe. Exact schema
theory and markov chain models for genetic programming and variable-length ge-
netic algorithms with homologous crossover. Genetic Programming and Evolvable
Machines, 5(1):31–70, March 2004.

[339] Riccardo Poli, Peter Nordin, William B. Langdon, and Terence C. Fogarty, editors.
Genetic Programming, Proceedings of EuroGP’99, volume 1598 of LNCS, Goteborg,
Sweden, 26-27 May 1999. Springer-Verlag.

[340] Riccardo Poli, Jonathan Page, and W. B. Langdon. Smooth uniform crossover, sub-
machine code GP and demes: A recipe for solving high-order boolean parity prob-
lems. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant
Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic

100

and Evolutionary Computation Conference, volume 2, pages 1162–1169, Orlando,
Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[341] Riccardo Poli, Jonathan E. Rowe, and Nicholas Freitag McPhee. Markov chain
models for GP and variable-length GAs with homologous crossover. In Lee Spec-
tor, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo
Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund
Burke, editors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2001), pages 112–119, San Francisco, California, USA, 7-11 July 2001.
Morgan Kaufmann.

[342] Riccardo Poli, John Woodward, and Edmund Burke. A histogram-matching approach
to the evolution of bin-packing strategies. In Proceedings of the IEEE Congress on
Evolutionary Computation, Singapore, 2007. accepted.

[343] Mitchell A. Potter. The Design and Analysis of a Computational Model of Cooper-
ative Coevolution. PhD thesis, George Mason University, Washington, DC, spring
1997.

[344] S. Priesterjahn, O. Kramer, A. Weimer, and A. Goebels. Evolution of human-
competitive agents in modern computer games. In Gary G. Yen, Simon M. Lucas,
Gary Fogel, Graham Kendall, Ralf Salomon, Byoung-Tak Zhang, Carlos A. Coello
Coello, and Thomas Philip Runarsson, editors, Proceedings of the 2006 IEEE
Congress on Evolutionary Computation, pages 777–784, Vancouver, BC, Canada,
16-21 July 2006. IEEE Press.

[345] Adam Prügel-Bennett and Jonathan L. Shapiro. An analysis of genetic algorithms
using statistical mechanics. Physical Review Letters, 72:1305–1309, 1994.

[346] Marcos I. Quintana, Riccardo Poli, and Ela Claridge. Morphological algorithm design
for binary images using genetic programming. Genetic Programming and Evolvable
Machines, 7(1):81–102, March 2006.

[347] Alain Ratle and Michele Sebag. Genetic programming and domain knowledge: Be-
yond the limitations of grammar-guided machine discovery. In Marc Schoenauer,
Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton, Juan Julian Merelo,
and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature - PPSN VI
6th International Conference, volume 1917 of LNCS, pages 211–220, Paris, France,
16-20 September 2000. Springer Verlag.

[348] J. Reggia, M. Tagamets, J. Contreras-Vidal, D. Jacobs, S. Weems, W. Naqvi,
R. Winder, T. Chabuk, J. Jung, and C. Yang. Development of a large-scale in-
tegrated neurocognitive architecture - part 2: Design and architecture. Technical
Report TR-CS-4827, UMIACS-TR-2006-43, University of Maryland, USA, October
2006.

101

[349] David M. Reif, Bill C. White, and Jason H. Moore. Integrated analysis of genetic,
genomic, and proteomic data. Expert Review of Proteomics, 1(1):67–75, 2004.

[350] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
SIGGRAPH Computer Graphics, 21(4):25–34, July 1987.

[351] Rick L. Riolo, Terence Soule, and Bill Worzel, editors. Genetic Programming Theory
and Practice IV, volume 5 of Genetic and Evolutionary Computation, Ann Arbor,
11-13 May 2007. Springer.

[352] Rick L. Riolo, Terence Soule, and Bill Worzel, editors. Genetic Programming Theory
and Practice V, Genetic and Evolutionary Computation, Ann Arbor, 17-19 May
2007. Springer.

[353] Rick L. Riolo and Bill Worzel. Genetic Programming Theory and Practice, volume 6
of Genetic Programming. Kluwer, Boston, MA, USA, 2003. Series Editor - John
Koza.

[354] Marylyn D. Ritchie, Alison A. Motsinger, William S. Bush, Christopher S. Coffey,
and Jason H. Moore. Genetic programming neural networks: A powerful bioin-
formatics tool for human genetics. Applied Soft Computing, 7(1):471–479, January
2007.

[355] Marylyn D. Ritchie, Bill C. White, Joel S. Parker, Lance W. Hahn, and Jason H.
Moore. Optimization of neural network architecture using genetic programming im-
proves detection and modeling of gene-gene interactions in studies of human diseases.
BMC Bioinformatics, 4(28), 7 July 2003.

[356] Daniel Rivero, Juan R. Rabu nal, Julián Dorado, and Alejandro Pazos. Using ge-
netic programming for character discrimination in damaged documents. In Guen-
ther R. Raidl, Stefano Cagnoni, Jurgen Branke, David W. Corne, Rolf Drechsler,
Yaochu Jin, Colin R. Johnson, Penousal Machado, Elena Marchiori, Franz Roth-
lauf, George D. Smith, and Giovanni Squillero, editors, Applications of Evolutionary
Computing, EvoWorkshops2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, Evo-
MUSART, EvoSTOC, volume 3005 of LNCS, pages 349–358, Coimbra, Portugal, 5-7
April 2004. Springer Verlag.

[357] Katya Rodriguez-Vazquez, Carlos M. Fonseca, and Peter J. Fleming. Identifying the
structure of nonlinear dynamic systems using multiobjective genetic programming.
IEEE Transactions on Systems, Man and Cybernetics, Part A, 34(4):531–545, July
2004.

[358] Justinian P. Rosca. Analysis of complexity drift in genetic programming. In John R.
Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba,
and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second

102

Annual Conference, pages 286–294, Stanford University, CA, USA, 13-16 July 1997.
Morgan Kaufmann.

[359] Justinian P. Rosca and Dana H. Ballard. Discovery of subroutines in genetic pro-
gramming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 9, pages 177–202. MIT Press, Cambridge, MA, USA, 1996.

[360] Brian J. Ross, Anthony G. Gualtieri, Frank Fueten, and Paul Budkewitsch. Hy-
perspectral image analysis using genetic programming. Applied Soft Computing,
5(2):147–156, January 2005.

[361] Franz Rothlauf. Representations for genetic and evolutionary algorithms. Springer-
Verlag, pub-SV:adr, second edition, 2006. First published 2002, 2nd edition available
electronically.

[362] Conor Ryan. Automatic Re-engineering of Software Using Genetic Programming,
volume 2 of Genetic Programming. Kluwer Academic Publishers, 1 November 1999.

[363] Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical evolution: Evolving
programs for an arbitrary language. In Wolfgang Banzhaf, Riccardo Poli, Marc Schoe-
nauer, and Terence C. Fogarty, editors, Proceedings of the First European Workshop
on Genetic Programming, volume 1391 of LNCS, pages 83–95, Paris, 14-15 April
1998. Springer-Verlag.

[364] Conor Ryan and Laur Ivan. An automatice software re-engineering tool based on
genetic programming. In Lee Spector, William B. Langdon, Una-May O’Reilly, and
Peter J. Angeline, editors, Advances in Genetic Programming 3, chapter 2, pages
15–39. MIT Press, Cambridge, MA, USA, June 1999.

[365] Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and
Ernesto Costa, editors. Genetic Programming, Proceedings of the 6th European Con-
ference, EuroGP 2003, volume 2610 of LNCS, Essex, UK, 14-16 April 2003. Springer-
Verlag.

[366] Arthur L. Samuel. AI, where it has been and where it is going. In IJCAI, pages
1152–1157, 1983.

[367] Michael D. Schmidt and Hod Lipson. Co-evolving fitness predictors for accelerating
and reducing evaluations. In Rick L. Riolo, Terence Soule, and Bill Worzel, editors,
Genetic Programming Theory and Practice IV, volume 5 of Genetic and Evolutionary
Computation, chapter 17, pages –. Springer, Ann Arbor, 11-13 May 2006.

[368] Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton,
Juan Julian Merelo, and Hans-Paul Schwefel, editors. Parallel Problem Solving
from Nature - PPSN VI 6th International Conference, volume 1917 of LNCS, Paris,
France, 16-20 September 2000. Springer Verlag.

103

[369] Marc Schoenauer, Bertrand Lamy, and Francois Jouve. Identification of mechanical
behaviour by genetic programming part II: Energy formulation. Technical report,
Ecole Polytechnique, 91128 Palaiseau, France, 1995.

[370] Marc Schoenauer and Michele Sebag. Using domain knowledge in evolutionary sys-
tem identification. In K. C. Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou, and
T. C. Fogarty, editors, Evolutionary Methods for Design, Optimization and Control
with Applications to Industrial Problems, Athens, 19-21 September 2001.

[371] Marc Schoenauer, Michele Sebag, Francois Jouve, Bertrand Lamy, and Habibou Mai-
tournam. Evolutionary identification of macro-mechanical models. In Peter J. Ange-
line and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 23,
pages 467–488. MIT Press, Cambridge, MA, USA, 1996.

[372] D. P. Searson, G. A. Montague, and M. J Willis. Evolutionary design of process
controllers. In In Proceedings of the 1998 United Kingdom Automatic Control Council
International Conference on Control (UKACC International Conference on Control
’98), volume 455 of IEE Conference Publications, University of Wales, Swansea, UK,
1-4 September 1998. Institution of Electrical Engineers (IEE).

[373] Lukas Sekanina. Evolvable Components: From Theory to Hardware Implementations.
Natural Computing. Springer-Verlag, 2003.

[374] Christian Setzkorn. On The Use Of Multi-Objective Evolutionary Algorithms For
Classification Rule Induction. PhD thesis, University of Liverpool, UK, March 2005.

[375] Shital C. Shah and Andrew Kusiak. Data mining and genetic algorithm based
gene/SNP selection. Artificial Intelligence in Medicine, 31(3):183–196, July 2004.

[376] Shai Sharabi and Moshe Sipper. GP-sumo: Using genetic programming to evolve
sumobots. Genetic Programming and Evolvable Machines, 7(3):211–230, October
2006.

[377] Ken C. Sharman and Anna I. Esparcia-Alcazar. Genetic evolution of symbolic signal
models. In Proceedings of the Second International Conference on Natural Algorithms
in Signal Processing, NASP’93, Essex University, UK, 15-16 November 1993.

[378] Ken C. Sharman, Anna I. Esparcia Alcazar, and Yun Li. Evolving signal processing
algorithms by genetic programming. In A. M. S. Zalzala, editor, First International
Conference on Genetic Algorithms in Engineering Systems: Innovations and Ap-
plications, GALESIA, volume 414, pages 473–480, Sheffield, UK, 12-14 September
1995. IEE.

[379] A. D. Shaw, M. K. Winson, A. M. Woodward, A. C. McGovern, H. M. Davey,
N. Kaderbhai, D. Broadhurst, R. J. Gilbert, J. Taylor, E. M. Timmins, R. Goodacre,

104

D. B. Kell, B. K. Alsberg, and J. J. Rowland. Bioanalysis and biosensors for bio-
process monitoring rapid analysis of high-dimensional bioprocesses using multivari-
ate spectroscopies and advanced chemometrics. Advances in Biochemical Engineer-
ing/Biotechnology, 66:83–113, January 2000.

[380] Yehonatan Shichel, Eran Ziserman, and Moshe Sipper. GP-robocode: Using genetic
programming to evolve robocode players. In Maarten Keijzer, Andrea Tettamanzi,
Pierre Collet, Jano I. van Hemert, and Marco Tomassini, editors, Proceedings of the
8th European Conference on Genetic Programming, volume 3447 of Lecture Notes in
Computer Science, pages 143–154, Lausanne, Switzerland, 30 March - 1 April 2005.
Springer.

[381] Hong Zong Si, Tao Wang, Ke Jun Zhang, Zhi De Hu, and Bo Tao Fan. QSAR
study of 1,4-dihydropyridine calcium channel antagonists based on gene expression
programming. Bioorganic & Medicinal Chemistry, 14(14):4834–4841, 15 July 2006.

[382] Eric V. Siegel. Competitively evolving decision trees against fixed training cases for
natural language processing. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic
Programming, chapter 19, pages 409–423. MIT Press, 1994.

[383] Karl Sims. Artificial evolution for computer graphics. ACM Computer Graphics,
25(4):319–328, July 1991. SIGGRAPH ’91 Proceedings.

[384] Will Smart and Mengjie Zhang. Applying online gradient descent search to ge-
netic programming for object recognition. In James Hogan, Paul Montague, Martin
Purvis, and Chris Steketee, editors, CRPIT ’04: Proceedings of the second workshop
on Australasian information security, Data Mining and Web Intelligence, and Soft-
ware Internationalisation, volume 32 no. 7, pages 133–138, Dunedin, New Zealand,
January 2004. Australian Computer Society, Inc.

[385] Terence Soule and James A. Foster. Effects of code growth and parsimony pressure
on populations in genetic programming. Evolutionary Computation, 6(4):293–309,
Winter 1998.

[386] Terence Soule and James A. Foster. Removal bias: a new cause of code growth in
tree based evolutionary programming. In 1998 IEEE International Conference on
Evolutionary Computation, pages 781–186, Anchorage, Alaska, USA, 5-9 May 1998.
IEEE Press.

[387] Lee Spector. Automatic Quantum Computer Programming: A Genetic Program-
ming Approach, volume 7 of Genetic Programming. Kluwer Academic Publishers,
Boston/Dordrecht/New York/London, June 2004.

[388] Lee Spector and Adam Alpern. Criticism, culture, and the automatic generation of
artworks. In Proceedings of Twelfth National Conference on Artificial Intelligence,
pages 3–8, Seattle, Washington, USA, 1994. AAAI Press/MIT Press.

105

[389] Lee Spector and Adam Alpern. Induction and recapitulation of deep musical struc-
ture. In Proceedings of International Joint Conference on Artificial Intelligence,
IJCAI’95 Workshop on Music and AI, Montreal, Quebec, Canada, 20-25 August
1995.

[390] Lee Spector, Howard Barnum, and Herbert J. Bernstein. Genetic programming
for quantum computers. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg,
Hitoshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings of
the Third Annual Conference, pages 365–373, University of Wisconsin, Madison,
Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

[391] Lee Spector, Howard Barnum, Herbert J. Bernstein, and Nikhil Swamy. Finding a
better-than-classical quantum AND/OR algorithm using genetic programming. In
Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Zalzala,
editors, Proceedings of the Congress on Evolutionary Computation, volume 3, pages
2239–2246, Mayflower Hotel, Washington D.C., USA, 6-9 July 1999. IEEE Press.

[392] Lee Spector, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt,
Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and
Edmund Burke, editors. Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO-2001, San Francisco, California, USA, 7-11 July 2001. Morgan
Kaufmann.

[393] Lee Spector, W. B. Langdon, Una-May O’Reilly, and Peter J. Angeline, editors.
Advances in Genetic Programming 3. MIT Press, Cambridge, MA, USA, June 1999.

[394] Joachim Stender, editor. Parallel Genetic Algorithms: Theory and Applications. IOS
press, 1993.

[395] C. R. Stephens and H. Waelbroeck. Effective degrees of freedom in genetic algorithms
and the block hypothesis. In Thomas Bäck, editor, Proceedings of the Seventh Inter-
national Conference on Genetic Algorithms (ICGA97), pages 34–40, East Lansing,
1997. Morgan Kaufmann.

[396] C. R. Stephens and H. Waelbroeck. Schemata evolution and building blocks. Evolu-
tionary Computation, 7(2):109–124, 1999.

[397] Thomas Sterling. Beowulf-class clustered computing: Harnessing the power of par-
allelism in a pile of PCs. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg,
Hitoshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings of the
Third Annual Conference, page 883, University of Wisconsin, Madison, Wisconsin,
USA, 22-25 July 1998. Morgan Kaufmann. Invited talk.

106

[398] Adrian Stoica, Jason Lohn, and Didier Keymeulen, editors. The First NASA/DoD
Workshop on Evolvable Hardware, Pasadena, California, 19-21 July 1999. IEEE Com-
puter Society.

[399] John J. Szymanski, Steven P. Brumby, Paul Pope, Damian Eads, Diana Esch-Mosher,
Mark Galassi, Neal R. Harvey, Hersey D. W. McCulloch, Simon J. Perkins, Reid
Porter, James Theiler, A. Cody Young, Jeffrey J. Bloch, and Nancy David. Feature
extraction from multiple data sources using genetic programming. In Sylvia S. Shen
and Paul E. Lewis, editors, Algorithms and Technologies for Multispectral, Hyperspec-
tral, and Ultraspectral Imagery VIII, volume 4725 of SPIE, pages 338–345, August
2002.

[400] Walter Alden Tackett. Genetic generation of “dendritic” trees for image classification.
In Proceedings of WCNN93, pages IV 646–649. IEEE Press, July 1993.

[401] Hideyuki Takagi. Interactive evolutionary computation: Fusion of the capabilities of
EC optimization and human evaluation. Proceedings of the IEEE, 89(9):1275–1296,
September 2001. Invited Paper.

[402] Ivan Tanev, Takashi Uozumi, and Dauren Akhmetov. Component object based single
system image for dependable implementation of genetic programming on clusters.
Cluster Computing Journal, 7(4):347–356, October 2004.

[403] Janet Taylor, Royston Goodacre, William G. Wade, Jem J. Rowland, and Douglas B.
Kell. The deconvolution of pyrolysis mass spectra using genetic programming: appli-
cation to the identification of some eubacterium species. FEMS Microbiology Letters,
160:237–246, 1998.

[404] Astro Teller. Genetic programming, indexed memory, the halting problem, and other
curiosities. In Proceedings of the 7th annual Florida Artificial Intelligence Research
Symposium, pages 270–274, Pensacola, Florida, USA, May 1994. IEEE Press.

[405] Astro Teller. Evolving programmers: The co-evolution of intelligent recombination
operators. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 3, pages 45–68. MIT Press, Cambridge, MA, USA, 1996.

[406] Astro Teller and David Andre. Automatically choosing the number of fitness cases:
The rational allocation of trials. In John R. Koza, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Pro-
gramming 1997: Proceedings of the Second Annual Conference, pages 321–328, Stan-
ford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[407] Ankur Teredesai and Venu Govindaraju. GP-based secondary classifiers. Pattern
Recognition, 38(4):505–512, April 2005.

107

[408] James P. Theiler, Neal R. Harvey, Steven P. Brumby, John J. Szymanski, Steve
Alferink, Simon J. Perkins, Reid B. Porter, and Jeffrey J. Bloch. Evolving retrieval
algorithms with a genetic programming scheme. In Michael R. Descour and Sylvia S.
Shen, editors, Proceedings of SPIE 3753 Imaging Spectrometry V, pages 416–425,
1999.

[409] Dirk Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen Branke, John Andrew
Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy Deb, Benjamin Doerr, Tim
Kovacs, Sanjeev Kumar, Julian F. Miller, Jason Moore, Frank Neumann, Martin
Pelikan, Riccardo Poli, Kumara Sastry, Kenneth Owen Stanley, Thomas Stutzle,
Richard A Watson, and Ingo Wegener, editors. GECCO 2007: Proceedings of the
9th annual conference on Genetic and evolutionary computation, London, UK, 7-11
July 2007. ACM Press.

[410] Peter M. Todd and Gregory M. Werner. Frankensteinian approaches to evolutionary
music composition. In Niall Griffith and Peter M. Todd, editors, Musical Networks:
Parallel Distributed Perception and Performance, pages 313–340. MIT Press, 1999.

[411] Marco Tomassini, L. Luthi, M. Giacobini, and W. B. Langdon. The structure of the
genetic programming collaboration network. Genetic Programming and Evolvable
Machines, 8(1):97–103, March 2007.

[412] L. Trujillo and G. Olague. Using evolution to learn how to perform interest point
detection. In X. Y Tang et al., editor, ICPR 2006 18th International Conference on
Pattern Recognition, volume 1, pages 211–214. IEEE, 20-24 August 2006.

[413] Leonardo Trujillo and Gustavo Olague. Synthesis of interest point detectors through
genetic programming. In Maarten Keijzer, Mike Cattolico, Dirk Arnold, Vladan
Babovic, Christian Blum, Peter Bosman, Martin V. Butz, Carlos Coello Coello, Di-
pankar Dasgupta, Sevan G. Ficici, James Foster, Arturo Hernandez-Aguirre, Greg
Hornby, Hod Lipson, Phil McMinn, Jason Moore, Guenther Raidl, Franz Rothlauf,
Conor Ryan, and Dirk Thierens, editors, GECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation, volume 1, pages 887–894,
Seattle, Washington, USA, 8-12 July 2006. ACM Press.

[414] Edward P. K. Tsang, Jin Li, and James M. Butler. EDDIE beats the bookies.
Software: Practice and Experience, 28(10):1033–1043, 1998.

[415] A. M. Turing. Intelligent machinery. Report for National Physical Laboratory.
Reprinted in Ince, D. C. (editor). 1992. Mechanical Intelligence: Collected Works of
A. M. Turing. Amsterdam: North Holland. Pages 107127. Also reprinted in Meltzer,
B. and Michie, D. (editors). 1969. Machine Intelligence 5. Edinburgh: Edinburgh
University Press, 1948.

[416] A. M. Turing. Computing machinery and intelligence. Mind, 49:433–460, January 01
1950.

108

[417] Imran Usman, Asifullah Khan, Rafiullah Chamlawi, and Abdul Majid. Image au-
thenticity and perceptual optimization via genetic algorithm and a dependence neigh-
borhood. International Journal of Applied Mathematics and Computer Sciences,
4(1):615–620, 2007.

[418] Seetharaman Vaidyanathan, David I. Broadhurst, Douglas B. Kell, and Royston
Goodacre. Explanatory optimization of protein mass spectrometry via genetic search.
Analytical Chemistry, 75(23):6679–6686, 2003.

[419] Vishwesh Venkatraman, Andrew Rowland Dalby, and Zheng Rong Yang. Evalua-
tion of mutual information and genetic programming for feature selection in QSAR.
Journal of Chemical Information and Modeling, 44(5):1686–1692, 2004.

[420] Barkley Vowk, Alexander (Sasha) Wait, and Christian Schmidt. An evolutionary
approach generates human competitive coreware programs. In Mark Bedau, Phil
Husbands, Tim Hutton, Sanjeev Kumar, and Hideaki Sizuki, editors, Workshop and
Tutorial Proceedings Ninth International Conference on the Simulation and Synthesis
of Living Systems(Alife XI), pages 33–36, Boston, Massachusetts, 12 September 2004.
Artificial Chemistry and its applications workshop.

[421] Ivana Vukusic, Sushma Nagaraja Grellscheid, and Thomas Wiehe. Applying genetic
programming to the prediction of alternative mRNA splice variants. Genomics,
89(4):471–479, April 2007.

[422] Reginald L. Walker. Search engine case study: searching the web using genetic
programming and MPI. Parallel Computing, 27(1-2):71–89, January 2001.

[423] Paul Walsh and Conor Ryan. Paragen: A novel technique for the autoparallelisation
of sequential programs using genetic programming. In John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 406–409, Stanford University, CA,
USA, 28–31 July 1996. MIT Press.

[424] Daniel C. Weaver. Applying data mining techniques to library design, lead generation
and lead optimization. Current Opinion in Chemical Biology, 8(3):264–270, 2004.

[425] P. A. Whigham. A schema theorem for context-free grammars. In 1995 IEEE Con-
ference on Evolutionary Computation, volume 1, pages 178–181, Perth, Australia, 29
November - 1 December 1995. IEEE Press.

[426] P. A. Whigham. Search bias, language bias, and genetic programming. In John R.
Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Pro-
gramming 1996: Proceedings of the First Annual Conference, pages 230–237, Stan-
ford University, CA, USA, 28–31 July 1996. MIT Press.

109

[427] Darrell Whitley. An overview of evolutionary algorithms: practical issues and com-
mon pitfalls. Information and Software Technology, 43(14):817–831, 2001.

[428] Darrell Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian Parmee, and
Hans-Georg Beyer, editors. Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2000), Las Vegas, Nevada, USA, 10-12 July 2000. Morgan
Kaufmann.

[429] L. Darrell Whitley. A Genetic Algorithm Tutorial. Statistics and Computing, 4:65–85,
1994.

[430] M. J. Willis, H. G. Hiden, and G. A. Montague. Developing inferential estimation al-
gorithms using genetic programming. In IFAC/ADCHEM International Symposium
on Advanced Control of Chemical Processes, pages 219–224, Banaff, Canada, 1997.

[431] Mark Willis, Hugo Hiden, Peter Marenbach, Ben McKay, and Gary A. Montague.
Genetic programming: An introduction and survey of applications. In Ali Zalzala,
editor, Second International Conference on Genetic Algorithms in Engineering Sys-
tems: Innovations and Applications, GALESIA, University of Strathclyde, Glasgow,
UK, 1-4 September 1997. Institution of Electrical Engineers.

[432] Garnett Wilson and Malcolm Heywood. Introducing probabilistic adaptive mapping
developmental genetic programming with redundant mappings. Genetic Program-
ming and Evolvable Machines, 8(2):187–220, June 2007. Special issue on develop-
mental systems.

[433] Man Leung Wong. An adaptive knowledge-acquisition system using generic genetic
programming. Expert Systems with Applications, 15(1):47–58, 1998.

[434] Man Leung Wong. Evolving recursive programs by using adaptive grammar based
genetic programming. Genetic Programming and Evolvable Machines, 6(4):421–455,
December 2005.

[435] Man Leung Wong and Kwong Sak Leung. Inducing logic programs with genetic
algorithms: the genetic logicprogramming system genetic logic programming and
applications. IEEE Expert, 10(5):68–76, October 1995.

[436] Man Leung Wong and Kwong Sak Leung. Evolving recursive functions for the even-
parity problem using genetic programming. In Peter J. Angeline and K. E. Kinnear,
Jr., editors, Advances in Genetic Programming 2, chapter 11, pages 221–240. MIT
Press, Cambridge, MA, USA, 1996.

[437] Man Leung Wong and Kwong Sak Leung. Data Mining Using Grammar Based
Genetic Programming and Applications, volume 3 of Genetic Programming. Kluwer
Academic Publishers, January 2000.

110

[438] Man-Leung Wong, Tien-Tsin Wong, and Ka-Ling Fok. Parallel evolutionary algo-
rithms on graphics processing unit. In David Corne, Zbigniew Michalewicz, Bob
McKay, Gusz Eiben, David Fogel, Carlos Fonseca, Garrison Greenwood, Gunther
Raidl, Kay Chen Tan, and Ali Zalzala, editors, Proceedings of the 2005 IEEE
Congress on Evolutionary Computation, volume 3, pages 2286–2293, Edinburgh,
Scotland, UK, 2-5 September 2005. IEEE Press.

[439] Andrew M. Woodward, Richard J. Gilbert, and Douglas B. Kell. Genetic program-
ming as an analytical tool for non-linear dielectric spectroscopy. Bioelectrochemistry
and Bioenergetics, 48(2):389–396, 1999.

[440] Sewall Wright. The roles of mutation, inbreeding, crossbreeding and selection in
evolution. In D. F. Jones, editor, Proceedings of the Sixth International Congress on
Genetics, volume 1, pages 356–366, 1932.

[441] Huayang Xie, Mengjie Zhang, and Peter Andreae. Genetic programming for au-
tomatic stress detection in spoken english. In Franz Rothlauf, Jurgen Branke,
Stefano Cagnoni, Ernesto Costa, Carlos Cotta, Rolf Drechsler, Evelyne Lutton,
Penousal Machado, Jason H. Moore, Juan Romero, George D. Smith, Giovanni
Squillero, and Hideyuki Takagi, editors, Applications of Evolutionary Computing,
EvoWorkshops2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoInteraction,
EvoMUSART, EvoSTOC, volume 3907 of LNCS, pages 460–471, Budapest, 10-12
April 2006. Springer Verlag.

[442] Masayuki Yangiya. Efficient genetic programming based on binary decision diagrams.
In 1995 IEEE Conference on Evolutionary Computation, volume 1, pages 234–239,
Perth, Australia, 29 November - 1 December 1995. IEEE Press.

[443] Xin Yao, Edmund Burke, Jose A. Lozano, Jim Smith, Juan J. Merelo-Guervós,
John A. Bullinaria, Jonathan Rowe, Peter Tiňo Ata Kabán, and Hans-Paul Schwefel,
editors. Parallel Problem Solving from Nature - PPSN VIII, volume 3242 of LNCS,
Birmingham, UK, 18-22 September 2004. Springer-Verlag.

[444] Proceedings of the 2000 Congress on Evolutionary Computation CEC00, La Jolla
Marriott Hotel La Jolla, California, USA, 6-9 July 2000. IEEE Press.

[445] Jiangang Yu and Bir Bhanu. Evolutionary feature synthesis for facial expression
recognition. Pattern Recognition Letters, 27(11):1289–1298, August 2006. Evolu-
tionary Computer Vision and Image Understanding.

[446] Jianjun Yu, Jindan Yu, Arpit A. Almal, Saravana M. Dhanasekaran, Debashis Ghosh,
William P. Worzel, and Arul M. Chinnaiyan. Feature selection and molecular classi-
fication of cancer using genetic programming. Neoplasia, 9(4):292–303, April 2007.

111

[447] Tina Yu. Hierachical processing for evolving recursive and modular programs using
higher order functions and lambda abstractions. Genetic Programming and Evolvable
Machines, 2(4):345–380, December 2001.

[448] Tina Yu and Shu-Heng Chen. Using genetic programming with lambda abstraction
to find technical trading rules. In Computing in Economics and Finance, University
of Amsterdam, 8-10 July 2004.

[449] Tina Yu, Rick L. Riolo, and Bill Worzel, editors. Genetic Programming Theory
and Practice III, volume 9 of Genetic Programming, Ann Arbor, 12-14 May 2005.
Springer.

[450] Byoung-Tak Zhang and Heinz Mühlenbein. Evolving optimal neural networks using
genetic algorithms with Occam’s razor. Complex Systems, 7:199–220, 1993.

[451] Byoung-Tak Zhang and Heinz Mühlenbein. Balancing accuracy and parsimony in
genetic programming. Evolutionary Computation, 3(1):17–38, 1995.

[452] Byoung-Tak Zhang, Peter Ohm, and Heinz Mühlenbein. Evolutionary induction of
sparse neural trees. Evolutionary Computation, 5(2):213–236, 1997.

[453] Mengjie Zhang and Will Smart. Using gaussian distribution to construct fitness func-
tions in genetic programming for multiclass object classification. Pattern Recognition
Letters, 27(11):1266–1274, August 2006. Evolutionary Computer Vision and Image
Understanding.

[454] Yang Zhang and Peter I. Rockett. Feature extraction using multi-objective genetic
programming. In Yaochu Jin, editor, Multi-Objective Machine Learning, volume 16
of Studies in Computational Intelligence, chapter 4, pages 79–106. Springer, 2006.
Invited chapter.

112

