
Stock Trading with Recurrent Reinforcement
Learning (RRL)

CS229 Application Project
Gabriel Molina, SUID 5055783

1
I. INTRODUCTION

One relatively new approach to financial trading is to use machine learning algorithms to predict the rise and fall of
asset prices before they occur. An optimal trader would buy an asset before the price rises, and sell the asset before
its value declines.

For this project, an asset trader will be implemented using recurrent reinforcement learning (RRL). The algorithm
and its parameters are from a paper written by Moody and Saffell1. It is a gradient ascent algorithm which attempts
to maximize a utility function known as Sharpe’s ratio. By choosing an optimal parameter w for the trader, we
attempt to take advantage of asset price changes. Test examples of the asset trader’s operation, both ‘real-world’
and contrived, are illustrated in the final section.

III. UTILITY FUNCTION: SHARPE’S RATIO

One commonly used metric in financial engineering is Sharpe’s ratio. For a time series of investment returns,
Sharpe’s ratio can be calculated as:

)(

)(

t

t
T RDeviationStandard

RAverage
S  for interval T...,1,t

where tR is the return on investment for trading period t . Intuitively, Sharpe’s ratio rewards investment strategies

that rely on less volatile trends to make a profit.

IV. TRADER FUNCTION

The trader will attempt to maximize Sharpe’s ratio for a given price time series. For this project, the trader function
takes the form of a neuron:

)tanh(tt xwF 

where M is the number of time series inputs to the trader, the parameter 2 Mw , the input
vector  1,,...,,1  tMttt Frrx , and the return 1 ttt ppr .

Note that tr is the difference in value of the asset between the current period t and the previous period. Therefore,

tr is the return on one share of the asset bought at time 1t .

Also, the function]1,1[tF represents the trading position at time t . There are three types of positions that can

be held: long, short, or neutral.

A long position is when 0tF . In this case, the trader buys an asset at price tp and hopes that it appreciates by

period 1t .

A short position is when 0tF . In this case, the trader sells an asset which it does not own at price tp , with the

expectation to produce the shares at period 1t . If the price at 1t is higher, then the trader is forced to buy at
the higher 1t price to fulfill the contract. If the price at 1t is lower, then the trader has made a profit.

1 J Moody, M Saffell, Learning to Trade via Direct Reinforcement, IEEE Transactions on Neural Networks, Vol 12, No 4, July
2001.

2
A neutral position is when 0tF . In this case, the outcome at time 1t has no effect on the trader’s profits.

There will be neither gain nor loss.

Thus, tF represents holdings at period t . That is, tt Fn   shares are bought (long position) or sold (short

position), where is the maximum possible number of shares per transaction. The return at time t , considering the

decision 1tF , is:

 11   ttttt FFrFR 

where  is the cost for a transaction at period t . If 1 tt FF (i.e. no change in our investment this period) then

there will be no transaction penalty. Otherwise the penalty is proportional to the difference in shares held.

The first term (tt rF  1) is the return resulting from the investment decision from the period 1t . For example,

if 20 shares, the decision was to buy half the maximum allowed (5.1 tF), and each share increased

8tr price units, this term would be 80, the total return profit (ignoring transaction penalties incurred during

period t).

V. GRADIENT ASCENT

Maximizing Sharpe’s ratio requires a gradient ascent. First, we define our utility function using basic formulas
from statistics for mean and variance:

We have

222])[(][

][

AB

A

RERE

RE
S

tt

t
T





 where 




T

t
tR

T
A

1

1
 and 




T

t
tR

T
B

1

21

Then we can take the derivative of TS using the chain rule:






 







































T

t

t

t

tt

t

t

t

T

t

T
T

t

T

t

T

t

T

TTT

dw

dF

dF

dR

dw

dF

dF

dR

dR

dB

dB

dS

dR

dA

dA

dS

dw

dR

dR

dB

dB

dS

dR

dA

dA

dS

dw

dB

dB

dS

dw

dA

dA

dS

AB

A

dw

d

dw

dS

1

1

11

2

The necessary partial derivatives of the return function are:

    

)sgn(

0

0

1

1

1
111


















tt

tt

tt
tt

t
tttt

tt

t

FF

FF

FF
FF

dF

d
FFrF

dF

d

dF

dR








    

)sgn(

0

0

1

1

1
1

1
11

11























ttt

tt

tt
tt

t
ttttt

tt

t

FFr

FF

FF
FF

dF

d
rFFrF

dF

d

dF

dR








Then, the partial derivatives dwdFt and dwdFt 1 must be calculated:

3

   






  

 dw

dF
wxxwxw

dw

d
xwxw

dw

d

dw

dF t
Mtt

T
t

T
t

T
t

Tt 1
2

22))tanh(1())tanh(1()tanh(

Note that the derivative dwdFt is recurrent and depends on all previous values of dwdFt . This means that to

train the parameters, we must keep a record of dwdFt from the beginning of our time series. Because stock data

is in the range of 1000-2000 samples, this slows down the gradient ascent but does not present an insurmountable
computational burden. An alternative is to use online learning and to approximate dwdFt using only the previous

dwdFt 1 term, effectively making the algorithm a stochastic gradient ascent as in Moody & Saffell’s paper.

However, my chosen approach is to instead use the exact expressions as written above.

Once the dwdST term has been calculated, the weights are updated according to the gradient ascent

rule dwdSww Tii  1 . The process is repeated for eN iterations, where eN is chosen to assure that

Sharpe’s ratio has converged.

VI. TRAINING

The most successful method in my exploration has been the following algorithm:

1. Train parameters 2 Mw using a historical window of size T
2. Use the optimal policy w to make ‘real time’ decisions from 1 Tt to predictNTt 

3. After predictN predictions are complete, repeat step one.

Intuitively, the stock price has underlying structure that is changing as a function of time. Choosing T large
assumes the stock price’s structure does not change much during T samples. In the random process example
below, T and predictN are large because the structure of the process is constant. If long term trends do not appear to

dominate stock behavior, then it makes sense to reduce T , since shorter windows can be a better solution than
training on large amounts of past history. For example, data for the years IBM 1980-2006 might not lead to a good
strategy for use in Dec. 2006. A more accurate policy would likely result from training with data from 2004-2006.

VII. EXAMPLE

100 200 300 400 500 600 700 800 900 1000
0.95

1

t

pr
ic

e,
 p

(t)

10 20 30 40 50 60 70
0.06
0.08
0.1

0.12
0.14
0.16

S
ha

rp
e'

 ra
tio

training iteration

Figure 1. Training results for autoregressive random process. 1000T , 75eN

The first example of training a policy is executed on an autoregressive random process (randomness by injecting
Gaussian noise into coupled equations). In figure 1, the top graph is the generated price series. The bottom graph
is Sharpe’s ratio on the time series using the parameter w for each iteration of training. So, as training progresses,
we find better values of w until we have achieved an optimum Sharpe’s ratio for the given data.

4
Then, we use this optimal w parameter to form a prediction for the next predictN data samples, shown below:

Figure 2. Prediction performance using optimal policy from training. 1000predictN

As is apparent from the above graph, the trader is making decisions based on the w parameter. Of course, w is
suboptimal for the time series over this predicted interval, but it does better than a monkey. After 1000 intervals
our return would be 10%.

The next experiment, presented in the same format, is to predict real stock data with some precipitous drops
(Citigroup):

100 200 300 400 500 600

40

60

pr
ic

e
se

rie
s,

 p
t

t

10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

S
ha

rp
e'

s
ra

tio

training iteration

Figure 3. Training w on Citigroup stock data. 600T , 100eN

5

600 650 700 750 800 850 900
-15

-10

-5

0

5

t

re
tu

rn
s,

 r
t

600 650 700 750 800 850 900
-1

-0.5

0

0.5

1

F
t

(d
ec

is
io

ns
)

t

600 650 700 750 800 850 900
0

10

20

30

t

pe
rc

en
t

ga
in

s
(%

)

Figure 4. tr (top), tF (middle), and percentage profit (cumulative) for Citigroup. Note that although the general

policy is good, the precipitous drop in price (downward spike in tr) wipes out our gains around t = 725.

The recurrent reinforcement learner seems to work best on stocks that are constant on average, yet fluctuate up and
down. In such a case, there is less worry about a precipitous drop like in the above example. With a relatively
constant mean stock price, the reinforcement learner is free to play the ups and downs.

The recurrent reinforcement learner seems to work, although it is tricky to set up and verify. One important trick is
to properly scale the return series data to mean zero and variance one2, or the neuron cannot separate the resulting
data points.

VII. CONCLUSIONS

The primary difficulties with this approach rest in the fact that certain stock events do not exhibit structure. As seen
in the second example above, the reinforcement learner does not predict precipitous drops in the stock price and is
just as vulnerable as a human. Perhaps it would be more effective if combined with a mechanism to predict such
precipitous drops. Other changes to the model might be including stock volumes as features that could help in
predicting rises and falls.

Additionally, it would be nice to augment the model to incorporate fixed transaction costs, as well as less frequent
transactions. For example, a model could be created that learns from long periods of data, but only periodically
makes a decision. This would reflect the case of a casual trader that participates in smaller volume trades with
fixed transaction costs. Because it is too expensive for small-time investors to trade every period with fixed
transaction costs, a model with a periodic trade strategy would more financially feasible for such users. It would
probably be worthwhile to try adapting this model to this sort of periodic trading and see the results.

2 Gold, Carl, FX Trading via Recurrent Reinforcement Learning, Computational Intelligences for Financial Engineering,
2003. Proceedings. 2003 IEEE International Conference on. p. 363-370. March 2003. Special thanks to Carl for email
advice on algorithm implementation.

