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Abstract

This thesis examines how discernibility-based methods can be equipped to posses
several qualities that are needed for analyzing tabular medical data, and how these
models can be evaluated according to current standard measures used in the health
sciences. To this end, tools have been developed that make this possible, and some
novel medical applications have been devised in which the tools are put to use.

Rough set theory provides a framework in which discernibility-based methods can be
formulated and interpreted, and also forms an appealing foundation for data mining
and knowledge discovery. When the medical domain is targeted, several factors be-
come important. This thesis examines some of these factors, and holds them up to the
current state-of-the-art in discernibility-based empirical modelling. Bringing together
pertinent techniques, suitable adaptations of relevant theory for model construction
and assessment are presented. Rough set classifiers are brought together with ROC
analysis, and it is outlined how attribute costs and semantics can enter the modelling
process.

ROSETTA, a comprehensive software system for conducting data analyses within the
framework of rough set theory, has been developed. Under the hypothesis that the ac-
cessibility of such tools lowers the threshold for abstract ideas to migrate into concrete
realization, this aids in reducing a gap between theoreticians and practitioners, and
enables existing problems to be more easily attacked. The ROSETTA system boasts a
set of flexible and powerful algorithms, and sets these in a user-friendly environment
designed to support all phases of the discernibility-based modelling methodology. Re-
searchers world-wide have already put the system to use in a wide variety of domains.

By and large, discernibility-based data analysis can be varied along two main axes:
Which objects in the universe of discourse that we deem it necessary to discern be-
tween, and how we define that discernibility among these objects is allowed to take
place. Using ROSETTA, this thesis has explored various facets of this also in three
novel and distinctly different medical applications:

A method is proposed for identifying population subgroups for which expen-
sive tests may be avoided, and experiments with a real-world database on a
cardiological prognostic problem suggest that significant savings are possible.

A method is proposed for anonymizing medical databases with sensitive con-
tents via cell suppression, thus aiding to preserve patient confidentiality.

Very simple rule-based classifiers are employed to diagnose acute appendicitis,
and their relative performance is compared to a team of experienced surgeons.
The added value of certain biochemical tests is also demonstrated.
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Chapter 1

Introduction

1.1 Introduction

Medicine has from early on often been employed as a testbed domain for newly devel-
oped learning and reasoning techniques from computer science [67, 114, 134, 187, 189].
Not only because the field of medicine has many applications whose solutions are
important in a social context, but also because the field is notoriously difficult with
a wide range of confounding factors and aspects that demand special considerations,
hence forming a technically challenging area. This interplay between computer sci-
ence and medicine has led to some remarkable work being accomplished in the last
30 years, but major developmental efforts and research is still needed if a significant
impact on the practice of medicine is to be realized [35, 218]. The directions to take
for construction of the underlying computational models1 may differ. Traditionally,
models from the field of artificial intelligence have been very knowledge-intensive in
the sense that domain-specific knowledge about such things as etiology and patho-
physiology have been carefully encoded by hand into the model. Although much is
to be said for such a “top-down” approach to model construction, this is an extremely
complex and laborious task and may ultimately lead to problems with model main-
tenance. Additionally, extensive domain expertise and the ability to produce at least
a partial problem formulation and model specification is required. On the other end
of the spectrum are “bottom-up” approaches where models are attempted induced
or synthesized from low-level data without relying on a priori domain knowledge.
A shift in vogue towards such methods has been observed in the last decade, some-
thing which is also in line with an increasing emphasis in medicine on evidence-based
practice [35]. Naturally, hybrid approaches can be envisioned. For example, some
bottom-up methods may employ background domain knowledge to guide the model
induction process.

Large databases are often collected for research or business purposes. Often these
1The term model will be used frequently throughout this thesis. Generally speaking, we can say that

an entity is a model of an entity if can be used to answer questions concerning some of the
characteristic properties of [242].

3
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databases grow so large that human inspection and interpretation of the data is not
feasible, with a gap between data generation and data understanding as a result.
Clearly, tools and techniques that can aid in extracting unknown interesting patterns
buried in the data would be useful to help bridge this gap. Classical tools for database
querying may be adequate if you know what to look for. For instance, current sys-
tems are good for answering questions of the type “Howmany patients suffered from
spinal cord injuries in California last February, who are they, and what was their aver-
age length of stay in hospital?” But often the most interesting queries to pose cannot
be formulated as straightforward lookups. Consider for instance the following ques-
tion of interest: “What are the main factors that determine how successful our current
rehabilitation program is, and how do these factors interact?” To be able to deal with
such advanced queries, more intelligent data analysis tools are needed. Research in
computer science has in the last decades spawned a vast multitude of methods that
“learn” from examples, and that can be used to extract patterns from empirical data
for classification. Such techniques are increasingly being applied to medical data sets.

Pawlak [154, 155] introduced rough set theory in the early 1980s as a tool for represent-
ing and reasoning about imprecise or uncertain information. Based on the notion of
indiscernibility and the inability to distinguish between objects, rough set theory deals
with the approximation of sets or concepts by means of binary relations, typically con-
structed from empirical data. Such approximations can be said to form models of our
target concepts, and hence in its typical use falls in under the bottom-up approach
to model construction. As the methodology has matured, several interesting applica-
tions of the theory have surfaced, also in medicine. For example, in a medical setting,
sets of interest to approximate could be the set of patients with a certain disease or
outcome, or the set of patients responsive to a certain treatment.

This thesis concerns itself with tools for and applications of discernibility and rough
sets in medicine. As such, the context in which to place this work is an intersection
of several scientific areas, the perhaps two most relevant being the field of data mining
and knowledge discovery, and the field of medical informatics. This work focuses on the
development of tools and techniques from a certain subfield of the former area, and
applying them in the latter.

1.2 Objectives

Obviously, targeting the medical domain has an important social dimension since so-
lutions to relevant problems in this domain may have a beneficial impact on human
beings and their welfare. As such, this thesis constitutes an incremental contribution
towards the overall long-term goal of improving the quality of healthcare and low-
ering costs. There is also a challenging technical dimension to targeting the medical
domain, since the art of medicine is not an exact science in which processes are easily
formalized or modelled. Furthermore, these two dimensions intertwine in a way that
exerts tight constraints on the solution space.

Many aspects of what we might perceive as intelligent behavior can essentially be re-
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duced to the ability to classify. And any classification task crucially relies on an ability
to appropriately discern between objects or situations. Discernibility-based methods,
and rough set theory in particular, are intuitively appealing and involve, technicali-
ties aside, rather simple ideas. Also, their formal soundness defines a solid theoretical
basis for empirical modelling.

The main objectives of this thesis are:

To discuss and illuminate the usefulness of discernibility-based methods for data
mining in the health sciences, and to demonstrate that these ideas are indeed
applicable by devising relevant and novel medical applications.

To furnish the research community with a set of flexible and powerful software
tools for conducting data analyses within the framework of rough set theory,
and to provide a software environment which facilitates such experimentation.
Under the hypothesis that the accessibility of such tools lowers the threshold
for abstract ideas to migrate into concrete realization, this aids in reducing a
gap between theoreticians and practitioners, and enables existing problems to
be more easily attacked.

1.3 Results

The work in this thesis has been carried out as a combination of adaptations of rele-
vant theoretical constructs, programming and computer simulations. Briefly, the main
contributions of this thesis are, in no particular order:

The discernibility-based approach to data mining and knowledge discovery is
considered in the light of general demands imposed by the medical domain.
Bringing together pertinent techniques, suitable adaptations of relevant theory
for model construction and assessment are presented.

The ROSETTA system for data analysis within the framework for rough set the-
ory has been developed. The system implements features relevant to build and
evaluate rough set models in the medical domain, and offers a highly user-
friendly environment in which to conduct experiments.
Although by design equipped with several features that are relevant for analy-
sis of medical data, ROSETTA is in itself a general-purpose system that is not
geared towards any particular application domain. ROSETTA has been put to
use by a large number of researchers world-wide, and has resulted in scientific
publications in a wide variety of areas.

Novelmedical applications have been devised, which, although diverse in theme
and scope, all share a common discernibility-based foundation:

– A method is proposed for identifying population subgroups for which ex-
pensive tests may be avoided, and experiments with a real-world database
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on a cardiological prognostic problem suggest that significant savings are
often possible.

– A method is proposed for anonymizing medical databases with sensitive
contents via cell suppression, thus aiding to preserve patient confidential-
ity.

– Very simple rule-based classifiers are employed to diagnose acute appen-
dicitis, and are shown to compare favorably with a team of experienced sur-
geons. The added value of certain biochemical tests is also demonstrated.

The ROSETTA system has been employed for all examples and experiments
throughout.

This thesis draws together various work performed over a period of almost four years.
As such, portions of several chapters have, directly or indirectly, previously appeared
as [5, 24, 26, 27, 88, 93, 94, 104, 105, 137–151,181, 232, 233].

1.4 Thesis Outline

The reader of this thesis need not possess any prior expertise of the areas presented,
as the relevant ideas and concepts will be introduced and explained in subsequent
chapters. In particular, no previous knowledge about rough set theory is required,
nor is this a medical dissertation. However, some prior familiarity, even superficial,
of empirical modelling would be useful. Some rudimentary knowledge of databases,
discrete mathematics, logic and statistics will be assumed.

The remainder of the thesis is structured as follows:

Part I provides the setting of the thesis, outlines the context and reviews previous
relevant work.

Chapter 2 presents the context of this work, namely the intersection of the med-
ical informatics field and the field of data mining and knowledge discovery.
The two fields are very briefly reviewed on their own, and special consid-
erations about their intersection are discussed.

Chapter 3 concerns itself with the appeal, drawbacks and previous uses of rough
sets in medicine. A list of points that make the methodology attractive for
practical use is given and subsequently discussed, and the current literature
on applications of rough sets in medicine is reviewed.

Part II introduces, defines and explains the theoretical constructs from discrete math-
ematics, logic, rough set theory and statistics that are relevant for this work.

Chapter 4 briefly outlines some topics from Boolean reasoning. Several of the
most practically important concepts in rough set theory can be conveniently
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interpreted in the realm of Boolean reasoning, and Boolean reasoning tech-
niques are typically applied to solve minimization problems in rough set
theory.

Chapter 5 introduces rough set theory and some of its theoretical foundations.
Starting from the notion of discernibility and discernibility matrices, indis-
cernibility relations are defined and set approximations via these are in-
troduced. Boolean discernibility functions are defined and the notion of
minimal discernibility-preserving sets of attributes are explored.

Chapter 6 presents how minimal descriptive patterns and if-then rules can be
generated. Furthermore, an overview of numerical measures of patterns
and rules is presented, along with an introduction to how ensembles of if-
then rules can be used to realize classifiers.

Chapter 7 discusses ways of evaluating classifier performance, in particular clas-
sifiers with binary outcomes. The topics of discrimination and calibration
are discussed, and some pertinent statistical tests are presented.

Part III presents the software tools that have been developed to facilitate discernibili-
ty-based empirical modelling.

Chapter 8 introduces the ROSETTA software system for data analysis, and gives
an overview of its main features.

Chapter 9 provides a detailed example of how ROSETTA can be used to ana-
lyze a medical database. As a case study, a publicly available database on
coronary artery disease is employed.

Chapter 10 discusses aspects of the design and implementation of ROSETTA.
A set of system requirements and design parameters are outlined, and a
presentation of how these are met is given along with the rationale behind
them.

Part IV outlines some medical applications where discernibility and rough sets have
been applied using the developed ROSETTA software system.

Chapter 11 reports on a novel application of using the semantics of rough sets
for feature extraction. The proposedmethod can be used to identify certain
population subgroups for whom acquiring knowledge of potentially costly
information is strictly needed for purposes of classification. An application
to a prognostic problem in cardiology is given, where the aim is to identify
the subgroup for whom performing a scintigraphic scan can be avoided.

Chapter 12 presents a novel application of using discernibility to anonymize
the contents of sensitive medical databases via cell suppression. The pro-
posed method can be used as a subcomponent in a full-fledged system for
preserving confidentiality prior to data dissemination, and can be viewed
as an instance of data mining applied in reverse. The cell suppression al-
gorithm obfuscates data so that identifying patterns are subsequently be-
ing made difficult to discover, and does so in a manner that preserves the
“truthfulness” of the data material.



8 CHAPTER 1. INTRODUCTION

Chapter 13 lays out an application where a collection of if-then rules are used
to diagnose the presence or absence of acute appendicitis. Whereas Chap-
ter 11 and Chapter 12 focus on multivariate aspects, Chapter 13 investigates
the utility of extremely simple univariate classification rules. The classifier
is compared to the performance of a team of physicians and with results
from the literature. Furthermore, the issue of additional value of certain
biochemical tests to the model is investigated.

Part V collects the threads from the previous parts, and points out some directions for
further research.

Chapter 14 contains a detailed summary of the thesis, and lists its main results
and contributions.

Chapter 15 outlines some directions for future work.

Appendices of various kinds can be found last.

Appendix A provides a list of themathematical notation and abbreviations used
throughout this thesis.

Appendix B gives a brief outline of the structure of the ROSETTA C++ library
presented in Chapter 10.

Appendix C presents the 5x2CV F-test employed in Chapter 13.
Appendix D presents how considerations based on discernibility can be used

to discretize numerical attributes.

1.4.1 A Roadmap

Figure 1.1 provides a thesis roadmap, depicting dependencies between the various
parts. The logical order to read this thesis is to read the parts in sequence. However,
Parts III and IV may be read independently of each other.

Within each part, the chapters should normally be read in consecutive order. However,
there are several exceptions that can be made:

In Part II, Chapter 7 can be read independently of Chapters 4, 5 and 6.

In Part III, Chapter 10 can be skipped without loss of continuity.

In Part IV, Chapters 11, 12 and 13 are independent entities.
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Figure 1.1: The logical order to read this thesis is to read the parts in sequence. However,
Parts III and IV may be read independently of each other. Within each part, the chapters
should normally be read in consecutive order. Some chapters can be read as separate entities,
as indicated.
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Chapter 2

Context

2.1 Introduction

A proper context in which to place this thesis might be in the intersection between the
following scientific fields:

Data mining and knowledge discovery: A field which revolves around constructing
computer models from databases. These models may serve to reveal “nuggets
of knowledge” previously hidden in the data, or to predict attribute values for
future observations.

Medical informatics: A field which studies the acquisition, encoding, organiza-
tion, transmittal and deployment of medical data, with the purpose of exploiting
computers to improve various aspects of healthcare.

The topic of this work is on the development of tools and techniques from a certain
subfield of the former area, and applying them in the latter. This chapter aims to
provide a brief glimpse of the nature of these fields, and of issues that should be con-
sidered when they are brought together. Due to the enormous scope and myriad of
subfields and current activities in these fields, this chapter does not in any way try to
give a complete review. Rather, only some chosen topics deemed the most relevant in
the context of this thesis are very briefly mentioned. More thorough treatments can be
found in the literature, e.g., [53, 100, 167, 191, 228].

Section 2.2 gives a very brief rundown and presentation of the field of data mining and
knowledge discovery, and Section 2.3 briefly reviews the medical informatics field. In
Section 2.4, some observations about the nature of the intersection of these fields are
given.

11
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2.2 Data Mining and Knowledge Discovery

The problem of finding models that describe or classify measurement data is encoun-
tered in many situations. This task falls into the extensive category of empirical mod-
elling, which, broadly speaking, can be said to be the science of constructing models
that describe or classify measurements. Such models may take on a wide variety of
forms according to the model construction scheme used. The choice of modelling
scheme bears both to the nature of the pattern recognition problem, as well as to
the purpose of the modelling task. The purpose of developing such models may be
twofold: In some instances, the goal may be to gain insight into the problem at hand
by analyzing the constructed model, i.e., the structure of the model is itself of interest.
In other applications, the transparency and explainability features of the model is of
secondary importance, and the main objective is to construct a classifier of some sort
that classifies arbitrary objects well. When constructing models on the basis of labeled
training data, a knowledge-based approach to such empirical modelling is to induc-
tively infer a set of general rules that produce the desired class. This is an instance of
an activity that is collectively referred to as knowledge discovery in databases (KDD), or,
sometimes, data mining. In the following, the term knowledge discovery will be used
to denote a process of which data mining is a component. The term machine learning
is often used as a common label for many of the techniques involved in learning from
examples.

KDD is commonly defined [167] as “the nontrivial process of identifying valid, novel,
potentially useful and ultimately understandable patterns in data”. The term “data”
is here understood as a collection of facts or atomic pieces of information, e.g., records
in a database, while “knowledge” is a higher-level concept that says something about
the properties of the collection of data as a whole, e.g., dependencies among sets of
attributes in a database, or rules for predicting attribute values. The distinctions be-
tween “data” via “information” to “knowledge” are somewhat blurry and open to
debate, but intuitive notions will suffice in the present context.

2.2.1 The KDD Process

The overall KDD process consists of several steps and phases that are iterated in a
waterfall-like cycle [54], and is displayed graphically in Figure 2.1. The exposition is
not in any way specific about the technical approaches taken at each step. From a data
source containing raw data, all or portions of this is selected for further processing.
The selected raw data is then typically preprocessed and transformed in some way,
before being passed on to the data mining algorithm itself. The patterns output from
the mining procedure are then postprocessed, interpreted and evaluated, hopefully
revealing new knowledge previously buried in the data. Along the way, backtracking
on each of the steps will in practice inevitably occur. Efforts to define more formal
process models are ongoing [29].

The selection phase more or less defines the KDD problem. The saying “garbage in,
garbage out” also applies to KDD, but since we are looking for relationships that are
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Figure 2.1: Outline of the overall KDD process, adapted from Fayyad et al. [54]. The patterns
output from the datamining step do not necessarily have to be on the form of if-then rules, but
depend on the selected modelling scheme. For example, if logistic regression is employed, the
model to interpret would be a set of numerical coefficients. Note the iterative and nonlinear
nature of the overall KDD process.

presumably unknown beforehand, it might not be entirely straightforward to a priori
specify what constitutes “garbage” and what constitutes potentially valuable input.
Letting a method loose on data material that has not been sufficiently “focused” by
narrowing down the number of inputs may not only increase the computational bur-
den in the data mining step, but is also likely to result in spurious and nonsensical
correlations being found. In practice, making an effort to ask the right questions and
properly formulate the KDD problem may prove more fruitful than spending time
optimizing algorithmic details [54].

In the preprocessing and transformation steps, care has to be taken that no unwanted
biases are introduced. How these steps are executed depend largely on the method
selected for the subsequent data mining step.

In the data mining step, many different learning and modelling paradigms are plausi-
ble candidates. Some of these are inherently symbolically oriented and are “trained”
through logical and algebraic methods, others have a numerical foundation and are
trained by regression and curve-fitting methods. Which methods that are appropriate
depends in part on whether the target to learn is continuous or can be treated as a dis-
crete classification task. In the following, unless otherwise stated, it will be assumed
that the modelling task can be reduced to a classification problem. Popular methods
include:

Logistic regression: The perhapsmost popular analysis techniquewithin the health
sciences. Adjusts a set of numerical coefficients so that a best-fit is obtained be-
tween a sigmoidal function and the data [85].

Neural networks: Simple nonlinear processing elements are interconnected in a
large network in which an input signal is propagated towards one or more des-
ignated output nodes [80]. Typically, network weights are adjusted through a
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gradient descent procedure to optimize a global objective function [182].

Belief networks: Also called Bayesian networks. Each variable or attribute is rep-
resented by a node in a directed graph, where the edges in the graph reflect at-
tribute interdependencies [79]. The network structure can either be supplied by
a domain expert or attempted induced from the data. Estimates of conditional
probabilities at each node are obtained from the data.

Decision trees: Recursively partitions the input space according to various data-
driven splitting criteria [175]. Subsequent predictions can be made by propagat-
ing a sample from the root towards the leaves, and noting the class distribution
of training instances in the destination leaf.

Rule-based models: Collections of if-then rules are produced that fully or approxi-
mately describe the example classifications in the training material [32,124,192].
Rules can also be induced via decision trees.

2.2.2 KDD and Rough Sets

Rough set theory is suitable for problems that can be formulated as classification
tasks, and has gained significant scientific interest as a framework for data mining and
KDD [126, 168]. Although the main computational workhorse in many symbolically
based methodologies is the well-known propositional calculus, rough sets provide a
unifying framework in which the computations can be interpreted.

Adapting the elements of Figure 2.1 to how models are typically constructed in the
framework of rough sets, the following items can be noted:

Selection: The basic vehicle for data representation in the rough set framework
are flat, two-dimensional data tables. This does not imply that a table has to be a
single physical table, it may very well be logical view across several underlying
tables. One suitably formed table is selected for subsequent analysis.

Preprocessing: If the selected table contains “holes” in the form of missing val-
ues or empty cell entries, the table may be processed in various ways to yield a
completed table in which all entries are present.

Transformation: Numerical attributes and attributes that have an ordering on
them may have to be discretized, i.e., transformed in such a way that intervals
or ranges are used instead of the exact observations themselves. This amounts
to defining a coarser view of the world, and to making quantitative data more
qualitative.

Data mining: In the rough set approach, conjunctions of elementary propositions
or if-then rules are produced. This is done in a two-stage process, in which
minimal attribute subsets are first computed before patterns or rules are in turn
generated from these.
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Interpretation and evaluation: Individual patterns or rules can be ordered by some
measure of “goodness” and manually inspected. Ensembles of rules can be em-
ployed to classify new cases and noting their classificatory performance.

Note that not all of these steps are necessarily carried out, but vary with the applica-
tion at hand. In some cases the preprocessing and transformation steps may not be
needed or even desirable to execute. Furthermore, many of the steps above are not
specific to the rough set approach, but are shared across many different learning ap-
proaches. For example, most methods operate on flat data tables, and discretization is
a step that almost all symbolically based data mining methods require for them to per-
form well. If not stated as an explicit requirement, discretization is often performed
implicitly behind the scenes.

2.2.3 Themes in KDD

KDD draws on many fields, such as statistics, database theory and artificial intelli-
gence. Current research themes in KDD are therefore scattered across a large array of
topics that intertwine, including:

Data representation: There is a growing interest towards investigating going be-
yond simple two-dimensional data tables, and to try to mine free text, multime-
dia databases and the world wide web. This last item also bears to the topic of
mining distributed data in general.

Learning paradigms: In terms of the number of publications, a large body of the
research in data mining and KDD seems to be within incremental improvements
of facets of different learning and modelling techniques, and on the empirical
verification of these.

Use of background knowledge: If any domain knowledge is present, it would be de-
sirable to employ it. Techniques for incorporating problem-specific knowledge
into the model construction process are therefore of great interest to develop.
Use of background knowledge may also aid in analyzing tabular data in which
many of the entries are missing.

Disk-based algorithms: An implicit assumption made by most common data anal-
ysis algorithms is that all the data can simultaneously reside in the computer’s
main memory for analysis. For massive amounts of data, this is clearly not a
viable assumption, and efforts are made to develop efficient disk-based analysis
algorithms.

Model pruning and simplification: Since we ultimately want the models to be un-
derstandable, a large body of research has gone into developing methods for
simplifying models. Approaches to this include pruning or filtering an exist-
ing model, and transforming one type of model into another more interpretable
type.
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Visualization: Techniques for visualizing relevant portions of data and knowl-
edge summaries are immensely powerful and useful, and may greatly enhance
any step of the KDD process.

Quality assessment of data mining results: After a model has been mined it is de-
sirable to assess its qualities. Methods for knowledge evaluation, benchmarks
and metrics for system evaluation and statistical tests in KDD applications are
therefore needed.

Man-machine interaction: The KDD process is more likely to succeed with human
intervention, since it involves many choices that have to be made on the basis of
the results that gradually unfold. User interfaces and environments that allow
such intervention and that combine querying and KDD are therefore essential.

Other themes in KDD include how to decompose and parallelize steps of the KDDpro-
cess, development of methods for discretization and other preprocessing techniques,
discovery of trends and themining of time series, ensuring data quality andmanaging
changing data, to name but a few.

2.3 Medical Informatics

Computer science is a field that permeates today’s society, with applications in almost
every domain. Sometimes hybrid fields emerge that meld disciplines together with
special focus on the needs and special considerations of the application domain. Med-
ical informatics is such a field. Blois and Shortliffe [191] define medical informatics as
“the rapidly developing scientific field that deals with the storage, retrieval and op-
timal use of biomedical information, data, and knowledge for problem solving and
decision making.” This is indeed a very wide definition, but Blois and Shortliffe pro-
vide some delineations to neighboring fields. For instance, biomedical engineering
is in their view more device-oriented than medical informatics, which in turn em-
phasizes higher-level information processes. Many issues in medical informatics can
sometimes be phrased as rather general computer science issues, but that become per-
haps more pertinent and pressing in the context of modern healthcare.

In its broadest sense, medical informatics can be said to concern itself with the man-
agement of information in the context of healthcare, and undergoes a rapid pace of
change and development as computer technology continues to accelerate. This pace
of change and development is hardly likely to slow down in the future. A transition
towards medicine based on an understanding of the human genome, the expectation
of quality healthcare provided at a lower cost and the requirement for improved access
to healthcare, are all factors that will contribute to this.
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2.3.1 Themes in Medical Informatics

The medical informatics field encompasses a broad range of themes, both in terms of
technical issues as well as with respect to the medical context the methods are set in.
Current research therefore covers a wide array of topics, including:

Data acquisition: Capturing and recording medical data in electronic form is a
major bottleneck in applying computers in healthcare. Medical data include
things that are not easily recorded or precisely defined. From the viewpoint
of designing intelligent systems that reason about medical data, this constitutes
a formidable challenge.

Medical vocabularies: Obviously, data has to be somehow represented in coded
and machine-readable form if it is to be made properly use of in a computer
system. An important part of the body of medical knowledge are nomenclatures
and ontologies for accurately describing, cataloguing and classifying elements
in the finding-disease continuum. Such systems are commonly referred to as
controlled medical terminologies (CMTs).

Electronic medical records: For an electronicmedical record (EMR) to be searchable
and its information content harvested, its content should be encoded using some
kind of CMT. Furthermore, once the content of a medical record is in place,
there is still the issue of how to structure the content internally and how to tailor
suitable views of an EMR’s content for various user groups.

Decision support systems: Computer programs that help clinicians make clinical
decisions typically can typically be divided into three groups [190]: Tools for in-
formationmanagement, tools for focusing attention and tools for patient-specific
consultation. Ways to build, maintain and evaluate such decision support sys-
tems (DSSs) are of interest to develop.

Deployment barriers: Systems that may prove successful in research settings often
do not make it into clinical use. Barriers of deployment may be of both technical,
operational, organizational and legal nature, and the identification of these and
ways to overcome them are active research issues in medical informatics.

Confidentiality issues: Medical information is often sensitive and with a poten-
tial for misuse if obtained by malevolent third-parties. The challenge that sound
management of confidential data represents has not gone unnoticed in the med-
ical informatics community.

Other themes in medical informatics abound, and include computerization of and
tools for care guidelines and protocols, ways of evaluating computer systems in health-
care, elicitation and use of patient preferences in decision analysis, and telemedicine,
to name but a few.
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2.4 Aspects of KDD in Medicine

Bringing together two fields can elucidate the validity of some previously held as-
sumptions and beliefs, and often results in domain-specific considerations. The in-
tersection between data mining and KDD and medical informatics is no exception.
This section discusses some general points to be taken from medical informatics for
practitioners of data mining and KDD in the medical domain.

The perhaps most obvious place for data mining techniques in medicine is in conjunc-
tion with DSSs. Tools for focusing attention and tools for patient-specific consultation
are where data mining and machine learning techniques are most likely to contribute
to clinical DSSs. Such techniques may provide focus by discarding superfluous infor-
mation, and provide predictive models that can be applied for patient-specific consul-
tation. However, the explanatory capabilities of such models vary according to the
modelling paradigm. It is generally desirable for any DSS to be able to justify the
recommendations it makes, at least in part, something which is often stressed in the
context of medicine.

The scope of tools for decision support for patient-specific consultation vary immensely.
Although a continuum, two main categories can be identified:

1. Tools designed to provide a probability or scoring index of a fixed outcome or
diagnosis.

2. Tools that employ large knowledge-bases designed to suggest a broad range of
differential diagnoses.

Current state-of-the-art techniques for empirical modelling are capable of constructing
tools of the first type. The more ambitious goal of fully automatic construction of large
knowledge-bases for tools of the second type is probably too complex and difficult a
task for current technologies.1 Of course, tools of the first type can be employed as
small components of larger DSSs, and thus contribute to making such systems more
evidence-based.

2.4.1 On Data Availability and Quality

Practitioners of KDD might tend to take the existence of large amounts of usable data
for granted. However, obtaining historical clinical data in electronic form may not al-
ways be easy or even possible. Acquisition of such data may in practice often involve
laborious and non-automated tasks. Traditionally, most hospitals use transcription
services where the dictated notes of the physicians are transcribed into the medical

1Four carefully crafted broad-ranging systems for computer-based diagnosis were evaluated by
Berner at al. [14] in 1994 on a set of diagnostically challenging clinical cases. As a result, the state-of-
the-art technology for computer assisted diagnosis was at the time assigned a C grade by Kassirer [97].
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records. Moreover, what may be considered as a “large” collection of data in the med-
ical domain is often considerably smaller than the massive amounts that are some-
times reported in the data mining literature.2 In medicine, each case typically equals
one clinical encounter, an event with a far lower occurrence frequency than in many
other domains. Furthermore, often only a small subset of these encounters are of in-
terest to include in a study. Consequently, many medical KDD studies are often run
on existing research databases previously analyzed with traditional statistical meth-
ods. In such studies, the data material was often collected manually with aspects of a
carefully planned future analysis in mind, e.g., for elimination of possible biases. This
in contrast to the more common situation for data mining and KDD, where the data to
be analyzed is typically historical data that at the time of collection was not intended
to be analyzed.

If retrospective analyses of EMRs form the basis for a KDD experiment, some initial
data cleansing is likely to be needed. Since the contents of EMRs vary from patient to
patient, unless the scope of the study is sufficiently narrow, not all information may
have been recorded for every patient in the study, and onemay encounter the problem
of missing or incomplete data. Values are also often missing because certain tests have
been deemedmedically irrelevant to perform, due to the results of previous tests. Very
many popular data mining techniques are unable to deal with missing values directly.
Furthermore, the data material may often be organized and encoded in quite complex
fashions, and the tools required for properly dealing with such data may have to be
able to interface with CMTs or other sources of ontological information. Few data
mining techniques are currently able to cope with such information directly.

With regards to data management, most would agree that medical information con-
cerning a specific patient is private and confidential. Many abuses of sensitive medical
data can easily be hindered through simple means such as access control mechanisms
and audit trails. But medical data often need to be disseminated for a wide variety
of reasons, for instance to be analyzed by KDD practitioners. Although personally
identifying information may have been stripped from the data material prior to re-
lease, the data may in principle be cross-referenced against other databases, and thus
potentially enabling individuals to be re-identified.3 Practitioners of KDD in the med-
ical domain should therefore be careful about distributing medical data or any results
from the KDD analysis, since the consequences for the patients involved might prove
disastrous if such information is abused. Lastly, from an ethical point of view, medi-
cal data should be treated with care and respect, as behind each piece of data may lie
human suffering.

2To get a feel for the magnitudes involved, clinical databases with a few thousand records (or even
fewer) may very well be said to be “large”, depending on the medical context. In contrast, Fayyad et
al. [54] talk about multigigabyte databases with millions of records being commonplace.

3As demonstrated by Sweeney [215], such re-identification is often surprisingly easy to do. Simple
demographic or medical information often suffices. Woodward [243] gives several examples of how
medical information has been abused due to improper disclosure and cross-referencing against other
databases.
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2.4.2 OnModel Induction and Selection

Occam’s razor, also known as the principle of parsimony, is often used as a guide for
model selection in the data mining field. In a medical setting, the parsimony of mined
models ought to be viewed in the context of costs, both in the economical sense as well
as in the abstract sense. Since not all information is equally cheap to obtain, it is wise to
view model parsimony in light of the cost of model realization, and not only in terms
of model complexity. For example, for the same task, a classifier based on five pieces
of readily available clinical information would probably be preferable to a classifier
based on two pieces of information that involve invasive medical procedures, unless
the latter displayed significantly better performance.

Many challenging diagnostic problems in medicine involve relatively rare diseases or
outcomes. As a result, heavily skewed class distributions in the data material might be
observed. While popular in the data mining field, induction of classification rules that
reflect normal or default relationships between symptoms and diseases or outcomes
may not always be fully appropriate in medicine. This because it may indeed be the
few, rare cases and not the possibly overwhelmingly prevailing normal situation that
comprise what is medically interesting and hence of interest to be captured by the
model. Several of the most popular techniques for inducing classifiers experience, in
their basic form, problems with detecting rare events.

The computational complexities involved in machine learning are often staggering.
Hence, in order to keep the problems tractable, simplifying assumptions are made,
sometimes implicitly. Some of the most typical assumptions are clearly unrealistic in
a medical context, but may still be necessary to impose for pragmatical reasons. For
diagnostic problems, three of the most common simplifying assumptions are:

The set of possible diseases are mutually exclusive and exhaustive. As for exhaustive-
ness, medicine is a dynamic science with an ever-expanding body of knowledge,
and it would be impossible to list everything. The mutual exclusivity hypothe-
sis is clearly not valid, as counterexamples are easily found, e.g., hyperglycemia
and diabetes, and AIDS and kaposi sarcoma.

Clinical observations are independent of each other when conditioned on disease. This
means that if we fix the disease status, the knowledge of one finding or observa-
tion does not influence our knowledge of another finding.

Pr Finding1 Finding2, Disease Pr Finding1 Disease (2.1)

This assumption eliminates the need to have to consider all possible interac-
tions between findings, a number which grows dramatically with the number
of findings. For a counterexample that invalidates this hypothesis, consider the
diagnosis of left-sided valvular heart disease. Assuming conditional indepen-
dence between observations of systolic and diastolic heart murmurs will lead to
erroneous conclusions [219].
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The order of tests and findings does not matter. This assumption enables one to not
have to consider all permutations of tests. However, radiologists often base their
interpretations on findings reported by primary care physicians, and the time lag
between tests is often of importance.

Szolovits and Pauker [219] discuss these assumptions in more detail.

2.4.3 On Model Assessment and Deployment

Internally, most classifiers realize a two-stage process when presented with an item x
to classify. Performance evaluation can be carried out along at least two axes, depend-
ing on which of these stages we examine:

1. For each possible class Xi, a numerical value 0 φi x 1 is estimated. The
value ofφi x reflects the degree of confidence or certainty the classifier has in x
belonging to Xi.
How close isφi x to the true probability of x belonging to Xi?

2. On the basis of the φi x values, a class Xj is selected as the class to which x
should be assigned.
How good is the classifier at selecting the correct outcome class?

These two issues are called calibration and discrimination, respectively. The issue of
calibration is largely ignored in the machine learning literature, and may for some ap-
plications not be very important. However, if a classifier is to be used in an interactive
decision-support setting, then the issue of calibration ought to be considered. Even
though a model has been induced that discriminates well, that is not necessarily how
it might be employed in practice. For example, in a medical setting, a classifier may
have been trained to determine whether or not a patient will survive or die. But the
actual use of the model by a decision-maker might be to use the certainty coefficient
associated with the “death” outcome to aid in deciding if a patient should be trans-
ferred to an intensive-care unit (ICU). Such a decision may not only depend on the
certainty coefficient, but also on external factors such as the current scarcity of ICU
beds. Clearly, a decision-maker will be more comfortable with a tool that produces
a probability rather than some abstract index of certainty. Not only because proba-
bility is a familiar concept for humans, but also because other analytical frameworks
for decision-making take probabilities as inputs. The latter point may be important
in practice, since in a full-fledged decision-support environment the value of φi x is
likely to be considered in combination with costs, patient preferences or utility factors
in general. Tools that combine φi x with such factors will almost surely expectφi x
to denote probabilities.

New or unconventional data analysis techniques need time to mature and prove their
worth before becoming generally accepted. As part of this process, in order to gain
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acceptance and generate the necessary impact, a great deal of empirical studies have
to be carried out. However, when evaluating these models, it is imperative to do so
according to well-established performance measures in the domain. This so they can
be compared with and contrasted to existing and more widely accepted techniques on
the same terms. For evaluating classifiers, the data mining andmachine learning com-
munities have in the past had an almost exclusive focus on classification accuracy, i.e.,
the probability of the induced classifier arriving at a correct classification. Medicine
has since long employed a more refined spectrum of evaluation measures, since it is
not uncommon that one type of classification error might potentially cost lives, while
other types of errors are insignificant in comparison. Discriminatory classifier perfor-
mance in medicine should therefore be evaluated using measures that handle skewed
class distributions and error costs, important issues which classification accuracy as a
measure does not reflect very well.

Even though there are numerous papers in the medical informatics literature where
excellent results are reported using inductive learning techniques, extremely few of
these results are subsequently deployed in any real-world clinical applications. One
possible way of defining if an induced model is successful, is to see if it is actually
deployed outside a pure research setting. There seems to be an inverse relationship
between the number of seemingly successful models and the distance between the
point of model deployment to the physical patient: The further away from the point
of care a model’s location of deployment is, the more likely it is that it will be used and
thus defined to be a success. This can in part be attributed to the fact that the number
of complicating factors grows dramatically the closer to the point of care one gets. For
this reason, most successfully deployed DSSs operate on very specific and narrowly
defined problems and in environments where data is either already easily electroni-
cally accessible, or in situations where a certain amount of manual data entry can be
tolerated. Success factors are not only technical, issues regarding work-flow integra-
tion, organizational issues and hospital policies play a very important role. Therefore,
a system that is successful in one healthcare institution may not necessarily be equally
successful in another.

A point that is often emphasized in the context of medicine is that computer models
should offer some means of explaining the reasoning behind their decision-making,
e.g., for reasons of user validation and acceptance. Types of models used in machine
learning vary in their degree of opaqueness, i.e., in how well one can obtain such
explanations through inspecting and interpreting the model structure. In some situa-
tions such information can indeed be obtained, but in practice even such presumably
understandable model types as rule sets or decision trees may often be hard to inter-
pret. This can, e.g., be because one needs to understand how large collections of firing
and possibly conflicting rules are combined in order to yield a decision, or because
the path leading to a leaf node in a tree leads to an overly complex rule. Another cir-
cumstance that may complicate the picture is if the best-performing model is largely
“unintelligible” altogether. Rather than abandoning models that are hard to inter-
pret, we may as an alternative choose to consider case-based explanations instead of
model-based ones. That is, instead of letting the models themselves provide explana-
tions, we consider explanations that come in the form of sets of cases from the data
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material the models were induced from. A new case or example is then explained in
terms of a small handful of old cases that are somehow “close to” the new case, where
the distance metric on cases is extracted from the model.4 Caruana et al. [28] show
how neural network models can be employed to enable case-based explanations to be
made.5 Case evaluation is frequently emphasized in medical training and practice,
and medical practitioners are therefore often proficient at understanding explanations
provided in the form of cases [28].

Lastly, if an induced model is deployed in a clinical setting, care should be made that
the patient population the model is applied to is “compatible” with the population
the model was induced from, i.e., that they are drawn from approximately the same
distribution. Otherwise, unless the model can be shown to be very robust, results
might not be as expected. Ensuring such population compatibility can be difficult, as
population profiles may tend to “drift” over time.

4Of course, for this to be possible the training data must be available, a requirement that the model-
based explanation scheme does not impose. Also note that if we provide the distance metric directly and
bypass the model induction, we end up with the well-known k-nearest neighbor method [179].

5How rule-based models can be used to a similar effect will be outlined in Section 6.4.2.
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Chapter 3

Rough Sets in Medicine

3.1 Introduction

This chapter concerns itself with rough sets in medicine: Its appeal, drawbacks and
previous uses. In Section 3.2, the literature is reviewed and an overview is given of
previous applications of rough set theory in the medical domain. Then, Section 3.3
outlines some of the points that make the methodology attractive for practical use,
both in general in the context of medical informatics. Finally, Section 3.4 discusses
some aspects that one is likely to encounter in practice, and comments on some of the
issues raised in Section 3.2 and Section 3.3.

3.2 Literature Review

Various applications of rough set theory to medical data are described in the literature.
Mostly in the data mining and rough set literature, but also to a certain degree in
the medical informatics literature. Several of these studies simply apply rough set
methods to data that happen to have a medical origin, without much regard to the
underlying medical problem at hand. Even though such purely syntactical studies
may be interesting from a technical standpoint, they, as discussed in Chapter 2, are
unlikely to have any significant practical impact or awake much clinical interest, since
they make little or no semantical considerations nor consider the problem context.

However, several interesting studies are worth reporting. Broadly speaking, previous
applications of rough sets in medicine can be classified into two categories, diagnosis
and outcome prediction and feature selection, with an overwhelming majority of papers
falling into the former.

25
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3.2.1 Diagnosis and Outcome Prediction

The by far most common application of rough sets in medicine is for diagnosis or
prediction of outcomes. This is usually accomplished by synthesizing if-then rules.

Fibak et al. [56] applied rough sets to analyze a database of patients with duodenal ul-
cer treated by highly selective vagotomy1 (HSV) at a hospital in Poznań, Poland. From
preoperative information, the goal was to predict the long-term success of the oper-
ation, as evaluated by a surgeon into four outcome classes. The analysis was done
with discretization being carried out using expert medical knowledge, and a semi-
manual search for minimal approximate discerning attribute sets. As a result, descrip-
tive models of each outcome class could be formulated in natural language, and a
small set of decision rules was also synthesized. Such descriptive models are impor-
tant for screening purposes, since one can potentially utilize indications for treatment
to maximize the number of successful operations. Indeed, the HSV study by Fibak et
al. is one of few data analysis studies, regardless of methodology, that has managed
to cross the clinical deployment barrier. S owiński [197] reports that the developed
prediction models were consulted for screening a group of subsequent candidates
for surgery, with the result of the group accepted for surgery having a clearly more
advantageous distribution among the outcome classes than the group from which
the models were originally derived. Other papers pertaining to the HSV study in-
clude [157, 198, 200, 201].

Vinterbo et al. [231] report on an experiment where a rough set predictor for myocar-
dial infarction was synthesized using data collected at an emergency room in Ed-
inburgh, Scotland, and evaluated on data collected at another emergency room in
Sheffield, England. The behavior and stability of classifiers across site boundaries
is of great practical interest, and this issue had been previously investigated by oth-
ers [99,221] using other methods on the same sets of data. Both these studies reported
performance losses when crossing site boundaries, while Vinterbo et al. conclude that
the rough set predictor seems to generalize well across sites.

Rowland et al. [181] compared neural networks, logistic regression and rough sets for
the prediction of ambulation following spinal cord injuries. All methods performed
well, and although the performance of the rough set model was marginally lower than
the other models, Øhrn et al. [149] demonstrated that the rule sets could be pruned
down to very small and manageable sizes with a very low penalty in performance
loss. In some simulations, the models were pruned down to as little as five simple
decision rules. Obtaining compact models is important for interpretability.

Breast cancer is the cancer type that most commonly causes death for women in the
United States. Wojcik and Ziarko [241] used a rough set approach to analyze a database
on women with breast cancer, and induced prognostic rules for determining short-
term and long-term follow-up survival. The rules are subsequently analyzed and in-
terpreted from a clinical perspective, and although in general the rules were found

1Highly selective vagotomy is a surgical procedure which consists of vagal denervation of the stom-
ach area secreting hydrochloric acid.
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to support well-known established facts about factors influencing survival, new in-
sight was reported gained on the impact some medical and social factors may have on
long-term survival patterns.

Taking a similar approach as in the previously described HSV study, S owiński et
al. [202] construct rough approximations to analyze a small set of data from peritoneal
lavage2 in acute pancreatis. The goal of the study was to determine which subsets of
pre-lavage attributes that best determine various outcomes, e.g., the required length
of the treatment period. Their analysis showed that a significant portion of the infor-
mation was redundant. A similar study with a larger set of patients was later done
by S owiński and Sharif [199] where peritoneal lavage was employed as a diagnostic
aid applied to patients with multiple injuries. Decision rules were synthesized, from
which concrete clinical conclusions could be drawn.

Woolery and Grzymala-Busse [244] report on the development of a prototype expert
system for assessing preterm birth risk. The goal of the system was to predict preterm
deliveries, using a knowledge-base of rules extracted from empirical data by means
of a machine learning system based on rough sets. The prototype expert system was
verified to be more accurate than traditional manual techniques in predicting preterm
birth.

Induction of rules by means of rough sets for subsequent implementation in expert
systems has also investigated by Tsumoto [223], then in the context of diagnosis of
congenital malformations. The resulting expert system was evaluated in clinical prac-
tice, and found to yield as good performance as a medical expert.

Several other medical applications of rough sets for predictive modelling are reported
in the literature, e.g., for screening patients for extracorporeal shock wave lithotrip-
sy [203, 208], diagnosis of progressive encephalopathy in children [237], analysis of
structure-activity relationships in pharmacology [109, 110], diagnosis of acute appen-
dicitis [26, 27], risk assessment of developmental toxicity [78], differential diagnosis
of headache [222, 224], prediction of heart attacks [63], diagnosing diabetes in chil-
dren [209, 210], and determining the maturity status of newborn children [30].

3.2.2 Feature Selection

The studies reported in Section 3.2.1 all employ rough sets as the main processing
methodology for diagnosis or outcome prediction. However, another use is to employ
rough sets as a preprocessing step for other machine learning techniques. The primary
application for this is feature selection, i.e., using the concept of minimal discerning
subsets to reduce the number of input dimensions for other modelling schemes. Of
course, the modelling schemes employing the selected feature subsets should be flex-
ible enough to incorporate at least some of the strong nonlinearities that the reduced
modelling problems are likely to exhibit.

2Peritoneal lavage for acute pancreatis consists of introducing a catheter into the peritoneal cavity
and instilling fluid which is subsequently drained, flushing out toxic materials. This procedure can be
repeated in multiple stages.
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Jelonek et al. [90] used rough sets to select attributes for classification of histological
images with neural networks. The goal was to reduce the number of inputs to the
neural network so that the training time of the network could be lowered. From a set
of images of cells from seven types of brain cancer, a large number of features were
extracted from each image. Through combining medical expertise with processing
by rough sets, the dimensionality could be reduced to about 11% of the original set.
Cross-validation experiments showed that a neural network using only this reduced
set of attributes performed slightly better than a network using the full set of inputs. In
a follow-up study [91] using alternative image features, a collection of an even larger
set of features was reduced to about 4% of the original set, using fully automatic rough
set feature selection. Acceptable performance was maintained.

Dreiseitl et al. [49] employ a wide variety of techniques, including rough sets, for se-
lecting relevant features for prediction ofmyocardial information. The selected feature
subsets were validated and visualized with self-organizing maps.

Stability across data from different geographical sites is not the only robustness issue
of interest for data-driven modelling, temporal stability is of importance as well. Kan-
dulski et al. [96] focus on synthesizing rough set approximations for establishing a
hierarchy of known risk factors for surgical wound infection. Applying the technique
on data gathered within a timespan of four years, they report that the hierarchy of
features selected on the basis of the first two years of data appears to be similar to that
obtained when considering only data from the last two years.

3.2.3 Miscellaneous

There are extremely few papers where rough sets have been applied in the medical do-
main that do not fit into one of the two outlined mentioned categories. Some notewor-
thy exceptions exist, though. Øhrn et al. [151] and Komorowski and Øhrn [104] de-
scribe an application of rough sets for feature extraction in cardiology. By feature extrac-
tion is meant the construction of new features from combinations of existing features.
Øhrn and Ohno-Machado [148] describe how Boolean reasoning can be employed for
anonymization of sensitive medical data by means of cell suppression, and provide in-
terpretations of the procedure in terms of rough set ideas. By anonymization is meant
a transformation of data such that re-identification of individuals is hampered. These
applications are presented in detail in Chapter 11 and Chapter 12, respectively.

If we extend the scope under consideration, some studies can be found in the liter-
ature that deal with discretization of medical data with the aim of applying rough
sets to analyze the discretized data. Wakulicz-Deja et al. [236] discuss discretization in
the context of diagnosing mitochondrial encephalomyopathies, while S owiński and
S owiński [200, 201] investigate how sensitive the HSV study outlined in Section 3.2.1
is to alternative discretizations.
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3.3 Appeal

Discernibility and rough set theory constitute an appealing framework for machine
learning in medicine for several reasons. Some of the reasons for this appeal are purely
technical, while others relate to some of the issues raised in Section 2.4. Furthermore,
some of the reasons are shared among several other modelling paradigms, while oth-
ers are specific to rough sets.

A guiding philosophy of rough set theory is to let the data material speak for
itself. As such, very few assumptions are made about the data, attributes need
only have some notion of inequality defined on their domains. In particular,
rough set theory does not make assumptions about statistical distributions of the
data, nor does external information such as, e.g., membership functions have to
be supplied.

In domains where model deployment involves humans, the purpose of data
mining and KDD is just as often to construct interpretable descriptions of the
data as it is to build well-performing classifiers. Not only for so that individual
classifications can be “explained”, but also to gain insight into the nature of the
data. The output of a rough set analysis is usually a collection of if-then rules.
An if-then rule is, arguably, as close to a model in natural language as one might
expect to obtain, and can be read and interpreted by personnel without expertise
in the actual model induction technique.

Via Boolean minimization techniques, functionally superfluous information can
be discarded as part of a rough set analysis. This effectively provides a mecha-
nism for focusing attention on the nature of the classification task at hand. Fur-
thermore, not only may the methodology eliminate complete variables or at-
tributes altogether, but functionally superfluous information within the remain-
ing attributes can also often be discarded. This enables highlighting of such
information that, e.g., only low values for an attribute are relevant for classifica-
tion, while medium and high values do not matter.

Construction of the knowledge-base is commonly perceived as a major bottle-
neck in building rule-based expert systems. As rough sets can be used to au-
tomatically induce if-then rules from empirical data, this offers the possibility
to automate, at least in part, the knowledge acquisition stage when developing
such systems.

Rough set theory is directly equipped to handle inconsistent or seemingly con-
flicting examples in the data material. Inconsistencies may occur due to, e.g.,
transcription errors, subjective determination of attribute values or outcomes,
lack of information, or if the mutual exclusivity assumption from Section 2.4.2 is
violated.

The theory of rough sets can handle any finite number of outcome categories,
and not just dichotomous outcomes.
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Certain types of important background information are possible to incorporate
in the modelling phase, if available. For example, information about attribute
costs can be embedded in the process of searching for functional dependencies
or minimal discerning subsets. Furthermore, extensions of standard rough set
theory have the ability to handle missing values and taxonomies or hierarchies
among attribute values.

Since discernibility-based methods are logically based, the problem of having
cases or examples that belong to very rare categories numerically “drown” in
the remaining data can be controlled or even avoided.

The suitability of rough sets applied in the medical domain has been investigated by,
e.g., Tsumoto [222–226], who discusses some characteristics of medical reasoning and
argues that rough set representations of diagnostic models is a useful approach to
extracting medical knowledge from databases. Tsaptsinos and Bell [220] argue along
similar lines.

3.4 Discussion

Section 3.3 lists several appealing characteristics of rough sets for data analysis, and
Section 3.2 provides several examples of the methodology having proved its useful-
ness in medicine. However, a few comments are in order, some of which are rough set
specific and some of which are of a more general nature, as discussed in Section 2.4.

3.4.1 On Prerequisites and Assumptions

An implicit assumption underlying the applicability of most techniques for data anal-
ysis, is that data is available in electronic form, and that this can be represented in
tabular format. If the data does not lend itself to such a flat representation or the prob-
lem cannot be expressed as a classification problem, alternative methods than rough
sets may be preferable.3 Furthermore, a great deal of ingenuity might be required to
represent certain types of data, e.g., temporal data,4 in a suitable format.

Several of the appealing features listed in Section 3.3 can be traced back to that so few
assumptions about the data are made. However, this is a double-edged sword, since
there might equally well be information available that is not being made use of, e.g.,

3In theory, a rough set only requires a binary indiscernibility relation to be defined on the universe of
objects, and does in itself not directly rely on a tabular representation of data. In practice, however, this
binary relation is always constructed on the basis of discernibility considerations derived from flat data
tables.

4Approaches to this include devising attributes that encode time lags, first and second time deriva-
tives of attributes evaluated at the time of data acquisition, and using Boolean state attributes that denote
whether or not some event has happened at the time of recording the current data point. Yet another ap-
proach is to convert complete time evolutions into time-invariant attributes such as Fourier coefficients
or regression coefficients of polynomials in t.
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in the form of metrics or information about dependencies or attribute semantics. Also,
since rough set analysis is data-driven, incorporation of any existing domain theories
as background knowledge can be difficult. Two ways to incorporate at least some
background knowledge is to extend the data table with hand-crafted problem-specific
attributes or features that are combinations of more primitive attributes, or to overload
or redefine what is really meant by “discernibility”.

For methods based on discernibility, it is important that an appropriate degree of
coarseness is employed when viewing the world. Otherwise, a bias will be made
towards selecting many-valued attributes. In concrete terms, this means that for ordi-
nal attributes some kind of preprocessing is likely to be needed. For attributes taking
on numerical values, this may translate into defining intervals or bins rather than
operating on the original numerical data. A wide variety of algorithms exist for au-
tomatically computing the appropriate ranges of these intervals, some of which are
also based on discernibility considerations. A rough set analysis might be sensitive to
different discretizations.

Proponents of rough sets often argue that the method is objective due to the philos-
ophy of letting the data material speak for itself. This is only true to the extent that
the data itself is objective, something it need not necessarily be. For example, a di-
chotomous attribute may be the result of having binarized a vague concept using a
subjectively chosen threshold. This issue is further discussed by Koczkodaj et al. [102].

3.4.2 On Interpretation and Deployment

A rough set analysis may reveal functional or near-functional dependencies between
attributes. However, functional dependencies do not necessarily reflect causal rela-
tionships.5 Whether they do or not is something that can only be decided by a domain
expert. Moreover, a model induced by a rough set analysis is the result of a purely
syntactical process, and domain expertise is required to assess the semantical bearings
of the model.

Although a single rule may in itself be readable and interpretable, it is easy to lose
sight of the overall rule-based model if the size of the rule set is too large. Hence, in
practice, rule-basedmodels can often be said to be opaque rather than white-box when
it comes to themodel as a whole. For work on taming large rule sets, see, e.g., [4,5,149].
Strong model components, i.e., individual rules, however, can often be extracted and
interpreted simply by sorting the rules according to some measure of goodness, and
viewing only the highest-ranking rules. Of course, the interpretability of a single rule
depends on the length of its antecedent. As reported by Lavrač [113], medical doctors
often tend to prefer rules that are of medium complexity since too short rules, even
though they may be strong, may not correlate enough information for them to be of
interest for KDD purposes. Tsumoto [222, 224] also discusses this aspect.

5The same comment applies to other measures of correspondence, e.g., statistical correlation. A fa-
mous example illustrating the difference between correlation and causality is the fact that the position
of the hands of all clocks are correlated, without one clock being the cause of the position of the others.
Another example is the significant correlation between human birth rates and stork population sizes [18].
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Many papers on applications of rough sets emphasize that the models produced are
inspectable, yet still only use themodel as a black-box classifier and do not present any
actual rules verified by a domain expert. The reasons for this may be many, the per-
haps dominating one being that the persons performing the analysis and the persons
that provide the data are seldom the same. Hence, the domain expertise required to
be able to perform such a semantical verification may be lacking. Extremely close co-
operation between data analysts and domain experts is required for actual knowledge
discovery to be done.

Flat data tables can in many ways be said to describe a kind of “one-shot” approach
to classification, i.e., where a whole set of observations are collected before a classi-
fication is made. Viewing a classification as a diagnosis, this is in contrast with how
medical diagnoses are typically made in practice, where arriving at a diagnosis is an
iterative and serial decision-making procedure. By this is meant that a diagnosis is
often really eventually “converged upon” after acquiring a series of tests in a certain
order, and deciding on whether to order more tests in order to strengthen or weaken
the current hypothesis. If the chosen machine learning technique has the ability to
discard functionally redundant information, some of this seriality may possibly be re-
covered from the data table. Decision trees and methods that induce if-then rules are
examples of such methods.

Rule-based expert systems usually reach conclusions through forming chains of de-
duction, while if-then rules as output from a rough set analysis relates multiple con-
ditions to a single decision. The decision or outcome in one table may be a condition
in another table, so rule induction may have to be performed repeatedly for differ-
ent decisions if the rules are to be employed in expert systems that support chaining.
Otherwise, the induced rules can only form a single link in a reasoning chain.

If-then rules output from a standard rough set analysis relate only positive knowledge,
and do not involve negations. Rather, a negated propositional fact is represented as an
exhaustive listing of the other possible values for the attribute in question. However,
this is partially a matter of data representation and model presentation. If knowledge
of the set of values an attribute might take on is employed, a collection of rules can be
massaged to incorporate negations before being presented to the user.6 Negations can
also be obtained in retrospect by considering the contrapositives of rules. This logical
equivalence is explored by Tsumoto [223].

3.4.3 OnModel Maintenance and Assessment

If more data becomes available after a model has been synthesized, it would be de-
sirable to be able to update the model incrementally such that the new training data
is also taken into account. Many common data mining methods simply re-synthesize
a model from scratch using all available data. Not only may this be time-consuming,
but also assumes that the original training data is available in the first place. Re-
search related to rough sets and incremental learning include work by Tsumoto and

6This will be further discussed in Section 8.4.1.
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Tanaka [227] and Shan and Ziarko [188].

Traditionally, accuracy or error rate has been the dominating measure for assessing
classificatory performance in the machine learning literature. In medicine, ROC anal-
ysis is the prevailing measure of discriminatory performance for dichotomous out-
comes. The number of studies reported in the literature where rough set predictors
are evaluated through an ROC analysis are few, but on the rise.
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Chapter 4

Boolean Reasoning

4.1 Introduction

In 1854, George Boole [17] set out to develop a framework in which the laws of thought
could be formalized, with the ultimate goal of reducing human reasoning to calcu-
lation. This seminal work in modern symbolic logic introduced several techniques
and concepts that in the past 150 years have been refined and further developed by
logicians and mathematicians into the rich body that the topic constitutes today.1 Al-
though Boole’s equation-based logic has been widely abandoned by 20th century lo-
gicians in favour of the more powerful predicate calculus, parts of his original frame-
work is still very useful for practical applications.

Boolean reasoning builds on the equation-based Boole-Schröder algebra of logic rather
than on the predicate calculus, and is an extremely versatile tool with a wide range of
applications. This chapter only briefly touches upon the topics needed in connection
with rough set theory. The interested reader is referred to Brown [21] for a more de-
tailed exposition.

4.2 Boolean Algebras

A Boolean algebra is a quintuple B, , , 0, 1 where the four postulates given below are
satisfied. The set B is called the carrier set, and “ ” and “ ” are binary operations on B.
The elements 0 and 1 are distinct members of B. A Boolean algebra is often denoted
in shorthand by its carrier set alone.

1. Commutative laws: For all a, b B, a b b a and a b b a.

2. Distributive laws: For all a, b, c B, a b c a b a c and a b c
a b a c .

1On a historical note, many of the proofs that Boole gave to justify his methods are best described as
“complete nonsense”. Burris [23] provides a short discussion of this and some examples.
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3. Identities: For all a B, 0 a a and 1 a a.

4. Complements: To any element a B there corresponds an element a B such
that a a 1 and a a 0.

We define the relation on a Boolean algebra as follows:

a b a b 0 (4.1)

The relation is a partial order. Partial orders, conveniently depicted in Hasse dia-
grams,2 have three basic properties:

1. Reflexivity: For all a B, a a.

2. Antisymmetry: For all a, b B, if a b and b a then a b.

3. Transitivity: For all a, b, c B, if a b and b c then a c.

By the representation theorem of Stone [212], all Boolean algebras with a finite carrier
set are isomorphic to the Boolean algebra of subsets 2A, , , , A of some finite set
A. Because the relation in a Boolean algebra B corresponds to the relation in the
subset-algebra isomorphic to B, is called the inclusion relation.

4.3 Implicants

An m-variable function f : Bm B is called a Boolean function if and only if it can
be expressed by a Boolean formula. An implicant of a Boolean function f is a term
p such that p f . In other words, an implicant of f is any conjunction of literals
(variables or their negations) such that, if the values of these literals are true under an
arbitrary valuation v of variables, then the value of f under v is also true. Any term of
a sum-of-products (SOP) formula for f is clearly an implicant of f .

A prime implicant is an implicant of f that ceases to be so if any of its literals are re-
moved. An implicant p of f is a prime implicant of f in case, for any term q, the
implication below holds.

p q f p q (4.2)

The disjunction of all prime implicants of f is called Blake’s canonical form and is de-
noted BCF f . In general, the task of computing all terms of BCF f belongs to the

2In general, if is a partial order on a set B, we construct a Hasse diagram for on B by drawing a
line segment from a up to b, if a, b B with a b and if there is no other element c B such that a c
and c b. If we adopt the convention of reading the diagram from bottom to top, then it is not necessary
to direct any edges.
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NP-hard class of problems [62]. For large and complex functions f , therefore, approx-
imation algorithms and heuristics that search for individual terms of BCF f are in
order.

4.4 General Scheme

Following the presentation of Brown [21], the general scheme of applying Boolean
reasoning to solve a problem P can be formulated as follows:

1. Encode the problem P as a system of simultaneously-asserted Boolean equa-
tions.

P
g1 h1

...
gk hk

(4.3)

The gi and hi are Boolean functions on B.

2. Reduce the equation system to a single Boolean equation3 fP 0.

fP
k

i 1
gi hi gi hi (4.4)

3. Compute BCF fP , the prime implicants of fP.

4. Solutions to P are obtained by interpreting the prime implicants of fP.

This general scheme defines a powerful and versatile tool for problem solving, with an
infinite array of possible applications. In the field of machine learning this procedure
may crop up as a subcomponent in algorithms for rule induction, clustering, feature
extraction and discretization of real-valued attributes.

Ledley and Lusted [114] emphasize Boolean reasoning as one of the foundations of
medical diagnosis, together with probability and value theory. They state the logical
problem of medical diagnosis as follows:4

The logical aspect of the medical diagnosis problem is to determine
the diseases f such that if medical knowledge E is known, then: if the patient
presents symptoms G, he has diseases f . In terms of our symbolic language,
the problem is to determine a Boolean function f that satisfies the follow-
ing formula:

E G f
3As discussed by Brown [21], Boole and other 19th century logicians based symbolic reasoning on

equations in 0-normal form, i.e., fP 0. The equivalent 1-normal form, i.e., fP 1, may also be used.
4The notion that a implies b is typically written as “a b”, and is semantically equivalent to “a b”.



40 CHAPTER 4. BOOLEAN REASONING

This is the fundamental problem of medical diagnosis. That this is truly
the diagnosis in an intuitive sense can be readily seen. For it is easy to
show that the fundamental formula can be equivalently written as

E f G

which means in a sense that if the diseases f are cured, then the patient’s
symptoms will disappear. It can be shown that a solution f always exists.



Chapter 5

Discernibility and Rough Sets

5.1 Introduction

This chapter introduces the rough set theory of Pawlak [154, 155] and some of its the-
oretical foundations. Several of the most practically important concepts in rough set
theory can be conveniently interpreted in the realm of Boolean reasoning, and Boolean
reasoning techniques are typically applied to solve minimization problems in rough
set theory, as shown by Skowron and Rauszer [192, 196].

The exposition in this chapter is slightly non-standard in a couple of ways. The in-
discernibility relation, the fundamental building block of rough sets, will be defined
in terms of a structure called a discernibility matrix. This in contrast to how the ma-
terial is typically presented in the literature, where discernibility matrices are mostly
considered as a tool for solving minimization problems wrt. the indiscernibility rela-
tion. Furthermore, the exposition in this chapter has been generalized to a level that
encompasses most popular extensions of standard rough set theory.

The literature is rich with papers that link rough set theory to other theoretical frame-
works in computer science and mathematics. However outside the scope of this chap-
ter, these works include connections to Dempster-Shafer evidence theory [193], fuzzy
set theory [50,152], modal logics [247] and mathematical morphology [195], to name a
few.

5.2 Information Systems

The basic vehicle for data representation in the rough set framework is an information
system. An information system is in this context a single flat table, either physically
or logically in form of a view across several underlying tables. We can thus define an
information system in terms of a pair U, A , where U is a non-empty finite set of
objects and A is a non-empty finite set of attributes.
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U, A (5.1)

Each attribute a A can be viewed as a function that maps elements of U into a set
Va. The set Va is called the value set of attribute a.

a : U Va (5.2)

The value of attribute a for object x is said to be missing if a x has not been observed.
Values may be missing for a variety of reasons. How missing values should be inter-
preted and subsequently treated depends on the application domain. In the following,
“ ” will be used to denote a missing value, and is assumed to be a member of every
value set.

5.2.1 Discernibility Matrices

An information system defines a matrix MA called a discernibility matrix. Each entry
MA x, y A consists of the set of attributes that can be used to discern between
objects x, y U:

MA x, y a A discerns a, x, y (5.3)

Typically, the discerns/3 predicate is defined as ordinary inequality on the attribute
values as defined in Equation 5.4, but the definition of the discerns/3 predicate can be
tailored to the application at hand.

discerns a, x, y a x a y (5.4)

Conceptually, MA is an U U matrix. More pragmatically, we only need to con-
sider pairs of distinct objects during its construction. Also note that if discerns/3 is
symmetric in x and y as well as reflexive, thenMA x, y MA y, x andMA x, x
for all x, y. In practice, this means that we can get away with computing less than half
the matrix entries when constructing MA.

Defining Discernibility

Overloading the notion of discernibility on a per attribute basis is one way of letting
background domain knowledge enter into a discernibility-based data analysis. This is
explored in the following. Note, however, that tailoring the definition of discernibility
may have consequences wrt. properties of relations derived from MA. This will be
further discussed in Section 5.2.2.
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In some applications the elements of an attribute’s value set can be hierarchically orga-
nized, e.g., according to an “is-a” relation. We can model such a situation by a partial
order a on Va, where v1 a v2 is to be read as “v1 is an instance of v2” or “v2 is more
general than v1”. It then seems natural to define that an attribute can only be used
to discern between two objects if their corresponding attribute values do not form an
inclusion:

discerns a, x, y a x a a y and a y a a x (5.5)

To gain an intuitive understanding of Equation 5.5, consider the example from the
medical domain found in Figure 5.1. As discussed in Section 2.3.1 and Section 2.4.1,
medical data on electronic form is often encoded using CMTs. Some of these CMTs
define hierarchies, at least in principle. One such CMT is the ICD-9-CM system [59],
which assigns three-digit numerical codes to diagnoses, possibly with a fourth modi-
fier digit. Generally, the code prefixes define gradually more specific families or classes
of diagnoses. The fragment depicted in Figure 5.1 could be used if attribute a assigned
ICD-9-CM diagnosis codes.

Equation 5.5 can be reduced to a plethora of special cases. A discrete partial order is
one in which no two distinct elements are comparable. If a is discrete, Equation 5.5
reduces to themore traditional Equation 5.4. If a discrete partial order is extendedwith
as an element that is “more general than” all other elements, we obtain Equation 5.6,

which can be viewed as a simple way of handling missing values [111, 112].

discerns a, x, y a x a y and a x and a y (5.6)

In a discernibility-based data analysis, the traditional way of handling an attribute
with a value set that is totally ordered is to somehow partition its original value set
into intervals, and to treat this discretized attribute as a categorical variable using
Equation 5.4. As an alternative to this discretization process, we can choose to over-
load the notion of discernibility. Equation 5.7 displays one way of doing this, where
we define that an attribute can only be used to discern between two objects if their cor-
responding attribute values are “far enough” apart, as determined by the parameter
ra:

discerns a, x, y a x a y ra (5.7)

In general, complete control of the discerns/3 predicate for an attribute a can be ob-
tained by means of an indiscernibility definition graph (IDG). An IDG for attribute a is a
directed graph with the elements ofVa as nodes or vertices, and a set of edges Ea V2a .

IDGa Va, Ea (5.8)
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Figure 5.1: An example concept hierarchy from the medical domain, depicting a small frag-
ment of the ICD-9-CM hierarchy. Such partial orders can be used to define the discerns/3
predicate, as shown in Equation 5.5. For example, this fragment states that we cannot, on the
basis of ICD-9-CM diagnosis codes alone, discern between a person x with diagnosis code
“410” and a person y with diagnosis code “410.3”, but that we can use the diagnosis code to
discern between x and a person zwith diagnosis code “434.1”. Note that no information at all,
denoted by the missing value symbol “ ”, is here defined as a top omnimatching element.
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Ea discerns/3
v, v v Va Equation 5.4
v1, v2 , v2, v1 v1, v2 Va and v1 a v2 Equation 5.5
v, v , v, , , v v Va Equation 5.6
v1, v2 v1, v2 Va and v1 v2 ra Equation 5.7

Table 5.1: An overview of how the set of edges Ea in an IDG translates into various defini-
tions of the discerns/3 predicate. By carefully defining Ea, the notion of discernibility can be
overloaded on a per attribute basis.

The edges Ea effectively define the discerns/3 predicate through Equation 5.9. An edge
v1, v2 Ea is to be interpreted as that attribute a cannot be used to discern an object
with value v1 from an object with value v2.

discerns a, x, y a x , a y Ea (5.9)

How Equation 5.9 encompasses all the other definitions of discerns/3 can be seen from
Table 5.1. Hybrids are of course possible.

When Equation 5.9 is employed, great care should be taken that Ea is correctly speci-
fied. At the very least, the IDG should define a reflexive relation. The relation should
almost always be symmetric as well. S owiński and Vanderpooten [207] explore intro-
ducing a “directedness” property of discernibility, thus abandoning symmetry.

Lastly, we note that IDGs are flexible enough to also accommodate the situation when
there is some uncertainty in the attribute values, e.g., when a can only relate x to a
subset of Va rather than an element of Va.1 If we further assign a certainty distribution
to the set of possible values for a x , we obtain an extension reminiscent of that of
S owiński and Stefanowski [206].

5.2.2 Indiscernibility Relations

A discernibility matrix MA defines a binary relation RA U2. The relation RA is
called an indiscernibility relationwith respect to A, and expresses which pairs of objects
that we cannot discern between.

xRAy MA x, y (5.10)

A generalization of Equation 5.10 would be to define two objects to be in RA if and
only if we do not bother to discern between them (even if we can), simply because

1Technically, we then have 2Va as the effective value set. The discerns/3 predicate might then be
implemented as, e.g., a threshold on some measure of set similarity, and might be interpreted as Va.
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they do not differ “enough”.2

The properties of RA vary according to how the discerns/3 predicate is defined. If
discerns/3 is defined as in Equation 5.4, RA is an equivalence relation. Equivalence rela-
tions have three basic properties:

1. Reflexivity: For all x U, xRAx.

2. Symmetry: For all x, y U, if xRAy then yRAx.

3. Transitivity: For all x, y, z U, if xRAy and yRAz then xRAz.

With alternative definitions of the discerns/3 predicate such as, e.g., Equation 5.5 or
Equation 5.6, transitivity is easily lost. Relations that are reflexive and symmetric but
not transitive are sometimes referred to as similarity relations or tolerance relations. In
standard rough set theory the indiscernibility relation is required to be an equivalence
relation, but less restrictive extensions of rough set theory do not require the transitiv-
ity condition to hold.

The indiscernibility set of an object x U is denoted RA x , and consists of those objects
that stand in relation to object x by RA.

RA x y U xRAy (5.12)

If RA is an equivalence relation, then the indiscernibility sets are called equivalence
classes. Equivalence relations induce a partition of the universe, meaning that all equiv-
alence classes are disjoint and their union equals the full universe U. Vice versa, a
partition also induces an equivalence relation. In the more general case of tolerance
relations, the indiscernibility sets form a covering of U, meaning that the indiscerni-
bility sets are allowed to overlap.

Indiscernibility Graphs

An alternative way to represent RA is as an indiscernibility graph, i.e., a graph GA with
vertices U and edges RA:

GA U, RA (5.13)
2One way to accomplish this would be to define RA as follows:

xRAy cost MA x, y k (5.11)

This formulation states that we do not bother to discern between objects that are “cheap enough” to
discern between. Note that with k 0, the function cost defined as the sum of costs of each member
attribute, and with a unit cost for all attributes, Equation 5.11 reduces to Equation 5.10.
Another plausible choice for numerical attributes would be to define cost as, e.g., the weighted Man-

hattan or Mahalanobis distance between x and y wrt. the attributes in MA x, y .
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xRA x

AX

X

AX

Figure 5.2: We can imagine the indiscernibility relation RA, here assumed to be an equivalence
relation, to define a grid that we overlay our universe U, with each indiscernibility set being
displayed as a “pixel” or square in the grid. This grid forms our approximation space. The
subset of objects X U that we want to approximate is drawn as a dashed line that crosses
pixel boundaries, and cannot be defined crisply within our approximation space. The lower
and upper approximations AX and AX are drawn as thick gridlines.

GA is normally only interesting to consider when RA is a tolerance relation. The graph
can then be used for the purpose of clustering or unsupervised learning, with the
distance metric being the length of the shortest path between two objects [192].

5.2.3 Rough Sets

The basic idea behind rough sets is to construct approximations of sets using the bi-
nary relation RA. The indiscernibility sets RA x form basic building blocks from
which subsets X U can be assembled. If X cannot be defined in a crisp manner
using attributes A, we can circumscribe them through lower and upper approximations
AX and AX, defined below.

AX x U RA x X (5.14)
AX x U RA x X (5.15)

The lower approximation consists of those objects that certainly belong to X where-
as the upper approximation consists of the objects that possibly belong to X. Note
that the upper approximation includes the lower approximation. The boundary re-
gion is defined as the difference between the upper and the lower approximation, and
consists of the objects that we cannot decisively assign as being either a members or
non-members of X. The outside region is defined as the complement of the upper ap-
proximation, and consists of the objects that are definite non-members. A rough set is
any subset X U defined through its lower and upper approximations.

Figure 5.2 displays these ideas graphically.
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Rough Membership Functions

The rough membership function [156] is a function µXA : U 0, 1 that, when applied to
object x, quantifies the degree of relative overlap between the set X and the indiscerni-
bility set to which x belongs. The rough membership function can be interpreted as
a frequency-based estimate of Pr x X x, A , the conditional probability that object
x belongs to set X, given knowledge of the information signature of x with respect to
attributes A.

µXA x
RA x X
RA x

(5.16)

Variable Precision Rough Sets

The formulas for the lower and upper set approximations can readily be generalized
to some arbitrary level of precision π 0, 0.5 by means of the rough membership
function, as shown below. Note that the lower and upper approximations as defined
in Equation 5.14 and Equation 5.15 are obtained as a special case.

AπX x U µXA x 1 π (5.17)
AπX x U µXA x π (5.18)

A rough set X defined through the lower and upper approximations AπX and AπX
is sometimes referred to as a variable precision rough set [249, 250], and can be seen as
a way of “thinning” the boundary region. Equation 5.17 and Equation 5.18 can easily
be generalized to employ asymmetric bounds [98].

5.2.4 Discernibility Functions

A discernibility function is a Boolean product-of-sums (POS) function that expresses
how an object or a set of objects can be discerned from a certain subset of the full
universe of objects.

From a discernibility matrix MA, we can construct the discernibility function relative
to an object x U as shown below. The function fA x is a POS function of A
Boolean variables, where variable a corresponds to attribute a. Each conjunction of
fA x stems from an object y U fromwhich x can be discerned, and each termwithin
that conjunction represents an attribute that discerns between those objects.3

3Relating this to the general Boolean reasoning scheme outlined in Section 4.4 and using the 1-normal
form of the resulting Boolean equation, the system P of simultaneously-asserted Boolean equations
would consist of one equation for each y U such that MA x, y . Equation 4.3 would then read,
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fA x
y U

a a MA x, y and MA x, y (5.20)

The prime implicants of fA x reveal the minimal subsets of A that are needed to
discern object x from the objects in U that are not members of RA x .

In addition to defining discernibility relative to a particular object, discernibility can
also be defined for the information system as a whole. The full discernibility func-
tion gA U is defined below, and expresses how all objects in U can be discerned from
each other.

gA U
x U

fA x (5.21)

The prime implicants of gA U reveal the minimal subsets of A we need to discern all
distinct objects in U from each other.

Equation 5.21 includes all non-empty entries in MA in the construction of gA U . In
practice, including entries from only the lower or upper triangular matrix of MA suf-
fices. This is explored below.

Simplification

A Boolean POS function can often be considerably simplified while fully preserving
the function’s semantics. First of all, duplicate sums can be eliminated since Boolean
algebras have the property of multiplicative idempotence, meaning that a a a for
all members a of the algebra’s carrier set B. If the function has n product terms, this can
be done by a simple sort-and-scan procedure which is bounded by the sorting step,
typically O n log n . Furthermore, a sum that includes (“is a superset of”) another
sum in the function can be safely eliminated since in Boolean algebras a a b a
for all members a, b B. This property is called absorption. Absorption can be carried
out naively in O n2 time, but subquadratic algorithms exist [171, 172]. Boolean SOP
functions can be simplified in a similar manner.

In practical applications, Boolean functions are typically simplified during or after
construction before being passed on to other procedures that employ them. The run-
ning time of the simplification often heavily dominates the running time of the overall
algorithm, but this can be seen as a kind of “insurance” since it reduces the chances
that the subsequent procedures that employ the function will have an unacceptably
taking the disjunction over all a MA x, y :

P

...
a 1

...

(5.19)
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high running time. This because many of the procedures that employ and process
Boolean functions are NP-hard, and we may hence choose to run an often dominating
polynomial algorithm to make the problem smaller before passing it on to a poten-
tially exponential algorithm.

Constructing Binary Information Systems

A discernibility function is constructible from an information system, but an infor-
mation system is also constructible from a Boolean POS function. This opens up a
gateway for using table-based software systems for general Boolean reasoning pur-
poses.

Let h denote any Boolean POS function of m Boolean variables a1, . . . , am , composed
of n Boolean sums s1, . . . , sn . Furthermore, let wij 0, 1 denote an indicator
variable that states whether ai occurs in s j.

s j
m

i 1
wij ai (5.22)

h
n

j 1
s j (5.23)

We can then construct a binary information system composed of a universe U
x0, . . . , xn and a set of attributes A a1, . . . , am as shown below.

ai x j
0 if j 0
wij otherwise (5.24)

From the resulting binary information system, we then have that fA x0 h.

5.2.5 Reducts

An important practical issue is whether some of the attributes in an information sys-
tem are redundant with respect to enabling us to make the same object classifications
as with the full set of attributes A.

If an attribute subset B A preserves the indiscernibility relation RA and hence our
ability to form set approximations, then the attributes A B are said to be dispensable.
Typically, an information system may have many such attribute subsets B. All such
subsets that are minimal, i.e., that do not contain any dispensable attributes, are called
reducts. The set of all reducts of an information system is denoted RED .

A graphical display of the notion of reducts can be found in Figure 5.3.
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R a,b,c,d

=

R a

+

R b

+

R c

+

R d

Figure 5.3: The indiscernibility relation RA can be seen as the superposition of the indiscerni-
bility relations R a for each of the individual attributes a A. As such, not all of the attributes
might be needed in order to “sum up” to the total observed RA. A reduct is a minimal subset
B A such that RB RA. In this example, the reducts are a, b , b, d and c, d .

(a) Reducts in RED preserve the
indiscernibility relation RA, i.e., they
preserve the “grid” or all “pixels”.
Such reducts are minimal attribute
subsets B A that enable us to dis-
cern all discernable objects from each
other.

x

(b) Reducts in RED , x preserve at
least the indiscernibility set RA x ,
i.e., they preserve the “pixel” contain-
ing x. Such reducts are minimal at-
tribute subsets B A that enable us
to discern object x from all other dis-
cernable objects.

Figure 5.4: Different types of reducts of an information system .

As noted in Section 5.2.4, different variations and combinations of indiscernibility are
possible. In particular, indiscernibility may or may not be relative to a particular object
x. If indiscernibility is relative to x, two objects y and z that are different from x are
considered to be indiscernible simply on the basis that they differ from x, regardless
of whether y and z are actually indiscernible. Reducts that are relative to a particular
object reveal the minimum amount of information needed to discern that particular
object from all other discernable objects. The set of all reducts of an information system
that are relative to an object x is denoted RED , x .

A graphical display of which parts of the overall indiscernibility relation that the two
types of reducts preserve can be found in Figure 5.4.

A reduct is isomorphic to a prime implicant of a discernibility function [196]. Hence
the relationships listed below hold for any information system :

B RED RB RA and B is minimal (5.25)
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a B
a is a prime implicant of gA U

B RED , x RB x RA x and B is minimal (5.26)

a B
a is a prime implicant of fA x

A reduct B RED of an information system defines a functional dependency
B A B, as known from relational database theory. That is, on the basis of the
attributes in a reduct we can define a function such that the values of the attributes
not in the reduct can be computed. Viewed in the context of relational databases, we
may thus use the fields B as a composite, minimal key for table .

Reducts and Hitting Sets

A hitting set of a given bag or multiset4 of elements from 2A is a set B A such
that the intersection between B and every set in is non-empty. The set B HS
is a minimal hitting set of if B ceases to be a hitting set if any of its elements are
removed. Let HS andMHS denote the sets of hitting sets and minimal hitting
sets, respectively.

HS B A B Si for all Si in (5.27)

The problem of computing prime implicants of Boolean POS functions is easily trans-
formed into the problem of computing minimal hitting sets [196]. If h is a Boolean
POS function composed on n sums as defined in Equation 5.22 and Equation 5.23, we
can interpret h as a bag or multiset h with n elements as follows:5

h Si Si a j A a j occurs in si (5.28)

A hitting set of h obviously defines an implicant of h, and subsequently, a minimal
hitting set corresponds to a prime implicant. Relating this connection to reducts, we
thus have the following relationships:

4A bag or a multiset is conceptually an unordered collection of elements where the same element may
occur more than once. Mathematically, therefore, it is common to define a multiset through a mapping
from the element domain into the set of natural numbers, with the mapping defining the occurrence
count. Here notation will be abused slightly and set-like syntax will in places be employed for con-
venience, even though duplicates are allowed. The text should make it clear whether we are dealing
with sets or multisets. For additional clarity, a list-like notation with square brackets will be adopted for
multisets in lieu of curly braces.

5The multiset constructor is a trivial matter of reinterpretation, as the following example shows:

a b a b c a, b , a, b , c
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B RED B MHS gA U (5.29)
B RED , x B MHS fA x (5.30)

5.2.6 Reduct Approximations

Real-world data is almost always polluted with noise and other imperfections. Hence,
since it only takes a single, noisy object to change the indiscernibility relation, reducts
as defined in Section 5.2.5 are prone to incorporate noise and other peculiarities in the
data set. Clearly, what is desirable to find are attribute subsets that reveal the under-
lying, general patterns in the data material. This implies that reduct approximations
need to be found instead, i.e., attribute subsets that in a sense “almost” preserve the
indiscernibility relation. In Figure 5.3, one could say that b constitutes such a subset.

Dynamic Reducts

The process of computing dynamic reducts [12, 13] from an information system can
be seen as combining normal reduct computation with resampling techniques. The
basic idea is simple:

1. Randomly sample a family of subsystems 1, . . . , n from , where each
subsystem i Ui, A and Ui U.

2. From each subsystem i , compute RED i .

3. Note with which frequency each reduct occurs across all reducts computed in
the previous step.

The reducts that occur the most often in the outlined procedure are believed to be the
most “stable”, and reveal more general relationships in than RED does. The set
of ε-dynamic reducts of an information system with respect to a family of sampled
subsystems is denoted DRED ,ε, , and consists of those attribute subsets that
occur “frequently enough” as reducts,6 as determined by the parameter ε.

DRED ,ε, B A i B RED i 1 ε (5.31)

Similarly, one can also define dynamic reducts relative to an object x U by consider-
ing RED i, x instead of RED i . However, the sampling of the family of subsys-
tems must then be constrained so that x Ui for all i .

6Equation 5.31 actually yields what Bazan [12] calls generalized dynamic reducts, and is slightly less
strict in its definition than how dynamic reducts are often defined. To achieve dynamic reducts as defined
in [12,13,192], the term B A in Equation 5.31 can be substituted by B RED .
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Figure 5.5: Conceptual depiction of the difference between an approximate hitting set formu-
lation and one sample in a dynamic reduct computation framework. The former blocks out
or ignores individual entries in the discernibility matrix, while the latter blocks out or ignores
complete matrix rows and columns. Only half the matrix is displayed since the matrix is sym-
metric.

Approximate Hitting Sets

The sampling of subsets of objects Ui U done when computing dynamic reducts
translates to removing or suppressing those rows and columns in the discernibility
matrix that correspond to objects x Ui. A natural generalization of this is to suppress
individual entries in the matrix rather than complete rows or columns, i.e., ignoring
only certain object-object interactions. This is illustrated in Figure 5.5, and can be
accomplished through considering approximate solutions to the minimal hitting set
problem outlined in Section 5.2.5.

An approximate solution to the hitting set problem is a set that hits “enough” elements
of the bag ormultiset . This can be further generalized to the situation wherewe have
different numerical values or weights w Si associated with each member Si of . The
set of ε-approximate hitting sets of with respect to w is denotedAHS ,ε,w , where
the parameter ε controls the degree of approximation.

σw
Si in

w Si (5.32)

AHS ,ε,w B A σw Si in Si B
σw

ε (5.33)

The set B AHS ,ε,w is a minimal ε-approximate hitting set if it ceases to be so if
any of its elements are removed. The set of all minimal ε-approximate hitting sets is
denotedMAHS ,ε,w .

The purpose of introducing the function w should perhaps be mentioned. When the
multiset is constructed from a Boolean POS function h as shown in Equation 5.28, w
is meant to carry over some original numerical information that might otherwise go
lost if h has undergone some kind of transformation, e.g., simplification as described
in Section 5.2.4. For example, in an unsimplified Boolean POS function, w would typ-
ically equal unity for all members of and σw would reduce to a cardinality count.
If all duplicate sums were eliminated from h, i.e., if was transformed from a mul-
tiset to an ordinary set, w would be updated to reflect the occurrence counts prior to
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removing duplicate elements. The function w would be automagically7 updated in
a similar manner when supersets are removed. See Vinterbo and Øhrn [233] for de-
tails. Without the weighting w and the multiset extension, the outlined approximation
scheme is related to what Skowron and Nguyen [194] callα-reducts.

Computing all elements of MAHS ,ε,w is in general computationally intractable,
and heuristics are needed. Vinterbo and Øhrn [233] apply a genetic algorithm to
search for solutions. Furthermore, they incorporate the option to add information
about attribute costs to the search so that “cheap” solutions can be obtained.

5.3 Decision Systems

It often happens that each entry or object in an information system has some kind
of labeling associated with it. For instance, in a medical database, each object may
represent a patient that may have a known disease status or treatment outcome. It is
typically desirable to incorporate this labeling into the rough set analysis. An impor-
tant subclass of information systems are therefore decision systems, also called decision
tables.

A decision system is any information system of the form below, where d A is
a distinguished attribute called the decision attribute. The elements of A are called
condition attributes.

U, A d (5.34)

Since a decision system is a special kind of information system, the mathematical ma-
chinery developed in Section 5.2 is applicable also to decision systems. In some cases,
though, we may want to treat the decision attribute in a special manner. This will be
further explored in Section 5.3.3.

5.3.1 Decision Classes

The decision attribute d induces a partition of the universe of objects U. Without loss
of generality, we may assume that Vd is the set of integers 1, . . . , r d , where r d is
said to the rank of d. The induced partition is therefore the collection of equivalence
classes X1, . . . ,Xr d , called decision classes, where two objects are said to belong to
the same decision class if they have the same value for the decision attribute.

Xi x U d x i (5.35)

In most practical applications, it is the decision classes that we typically want to ap-
proximate using the framework outlined in Section 5.2.3.

7Automatically, but in a way that, for some reason (typically because it is too complicated, or too ugly,
or perhaps even too trivial), the speaker doesn’t feel like explaining to you [177].
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5.3.2 Generalized Decisions

In a decision system it may happen that two objects that are indiscernible with
respect to attributes A may belong to different decision classes. The decision system
is said to be inconsistentwith respect to A if this is the case, and consistent otherwise.

The generalized decision attribute A is a function A : U 2Vd that, when applied to
object x, summarizes the set of values that the objects in the indiscernibility set RA x
take on for the decision attribute d.

A x v Vd y RA x such that d y v (5.36)

Note that the decision system is consistent if and only if A x are singletons for all
x U. Furthermore, note that the decision system obtained from by replacing d
with A is necessarily consistent. This property is often exploited in practice, where
in some procedures a decision system is assumed to be consistent. An inconsistent
decision system can thus always be transformed to one that is consistent as an initial
preprocessing step.

5.3.3 Discernibility Matrices

For almost every application where discernibility considerations are useful and each
object has a labeling associated with it, a key observation to make is that we do not
have to discern between objects that belong to the same decision class.

Since decision systems are so central, it is convenient to define the discernibility matrix
modulo the decision attribute of a decision system . This will be denoted Md

A, and is
defined in Equation 5.38 through a simple augmentation of the discerns/3 predicate
from Section 5.2.1. The discerns/4 predicate is defined in terms of discerns/3, but with
the generalized decision functioning as an additional “filtering constraint”.

discerns a, x, y, d A x A y and discerns a, x, y (5.37)

Md
A x, y a A discerns a, x, y, d (5.38)

To incorporate the fact that we need not discern between objects that belong to the
same decision class, we can simply substitute Md

A for MA in all the formulae given in
Section 5.2. This has the effect of propagating this very consideration throughout the
mathematical machinery developed in Section 5.2.8 The resulting relations, functions
and sets are said to be computed modulo d, and will be denoted with a d superscript.

8Here, computation in the context of decision systems is defined as a slight variation of computation
in the context of information systems. We could just as well have made the definitions the other way
around, since Equation 5.38 reduces to Equation 5.3 as a special case when, e.g., d is an automorphism of
U.
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Since discernibility functions and reducts are of such central practical importance, they
will for clarity be presented again in the following section, but reframed in the setting
of decision systems.

Boundary Region Thinning

Just as the discerns/3 predicate could be tailored to the application at hand, one can
employ slightly more complex “filters” in Equation 5.37 than strict inequality of the
generalized decision values. For example, distributions of decision values within
RA x and RA y could come into play. This idea is sometimes referred to as boundary
region thinning, of which the variable precision model from Section 5.2.3 is an example.

π
A x v A x µXvA x π (5.39)

π
A x

π
A x if π

A x
A x otherwise (5.40)

discerns a, x, y, d π
A x π

A y and discerns a, x, y (5.41)

Hence, with boundary region thinning we look at the distribution of decision values
within each indiscernibility set, and exclude those decision values from the general-
ized decision that occur with a frequency below π . Low-probability decision values
are thus treated as “noise”.

5.3.4 Discernibility Functions

Equation 5.20 can readily be computed modulo d as a special case, as shown below.

f dA x
y U

a a Md
A x, y and Md

A x, y (5.42)

The prime implicants of f dA x reveal the minimal subsets of A that are needed to
determine which decision class object x belongs to.

A discernibility function can also be defined for a decision system as a whole. The
discernibility function gdA U defined below expresses how all decision classes in
can be discerned from each other.

gdA U
x U

f dA x (5.43)

The prime implicants of gdA U reveal the minimal subsets of A we need in order to
determine the decision class of every object in U.
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5.3.5 Reducts

In Section 5.2.5, the concept of reducts was defined in the context of information sys-
tems. Although the same mathematical machinery is applicable to decision systems as
noted in Section 5.3.3, reducts are briefly reviewed again here for clarity, but computed
modulo d.

Informally, an attribute subset B A is a reduct of a decision system computed
modulo d if B is minimal and preserves at least our ability to discern between objects
that have different generalized decisions, i.e., lie in different approximation regions.
The set of all such attribute subsets is denoted RED , d . With such a reduct we may
often be able to also discern between some objects that lie in the same approximation
region, but this is not a requirement.

As was outlined in Section 5.2.5, reducts can also be relative to a particular object
x U. Reducts that are relative to an object x and computed modulo d are minimal
attribute subsets B A that enable us to identify at least the objects in RA x , possibly
together with some other objects. These other objects, however, are all required to have
the same value for the generalized decision attribute as x. The set of all such reducts
is denoted RED , x, d .

Formally, we have the following relationships:

B RED , d
a B

a is a prime implicant of gdA U (5.44)

B RED , x, d
a B

a is a prime implicant of f dA x (5.45)

A graphical metaphor for which parts of the overall indiscernibility relation that the
two types of reducts concentrate on preserving can be found in Figure 5.6.

Reducts reveal redundancies in tabular data. A reduct B RED , d of a decision
system defines a functional dependency B d , as known from the theory of rela-
tional databases.
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(a) Conceptually, a reduct in
RED , d preserves at least the
boundaries between the approxima-
tion regions. That is, indiscernibility
sets within the approximation
regions are allowed to coalesce.

x

(b) Conceptually, a reduct in
RED , x, d preserves at least the
indiscernibility set RA x , but also al-
lows this to merge with other objects
that lie in the same approximation
region as x.

Figure 5.6: Different types of reducts of a decision system , computed modulo d.
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Chapter 6

Patterns and Rules

6.1 Introduction

In practical applications, one of the main purposes of rough set data analysis is to
induce or mine patterns or rules from data represented as information or decision
systems. This chapter makes the notions of patterns and decision rules more precise,
and shows how they can be computed from tabular data using the framework outlined
in Chapter 5. Furthermore, an overview of numerical measures of patterns and rules
is presented, along with an introduction to how ensembles of decision rules can be
employed to realize classifiers.

6.2 Patterns

It is convenient to define a language for describing objects in an information system
that have a certain set of properties. A language is defined through a syntax that de-
fines the set of valid expressions or formulae in the language, and a semantics that
maps syntactical entities to their meaning. The meaning of an expression will in our
case be a subset of the universe of objects.

6.2.1 Syntax

A formula in our language is called a pattern. The most primitive pattern and hence
the fundamental building block for assembling formulae in our language is called a
descriptor. A descriptor is simply an expression a v, where a A and v Va.

Patterns can be combined in a recursive manner in order to form more complex pat-
terns by means of the propositional connectives , , , , denoting conjunction,
disjunction, implication and negation respectively. We allow patterns to be parenthe-
sized for clarity.

61
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1. Ifα is on the form a v thenα .

2. Ifα and β thenα β .

3. Ifα and β thenα β .

4. Ifα and β thenα β .

5. Ifα then α .

6. Ifα then α .

7. A patternα is in language if and only if its being so follows from finitely many
applications of the rules above.

6.2.2 Semantics

Letα be a pattern in . The semantics or meaning ofα with respect to an information
system is denoted α , and is defined recursively as shown below.

1. a v x U v, a x Ea

2. α β α β

3. α β α β

4. α β α β

5. α U α

6. α α

The base case of descriptors is here defined in terms of the IDG formulation from
Section 5.2.1.

If the information system is understood, the subscript may be omitted.

6.2.3 Minimal Patterns

The type of pattern that is most commonly considered in an information system is
conjunctions of descriptors, formed by overlaying the set of attributes A over an object
x U and reading off the values of x for every a A. This defines a characteristic
formula for object x with respect to attributes A, and is denoted FA x :

FA x
a A

a a x (6.1)
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Note that the typical meaning of the characteristic formula FA x equals the indis-
cernibility set RA x . This means that a reduct B RED , x is a minimal subset
of A that preserves the semantics of FA x . Hence, reducts form a natural basis for
defining sets of minimal patterns:

PAT , x FB x B RED , x (6.2)

PAT
x U

PAT , x (6.3)

6.2.4 Numerical Measures

Having defined the semantics of the patternα, we are in the position to define several
numerical quantities associated with α. The support of pattern α is the number of
objects in the information system that have the property described byα.

support α α (6.4)

The coverage of pattern α is the support of α divided by the number of objects in our
universe U. Hence, coverage α denotes the proportion of objects in U that match the
description given byα.

coverage α
support α

U (6.5)

If B is an attribute subset generated by a dynamic reduct computation procedure as
described in Section 5.2.6 and x is an object in the decision table B was computed
from, then it is possible to define the stability of the pattern FB x . This issue is further
explored by Bazan [12].

6.3 Decision Rules

Similarly as a decision system is a specialized type of information system, a decision
rule is a specialized type of pattern, as defined in Section 6.2. A decision rule reflects a
relationship, possibly a probabilistic one, between a set of conditions and a conclusion
or decision.

Let denote a decision system, and letα denote a conjunction of descriptors that only
involve attributes in A. Furthermore, let β denote a descriptor d v, where v is any
allowed decision value. The decision rule read “if α then β” is denoted by α β,
with its semantics defined in Section 6.2.2. The patternα is called the rule’s antecedent,
while the pattern β is called the rule’s consequent.
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6.3.1 Minimal Decision Rules

Reducts relative to an object define minimal patterns, as noted in Section 6.2. A nat-
ural scheme for mining a set of minimal decision rules from a decision system is
therefore to use the reducts as a defining basis:

RUL , x, d FB x B B x B RED , x, d (6.6)

RUL , d
x U

RUL , x, d (6.7)

In practical applications where the rules are used to classify unseen objects, reduct
approximations are typically employed instead of proper reducts.

6.3.2 Numerical Measures

Several numerical quantities of interest can be associated with a decision ruleα β.
Frequently, when we talk about the support of the rule we mean the number of objects
in the decision system that posses both propertiesα and β. Most numerical quantities
of interest are derived from support counts.

Accuracy

A decision rule α β may only reveal a part of the overall picture of the decision
system from which it was derived. It may happen that the decision system contains
objects that match the rule’s antecedent α, but that have a different value for the de-
cision attribute than the one indicated by the rule’s consequent β. Hence, we are
interested in the probability of the conclusion β being correct, given pattern α. The
quantity accuracy α β gives a measure of how trustworthy the rule is in draw-
ing conclusion β on the basis of evidence α, and is a frequency-based estimate of the
conditional probability Pr β α .

accuracy α β
support α β

support α
(6.8)

Let B denote the set of attributes that appear in the antecedent α of a decision rule
α β, where α is a conjunction and β is assumed to be a simple descriptor. Let
X denote the decision class described by β. Relating the accuracy measure to the
concepts introduced in Section 5.2.3, we see that accuracy α β is identical to the
value of the rough membership function µXB applied to an object x that matches α.
Thus, accuracymeasures the degree of membership of x in X, using attributes B.
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Figure 6.1: Depiction of four decision rules αi βi over a binary decision domain, i.e., βi
d 0 or βi d 1 . Each dashed set represents support α i , the set of objects that match
the rule’s antecedentαi.

Coverage

We want a rule to be strong in the sense that it has a large support basis. However,
what we consider to be “large” typically varies with how the decision values are dis-
tributed. The quantity coverage α β gives a measure of how well the pattern α
describes the decision class defined through β, and is a frequency-based estimate of
the conditional probability Pr α β .

coverage α β
support α β

support β
(6.9)

A graphical display of the relationship between accuracy and coverage can be found
in Figure 6.1. It is desirable for a rule to be accurate as well as to have a high degree of
coverage, although one does not necessarily imply the other.

Stability

Ifα β is a decision rule that is constructed by overlaying a dynamic reduct over an
object in an information system as described in Section 6.2, then it is also possible to
define the stability of the rule. This issue is further explored by Bazan [12].
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α

Coverage

Accuracy

Figure 6.2: As the length of the antecedent of a decision rule increases, the rule becomes more
specific and less general. As a result, the coverage decreases while the accuracy increases.
Finding a suitable balance between the trade-off between coverage and accuracy can be diffi-
cult in practice.

6.3.3 Balancing Accuracy and Coverage

Obviously, wewould like to obtain decision rules that are both accurate as well as have
a high degree of coverage. It is not difficult to show that as the antecedent of a decision
rule grows longer, the coverage decreases while the accuracy increases. This is shown
graphically in Figure 6.2. Defining a point that balances the trade-off between these
two numerical rule measures can be difficult in practice, and is also a function of the
application domain.

For rule evaluation purposes, it would be helpful if we could combine accuracy and
coverage into a compound quality measure for a decision rule α β. By counting
the number of objects that match or don’t match patterns α and β, we can form a
contingency table from which quality measures can be defined.

Bruha [22] provides a survey of several quality measures. Some measures are purely
ad hoc, while others have more firm theoretical foundations. Approaches range from
simply forming a linear combination of the accuracy and coverage measures, to using
a contingency table to form more complex statistically founded measures of associ-
ation and agreement. Ågotnes [3] investigates how these quality measures can be
employed for rule filtering purposes.

6.4 Classification

A natural use of a set of induced decision rules is to see howwell the ensemble of rules
is able to classify new and unseen objects. This is explored in the following section.

6.4.1 Voting

Voting is an ad hoc technique for rule-based classification that works reasonably well
in practice. In the following, the rule set will be assumed to be unordered, i.e., all rules
in the rule set will participate in the classification process.
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LetRUL denote an unordered set of decision rules. The process of voting is one way of
employing RUL to assign a numerical certainty factor to each decision class for each
object. Typically, but not necessarily, an object is classified to the decision class for
which the certainty factor is maximized. This is further discussed in Chapter 7.

Presented with a given object x to classify, the voting process goes as follows:

1. The set RUL is scanned for rules that fire, i.e., rules that have an antecedent that
matches x. Let RUL x RUL denote the set of rules that fire for object x.

2. If RUL x , then no classification can be made. Typically, a predetermined
fallback classification is then invoked. Alternatives include reverting to a nearest-
neighbor method and instead consider a collection of rules “close” to object x in
some sense [205].

3. An election process among the rules in RUL x is performed in order to resolve
conflicts and rank the decisions. The election process is performed as follows:

(a) Let each rule r RUL x cast a number in votes votes r in favor of the
decision class the rule indicates.1 The number of votes a rule gets to cast
may vary. Typically, votes r is based on the support of the rule, but more
complex quality-based measures are also possible.

(b) Compute a normalization factor norm x . The normalization factor can be
computed in different ways. Typically, norm x is simply the sum of all cast
votes, and only serves as a scaling factor.

(c) Divide the accumulated number of votes for each possible decision class β
by the normalization factor norm x in order to arrive at a certainty coeffi-
cient certainty x,β for each decision class.

Rβ r RUL x r predicts β (6.10)

votes β
r Rβ

votes r (6.11)

certainty x,β votes β norm x (6.12)

Most of the steps in the voting process have several degrees of freedom. For instance,
how missing values are treated in the firing step may be dealt with in different ways.
Furthermore, if two or more firing rules are generalizations2 of each other, we may or
may not choose to exclude all but the most specific of these from the set of firing rules
before proceeding. Various different approaches to defining votes r and norm x can
also be envisioned.

1If a rule in RUL x indicates more than one possible decision, we may imagine this rule to be log-
ically expanded to several rules, each with the same antecedent but with a single descriptor only as a
consequent.

2Ifαi and α j are antecedents of rules ri and rj and α j can be written asαi α for some combination of
descriptorsα, we say that ri is more general than rj.
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Univariate Rules and Support Voting

It is worth analyzing the interesting special case that arises when RUL comprises the
set of all univariate rules. A rule is said to be univariate if its antecedent consists of
a single descriptor only. Univariate rules are sometimes referred to as 1R rules, and
often work fairly well as simple classifiers [82].

RUL 1R A
x U a A

a a x d d x (6.13)

Let r α β denote a 1R rule, as defined above. Furthermore, let the quantity
votes r be defined as support α β , i.e., the number of objects that match both the
antecedent and the consequent of rule r simultaneously. Note that if r RUL x , then
the antecedent of r reads a a x . We then have the following relationship, where
all probabilities are as estimated from the set U of training cases:

certainty x,β votes β norm x
votes β

r Rβ

votes r

r Rβ

support α β

a A

accuracy a a x β
support a a x

a A

Pr β a a x
Pr a a x U

a A
Pr β a a x Pr a a x

a A
Pr a a x and β (6.14)

Hence, using 1R rules and support-based voting, the computed certainty coefficient
certainty x,β is proportional to the summed estimated probabilities of each of the ob-
served attribute values of x occurring together with β. It seems natural to classify x to
the decision class which maximizes this expression, although this may not necessar-
ily be the optimal approach with respect to some cost measure. This issue is further
discussed in Chapter 7.

6.4.2 Object Tracking

Even though standard voting as described in Section 6.4.1 is simple and often works
adequately, an objection one might make is that the procedure does not take into ac-
count which objects the rules in RUL x were originally derived from. It may very
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well be the case that the sets of objects that two or more firing rules were originally
derived from partially overlap. Hence, the objects that are members of such intersec-
tions are given a possibly unfair amount of weight in the voting process, since they
effectively participate in the voting process through more than one rule.

Letα β denote a rule in RUL x , and letα β have been induced from a decision
system . We define the set of tracked objects for the rule as α , i.e., the set of ob-
jects that are included in the support basis of the rule’s antecedent.3 The union of all
tracked objects for all firing rules then constitutes a natural basis for assigning a “fair”
certainty factor to x.

tracked RUL x y U α β RUL x such that y α (6.15)

certainty x, d v y tracked RUL x d y v
tracked RUL x (6.16)

Object tracking can also be viewed as a kind of voting. The participants in the election
process are then not the firing rules themselves, but rather the union of all the tracked
objects defined through the firing rules. Each tracked object in this union gets to cast
one vote, and the results are then normalized to sum to unity.

Lastly, and as noted in Section 2.4.3, it is worth commenting on the potential for using
the originating, tracked objects as a case-based explanation to complement the model-
based explanation RUL x . By coupling the sets of tracked objects with Boolean rea-
soning, minimal case-based explanations can be obtained.4

3Note that we do not here make use of the consequent, we can hence just as well use general patterns
instead of decision rules.

4For example, by considering the shortest prime implicants of the following Boolean function, where
α is the antecedent of a rule in RUL x :

h
α

y y α (6.17)

Note that this is not specific to rough sets or rule-based classifiers, but is applicable to all classifiers that
are composed of a set of “detectors” and where we can associate a subset of U with each detector.
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Chapter 7

Classifier Evaluation

7.1 Introduction

Classifiers induced from empirical data can be evaluated along at least two dimen-
sions: Performance and explanatory features. By performance is meant assessment of
how well the classifier does in classifying new cases, according to some specified per-
formance criterion. By explanatory features is meant how interpretable the structure
of the induced classifier is, so that one might gain some insight into how the classifica-
tion or decision making process is carried out. How these two evaluation dimensions
are to weighted is a matter of the intended role of the induced classifier. If the classifier
is to operate in a fully automated environment, then performance may be the only fea-
ture of interest. Conversely, if the classifier induction is part of a larger data mining or
knowledge discovery process, then the interpretability of the classifier will be increas-
ingly more important, and a decrease in performance may be acceptable. Classifiers
that are to function as parts of interactive decision support systems lie somewhere in
the middle of these two extremes.

Different machine learning methods for classification vary in howmuch they facilitate
the knowledge discovery aspect, depending on the type of classifiers they produce. A
point that is often held forth in favour of methods that produce decision tree or rule
sets is that the models are directly readable and interpretable. In contrast, methods
such as logistic regression or artificial neural networks are more difficult to interpret
and may require familiarity with sophisticated statistical concepts. This chapter will
not touch upon the issue of classifier interpretability, but will concern itself only with
the performance evaluation aspect.

A classifier κ is in the following viewed as a realization of a function that, when ap-
plied to an object x U in an information system , assigns a classification d̂κ x to x.
The true actual classification of x is denoted d x . In the following, unless otherwise
stated and relevant for the exposition, no distinction will be made between a classifier
and the function it realizes.

71
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d̂κ : U Vd (7.1)

We assume in the following that κ is forced to make a classification when presented
with an object. In the case that the classifier fails to recognize an object, a default
classification is assumed invoked. Extensions that incorporate rejection and degrees
of doubt by κ are possible [179].

Section 7.2 discusses how to conduct classification experiments in a structured and
systematic way so that reliable performance estimates can be obtained, while Sec-
tion 7.3 reviews a simple way of collating the produced classifications. Section 7.4
then focuses on evaluation methods for binary classifiers. Two key evaluation dimen-
sions are discussed in Section 7.4.2, and frameworks for graphically assessing these
are presented in Section 7.4.3 and Section 7.4.4. Different quantitative performance
measures are discussed in Section 7.4.5, while Section 7.4.6 outlines techniques for
statistical comparison of such measures.

7.2 Partitioning the Examples

In supervised learning we are given a set of labeled example objects in a decision sys-
tem , and want to construct a mapping d̂κ that maps elements in U to elements in Vd,
using only attributes contained in A. If we use the full set of examples to construct
the classifier, we may obtain a model that, if the chosen the learning paradigm lends
itself to it, can be inspected and generate hypotheses that explain the observations. In
some applications this might be valuable, but then we do not have any data left to
assess the performance of the classifier in an unbiased manner. Applying the classifier
to the dataset from which it was induced will obviously give an unfair and biased as-
sessment, since a classifier can always be constructed that reproduces its originating
data material perfectly. A perfect (or near-perfect, in the case of inconsistent labels)
mapping can easily be constructed through rote learning, for instance by collecting all
the provided examples in a lookup table. Since the full set of examples was used to
construct d̂κ , we have no way of assessing how well d̂κ generalizes to new and unseen
example objects.

To this end and since in practice is almost always a finite and limited collection
of possible examples, it is customary to randomly divide the examples in into two
disjoint subsets, a training set and a test set. The training set is used to construct κ,
while the test set is used to assess its performance. Under the assumption that the two
sets comprise independent samples, this ensures us that the performance estimate will
be unbiased.

Every algorithm for classifier construction has a set of parameters or options which
can be tweaked and tuned, and it is natural to select these settings so that the chosen
performance criterion is optimized. Performance assessment for this purpose should
not be made using the test set, since we will then have no way of estimating the classi-
fier’s true performance. And using the training set for parameter tuning may also not
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desirable, since we may then be likely to overfit our data. By overfitting is meant that
the constructed mapping is overly geared towards reproducing the training set, and
may have captured noise and other data impurities that may be present. An overfitted
model is not likely to generalize well to unseen examples.

These considerations may lead us to divide into three disjoint sets of examples in-
stead of two, namely into a training set, a test set and a hold-out set. While the classifier
κ is induced from the training set, the purpose of the hold-out set is to function as a
“test set during training”, i.e., as a set of examples apart from those considered when
constructing the mapping defined by κ, used for guiding the training process. The
performance assessment on this hold-out set can be used to tune the training parame-
ters, decide on when training should be stopped, or to aid in pruning or simplification
of the model derived from the training set. The test set is kept completely separate,
and is only used at the last moment to evaluate the performance of the classifier that
was constructed from the training and hold-out sets.

7.2.1 Systematic PartitioningMethods

The reliability of the performance estimated from a single partitioning can be ques-
tioned. It could be that the random division of examples used for training and testing
was a particularly “lucky” or “unlucky” split. One way of reducing the possible im-
pact of the split is to repeat the described training and test process several times with
different random splits, and to average the performance estimates from each iteration.
However, this way the training and testing sets from iteration i will almost surely
partially overlap with the training and testing sets from iteration j. Hence it would
be desirable to take a more systematic approach where also the possibility of similar
partitionings is taken into account.

Cross-Validation

The process of cross-validation (CV) is a way of getting more reliable estimates and
more mileage out of possibly scarce data. In k-fold CV we randomly divide the set
of examples into k disjoint “blocks” of examples, usually of equal size. Then we can
apply a classifier trained using k 1 blocks to the remaining block to assess its per-
formance. Repeating this for each of the k blocks enables us to average the estimates
from each iteration to obtain an unbiased performance estimate. By this procedure,
each example is guaranteed to be in the test set once and in the training size k 1
times.

An extreme variant of selecting k is to choose k U , i.e., letting each test set consist of
a single example. This is called leave-one-out CV, and, although potentially extremely
computer-intensive, may be intuitively pleasing as it most closely mimics the true size
of the training set.
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Bootstrapping

Another approach to systematic partitioning of the training examples is the bootstrap.
The basic idea of the procedure known as the 0.632-bootstrap is to randomly sample a
training set of U examples from with replacement, and to assess the performance
of the classifier on and on the examples in and not in . These two estimates
are then weighted by 0.368 and 0.6321 respectively, and added to obtain a bootstrap
performance estimate. The process can then be repeated several times in order to
compute the average bootstrap estimate.

Remarks

Of course, systematic partitioning methods can be combined with using hold-out sets,
simply by doing a second-level split on the examples originally singled out for train-
ing. Salzberg [183] recommends using CV together with hold-out sets as a means of
ensuring fair comparisons between classifiers.

If inspection of the model for KDD purposes is a primary goal, then systematic par-
titioning methods introduces a complicating factor. For what is then the model that
goes along with the obtained performance estimate? Instead of a single model, we
have instead a plethora of different models. A common way to interpret the perfor-
mance estimate is as the estimate we would get if we had induced a model from the
full database and had had more data with which to test it.

Resampling ideas can be employed not only for systematically partitioning the data
into training and test examples, but can also be used in process of inducing a model
from the training set. We can thus introduce resampling at two different levels: At the
evaluation level and at the model induction level. If the latter is done, the induced
model is really an ensemble of several submodels that are ultimately combined. Such
meta-methods are sometimes called bagging2 or boosting. In the bagging procedure by
Breiman [19], a large number of bootstrapped training sets are sampled from the train-
ing set by the previously described bootstrap procedure, and one submodel is induced
from each of these bootstrap samples. The final model is then defined as the aggrega-
tion of all the submodels by uniform voting, i.e., when an presented with an unseen
example, the ensemble labels it with the class that is predicted by the greatest number
of submodels. In boosting [60, 186], the training set chosen at any point depends on
the performance of earlier classifiers. Examples that are incorrectly classified are then
chosen more often than correctly classified examples. Bagging and boosting can often
considerably improve classificatory performance [10].

Further general readings on CV, bootstrapping, and other resampling techniques can
be found in, e.g., [52, 179].

1The number 0.632 is shorthand for 1 1
e , the limit for large U of the probability that a given

example in appears in .
2Short for “bootstrap aggregation”.
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7.3 Confusion Matrices

A confusion matrix C is a Vd Vd matrix with integer entries that summarizes the
performance of a classifier κ, applied to the objects in an information system .

Without loss of generality we may assume that Vd is the set of integers 0, . . . , r d
1 , as defined in Section 5.3.1. The entry C i, j counts the number of objects that really
belong to class i, but were classified by κ as belonging to class j.

C i, j x U d x i and d̂κ x j (7.2)

Obviously, it is desirable for the diagonal entries to be as large as possible. Probabili-
ties are easily estimated from the confusion matrix C by dividing an entry by the sum
of the row or column the entry appears in:

Pr d x i d̂κ x j C i, j
i C i, j (7.3)

Pr d̂κ x j d x i C i, j
j C i, j (7.4)

Pr d x d̂κ x i C i, i
i j C i, j (7.5)

Classification tasks with binary outcomes are so common in practice that the entries
of 2 2 confusion matrices and the corresponding values of Equation 7.3 and Equa-
tion 7.4 are given special names. Consider the following confusion matrix:

d̂κ
0 1

d
0 TN FP
1 FN TP

The names given to the entries and derived quantities from 2 2 confusion matrices
are listed in Table 7.1 The sensitivity of a classifier thus gives us ameasure of how good
it is in detecting that an event defined through X1 has occurred, while the specificity
gives us a measure of how good it is in picking up non-events defined through X0.
The positive and negative predictive values of a classifier gives us a measure of how
“trustworthy” it is in its detections of events and non-events.

7.4 Binary Classifiers

In the following, since the situation is so common in practice, wewill examine the case
where κ is a binary classifier, i.e., where Vd 0, 1 . As defined in Section 5.3.1, the
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Quantity Name Description
C 0, 0 TN True negatives.
C 0, 1 FP False positives.
C 1, 0 FN False negatives.
C 1, 1 TP True positives.

TP TP FN Sensitivity Pr d̂κ x 1 d x 1
TN TN FP Specificity Pr d̂κ x 0 d x 0
TP TP FP Positive predictive value (PPV) Pr d x 1 d̂κ x 1
TN TN FN Negative predictive value (NPV) Pr d x 0 d̂κ x 0

Table 7.1: Names given to the entries and derived quantities from 2 2 confusion matrices.

corresponding decision classes will be denoted X0 and X1.

We start by decomposing κ into realizing two functions φ and θ so that d̂κ x
θ φ x , and refine Equation 7.1 as shown below. The function φ maps an object x
to a continuous estimate in the interval 0, 1 , where φ x is to be interpreted as the
classifier’s certainty that x belongs to decision class X1. The function θ interprets the
output of φ, and decides how the mapping into 0, 1 from the intermediate repre-
sentation 0, 1 is to take place.

d̂κ : U
φ 0, 1 θ 0, 1 (7.6)

The function φ is what is usually associated with a given classifier, and is what most
machine learning paradigms implement, whether it being neural networks, decision
trees, rule sets, logistic regression equations or something else. Letting certainty x,Xi
denote the classifier’s degree of certainty that x belongs to decision class Xi, we have
the following:

φ x certainty x,X1 (7.7)

It is typically desirable forφ x to estimate the probability Pr d x 1 x , as will be
discussed in Section 7.4.2.

The function θ interprets φ x and decides on how this is to be converted into a final
decision value. Here,θ will be assumed to be a simple threshold function that outputs
decision value 1 if φ x is above a certain threshold 0 τ 1, and decision value 0
otherwise:

θ φ x 1 if φ x τ
0 otherwise (7.8)

Other definitions of θ might under some circumstances be appropriate, for instance if
our application requires the classifier to express ‘doubt’ as a separate classification.
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7.4.1 Realizingφ

As mentioned, different classifiers may realize the certainty function φ in radically
different fashions. For decision rules as defined in Section 6.3, variants of the vot-
ing procedures explored in Section 6.4 may be used. Using, e.g., Equation 6.12 and
normalizing by all votes cast, for binary classifiers the certainty function reduces to
Equation 7.9.

φ x votes d 1
votes d 0 votes d 1 (7.9)

7.4.2 Discrimination and Calibration

Two of the main performance dimensions along which binary outcome classifiers can
be evaluated is discrimination and calibration. Calibration deals with probability esti-
mation, while discrimination deals with classificatory abilities.

Discrimination measures how well the classifier is able to separate objects in decision
class X0 from objects in decision class X1. Examples of measures of discrimination are
accuracy and the area under ROC curves, further discussed in Section 7.4.5. Discrim-
ination is in many ways a natural and intuitive performance measure to focus on, as
it indicates how good a classifier is at doing what it was designed to do, namely at
guessing the correct value for d x when presented with object x.

So-called calibration-in-the-large measures how close the average intermediate model
output is to the average actual outcome, computed on the basis of the whole sam-
ple. Calibration-in-the-large, also referred to as bias, thus gives an overall picture of
whether a model is “optimistic” or “pessimistic”, since it signals if the model outputs
are systematically high or low. However, calibration-in-the-large is not very useful
in practice since a model may be perfectly calibrated-in-the-large, and yet provide no
information.3

A classifier is considered well calibrated-in-the-small when cases assigned a certainty
value ofφ x actually yield outcome 1 approximatelyφ x 100% of the time. Hence,
calibration-in-the-small measures how well the function φ realizes a probability esti-
mate. In the following, calibration-in-the-small will simply be referred to as calibra-
tion.

Note that calibration is different from discrimination. A classifier may discriminate
well, but be badly calibrated. Conversely, a classifier may be well calibrated, but dis-
criminate poorly. A good discussion of calibration and discrimination can be found
in [136].

A short comment on terminology might be in order. Discrimination and calibration
are by no means the only names that these issues are known under. For instance,

3Consider for example the “default” model that for all inputs simply outputs the prevalence of dis-
ease.
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Figure 7.1: Points on an example ROC curve. The points are typically connected with straight
line segments to form a curve. Each point corresponds to a different threshold value τ . A
straight line from 0, 0 to 1, 1 indicates no discriminatory ability, i.e., the area under the
curve is 0.5. The ideal ROC curve has an area under the curve of 1, i.e., it is a step function
with segments from 0, 0 to 0, 1 to 1, 1 .

discrimination is sometimes referred to as resolution, and imprecision is some places
used instead of calibration. Hand [74] devotes a small section in his book to review
and comment on some of the different terms that are employed in the literature.

7.4.3 ROC Curves

A receiver operating characteristic (ROC) curve is a graphical representation of discrim-
ination. The analysis of ROC curves is a classic methodology from signal detection
theory [216] that is common in medical diagnosis [75], and that has recently begun to
be used more generally in the machine learning field [173, 174].

As can be seen from Equation 7.8, the output of a classifier κ depends on a selected
threshold value τ . An ROC curve captures the behavior of κ as the threshold τ is var-
ied across the full spectrum of possible values. A very important and desirable feature
of an ROC curve is that it describes the predictive behavior of a classifier independent
of class distributions and classification error costs. There is a rich literature on the field
of ROC analysis.

For each different value of the threshold τ we may obtain a different 2 2 confusion
matrix C when we apply κ to the objects in an information system. Let the sensi-
tivity and specificity of C as defined in Section 7.3 be denoted by sensitivity τ and
specificity τ . An ROC curve is defined through a collection of points as shown in
Equation 7.10. The points 0, 0 and 1, 1 are also included as these points corre-
spond to the situations where all objects are blindly classified as belonging to the same
decision class. An example ROC curve is drawn in Figure 7.1.

ROC
τ

1 specificity τ , sensitivity τ 0, 0 , 1, 1 (7.10)

An ROC curve is said to dominate another ROC curve if it is lies consistently above
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Figure 7.2: ROC curve A dominates both ROC curves B and C. Curve B does not dominate
curve C, nor does C dominate B.

it in ROC space, illustrated in Figure 7.2. If the ROC curve for a classifier κ1 clearly
dominates the ROC curve of another classifier κ2, then it is safe to say that κ1 is better
than κ2. However, this is seldom the case since the ROC curves usually cross each
other, in which case the choice of classifier might be unclear.

It should be noted that even though a binary classifier or test is better than another
test with respect to an ROC analysis, then the better test is not necessarily the test that
would be preferred in practice. The reason for this is that there are additional non-
performance aspects of conducting a test that a plain ROC analysis does not take into
account, such as the cost of acquiring the information the test is based on. For example,
in a medical setting, some attributes may involve expensive drugs or therapy or incur
considerable discomfort for the patient.

The ROC Convex Hull Method

When comparing several classifiers and plotting their respective ROC curves, the
curves will in practice almost always cross each other somewhere, i.e., none of the
classifiers will be optimal under all circumstances. Provost and Fawcett [173] propose
a method for determining from ROC curves which classifier is optimal, for various
class and cost distributions. Schematically, the process is as follows:

1. Compute the convex hull of all the points on the ROC curves. If a classifier does
not contribute to a point on the hull, then that classifier can never be optimal.

2. Encode the class and cost distribution as a line and superimpose this as a tangent
on the hull. The classifier that contributes to the line/hull intersection point is
the best classifier under that particular class and cost distribution.

3. Tabulate under which class and cost distributions that the hull-contributing clas-
sifiers are optimal.
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Interpreting the ROC Slope

If we examine how the axes in an ROC curve are defined and substitute Equation 7.8
and Equation 5.35 into their definitions from Section 7.3, we obtain the following:

sensitivity τ

1 specificity τ

Pr d̂κ x 1 d x 1
1 Pr d̂κ x 0 d x 0
Pr φ x τ x X1

1 Pr φ x τ x X0
Pr φ x τ x X1
Pr φ x τ x X0

(7.11)

An ROC curve is thus a plot of the cumulative distribution function forφ x in the X0
subpopulation against that of the X1 subpopulation. Consequently, the local slope of
the ROC curve can be interpreted as a likelihood ratio, by computing the derivatives
of the counter and denominator of Equation 7.11 with respect to τ .

Hilden [81] exploits this relationship by scaling the ROC coordinate axes by various
factors that represent such things as prevalence and measures of utility, and discusses
how the local slopes of the scaled ROC curves can then be interpreted. For details,
see [81]. Hilden also discusses issues relating to the concavity and convexity of ROC
curves.

Interpreting the ROC Integral

The area under the ROC curve (AUC) is a measure of how well the classifier is able
to discriminate objects in X0 from objects in X1. AUC is usually computed using the
trapezoidal rule for integration, but parametric methods that produce smooth curves
and compute areas from these are also in use. An AUC of 0.5 represents no discrimina-
tory ability, while an AUC of 1 represents perfect discrimination. Note that due to the
shape of a typical ROC curve, the trapezoidal rule is prone to slightly underestimate
the true area.

AUC
1

0
sensitivity τ dspecificity τ (7.12)

The AUC can be shown to have a nice and intuitive probabilistic interpretation: Let
Sκ X0 X1 be defined as below, where “ ” denotes a comparison operator. A
pair x0, x1 is said to be concordant if it is a member of Sκ , and discordant if it is a
member of Sκ . The set Sκ constitutes the set of ties. Obviously, it is desirable
for a pair to be concordant. Under the assumption that tie-resolution results in half the
ties being correctly ranked, the so-called c-index [77] equals the AUC estimated using
the trapezoidal rule of integration. The c-index measures the probability that, given a
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pair x0, x1 randomly drawn from X0 X1, the functionφ realized by classifier κ will
rank x0 and x1 correctly, i.e., define a concordant pair.

Sκ x0, x1 X0 X1 φ x0 φ x1 (7.13)

c-index
Sκ

1
2 Sκ

X0 X1
(7.14)

Statisticians may recognize the c-index as being the parameter of the Mann-Whitney-
Wilcoxon rank sum test.

Selecting a Threshold

An ROC curve displays a model’s discriminatory performance across a spectrum of
thresholds. But if a classifier is to be implemented in practice, a value for the thresh-
old must be decided upon. How this value should be selected is obviously a function
of how one weighs the cost of false positives against the cost of false negatives. If
the costs are equally weighted, the threshold that produces the “northwestern-most”
point on the ROC curve, i.e., the point closest to 0, 1 , is an intuitive candidate. How-
ever, if we can quantify the costs and know the prevalence of disease, we can compute
the threshold τ that minimizes the expected total cost as shown below. If πi denotes
the a priori probability that x is a member of Xi and misclassification incurs a cost ci,
the optimal threshold τ can be computed as follows [74]:

τ argmin
τ

π0c0 1 sensitivity τ π1c1 1 specificity τ (7.15)

Hand [74] briefly relates how τ can be found by considering the local slope of the
ROC curve, and how this can be used to identify a range of “good” threshold values.

7.4.4 Calibration Plots

A calibration plot is a graphical method for assessing howwell calibrated a binary clas-
sifier is. Points in a calibration plot are generated as described below. Table 7.2 gives
a small example of this process.

1. Sort the pairs d x ,φ x according to the value ofφ x .

2. Partition the sorted vector of pairs into g groups.

3. Compute the average actual outcome d̄i and the average classifier output φ̄i for
each group i, and add d̄i, φ̄i to the plot.
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Group d x φ x
0 0.04

1 0 0.21
0 0.41

d̄1, φ̄1 0.00 0.22
1 0.46

2 0 0.51
0 0.59

d̄2, φ̄2 0.33 0.52
1 0.61

3 1 0.75
1 0.80
1 0.92

d̄3, φ̄3 1.00 0.77

Table 7.2: Generating points in a calibration plot. In this small example there are 10
d x ,φ x pairs that are sorted according to φ x and form g 3 groups. Each group
defines a plot point by computing the averaged values within each group. Sometimes group
sums are plotted instead of group averages.

If the classifier is well calibrated, the points in the calibration plot should tend to lie
around the 45-degree line that crosses through 0, 0 . An example calibration plot can
be found in Figure 7.3.

How to select the number of groups g is not entirely apparent. Usually, a predeter-
mined number is simply chosen at will. Furthermore, all groups are usually set to
have approximately the same size, but having variable-sized groups is also a possibil-
ity [84].

Average actual outcome d̄
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Figure 7.3: An example calibration plot with g 10 groups. For a well calibrated classifier,
the points should be close to the 45-degree line through 0, 0 .
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Model outputφ x
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Figure 7.4: An example calibration function γ. Here, γ pushes the original model outputφ x
away from the center and towards the extreme values 0 and 1. If φ has a tendency to densely
cluster the object certainties around a mean value, such a choice of γ may be appropriate.

Calibrating a Model

Amodel that may not be very well calibrated can in principle almost always be trans-
formed into a model that is fairly well calibrated, while preserving the model’s dis-
criminatory abilities. This can be done by introducing a monotone strictly increasing
function γ as shown in Equation 7.16, and using this to remap φ x . Hence, we can
imagine γ φ x as being a calibrated version of our classifier.

d̂κ : U
φ 0, 1 γ 0, 1 θ 0, 1 (7.16)

The purpose of the “calibration function” γ is to stretch or compress the function φ
in such a way that the transformation results in a better calibrated model, under the
constraint that the discriminatory ability of the calibrated model does not worsen. If γ
is amonotone strictly increasing function, then the ROC curvewill remain unchanged.
Figure 7.4 displays an example calibration function γ.

Although in principle a model can be calibrated a posteriori, it may in practice not be
clear how to construct a suitable calibration function γ. An intuitive approach is to
compute the linear regression line of the points in the calibration plot, and to let γ be
the simple function that would “tilt” this line to equal the 45-degree line that crosses
through 0, 0 . This approach is explored by Vinterbo and Ohno-Machado [230].

7.4.5 Performance Measures

Section 7.2 discussed how reliable performance estimates could be gathered, but was
not specific as to which performance measure that should be gathered. This section
discusses some popular performance measures and dimensions along which classifier
performance may be assessed.
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Accuracy and Risk

Two measures for assessing a classifier’s discriminatory performance are accuracy and
its generalization, risk. The proportion of correctly classified objects, defined by Equa-
tion 7.5, is called the accuracy of the classifier, and is by far the most popular perfor-
mance measure in the machine learning literature. More often than not, accuracy (or
error rate, defined as one minus accuracy) is the only performance measure reported
in comparison studies. Accuracy is an intuitive quantity to relate to, but its use as the
only performance measure is questionable [174]. The main reason for this is that the
measure does not capture situations where different types of classification errors have
different costs, nor does it adjust for skewed outcome class distributions.

Bayes decision rule, given by Equation 7.18, states that an object x should be assigned
to the most probable decision class when x is given. Bayes decision rule is intuitive,
and can be shown to be theoretically optimal with respect to maximizing the accuracy,
or, equivalently, minimizing the error rate [179, 185]. However, in practice, the Bayes
error rate can rarely be obtained. Doing so would require perfect knowledge of all
distributions and conditional probabilities involved, something that is not practically
achievable.4

d̂κ x argmax
k
Pr d x k x (7.18)

An aspect that Equation 7.18 does not take into account is that not all errors are equal.
Making a wrong decision of a certain kind may be dramatically more costly than mak-
ing a different type of decision error. A common way of making up for this is to in-
troduce a loss function L, where L j, k denotes the loss or cost incurred by making
decision j when the true decision class is k. The risk function for a classifier κ is the
expected loss when using it, as a function of the unknown decision class k. Bayes deci-
sion rule for a general loss function is given by Equation 7.19. Again, since a classifier
κ can only hope to form a fair approximation of Pr d x k x , the theoretically
minimal risk is rarely obtainable in practice.

d̂κ x argmin
k j

L j, k Pr d x k x (7.19)

With a loss function such that L k, k 0 and 1 otherwise, Equation 7.19 reduces to
Equation 7.18. Such a loss function is called a 0/1 loss function.

Note that a binary classifier as defined in Section 7.4 with a fixed threshold for θ of
τ 0.5 amounts to emulating Equation 7.18. Other threshold values amounts to

4The so-called naive Bayes rule approximates Pr d x k x as below. The naive Bayes classifier
often works very well in practice, and excellent classification may be obtained even when the probability
estimates contain large errors [46].

Pr d x k x Pr d x k
Pr x a A

Pr a a x d x k (7.17)
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incorporating some kind of loss information, and hence emulates the more general
Equation 7.19.

Domingos [45] proposes a method for using the loss function L together with a bag-
ging procedure to relabel the training examples in such a way that the relabeled set
can be trained by a procedure that focuses on minimizing error rate. The error rate of
the relabeled data is then hopefully similar to the risk of the original data. An obvious
advantage of such a “wrapper” approach is that the actual model induction technique
does not have to be modified or tailored to take loss information into account.

The Area Under the ROC Curve

The AUC value derived from an ROC curve is a measure of a model’s discriminatory
performance. Collapsing a full ROC curve into a single-number statistic necessarily
results in a loss of distinction of some kind. For example, several different curves
may have the same AUC value, and a focus on the AUC alone glosses over the fact
that the classifiers may both be optimal under different operating conditions. Still, the
AUC is generally accepted as the best ROC-derived single-number statistic to use for
performance assessment.5

The Brier Score

The Brier score [20] is defined as the average squared difference between the classifier’s
raw output value φ x and the actual binary decision value d x . The Brier score is
also referred to as the probability score.

B 1
U x U

φ x d x 2 (7.20)

The Brier score B carries information about both calibration and discrimination, and
can be decomposed in several ways. A popular decomposition is given in Equa-
tion 7.21, usually attributed to Murphy [128]. The term d̄ denotes the average actual
outcome of objects in U, while CI and DI denote indices of calibration and discrimina-
tion respectively.

B d̄ 1 d̄ CI DI (7.21)

Arkes et al. [9] discuss the Murphy decomposition, and propose an alternative de-
composition of the Brier score that lends itself nicely to graphical visualization in a
covariance graph. Their decomposition involves readily interpretable components.

5However, the unquestioned use of the area under ROC curves is not without its critics. Hilden [81]
argues that, for clinicians, the c-index or AUC may give “the right answer to the wrong question” since
they are in practice almost never asked to decide which of two cases is diseased and which is non-
diseased.
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Figure 7.5: Statistical hypothesis testing (two-sided). Here, the test statistic Z is assumed to
follow a standard Normal distribution under the null hypothesis H0 that the two observed
performance estimates are equal. For a two-sided test, the alternative hypothesis H1 is that
the two observed performance estimates are not equal. If we observe a realization z of Z that
deviates significantly from 0, we reject H0 and conclude that the two performance estimates
are indeed different. The p-value indicates the probability that we erroneously reject H0, i.e.,
the probability of a type I error.

7.4.6 Statistical Hypothesis Testing

In typical classifier comparison experiments, two or more classifiers are trained on the
same training set and applied to the same test set, and a performance measure if each
classifier is estimated. But if one classifier results in one performance estimate and
another classifier results in another performance estimate, how much must the two
estimates differ before one can say that the performances are significantly different in
a statistical sense? Any such claim should always be accompanied by a p-value that
indicates how statistically valid the claim is.

The starting point for performing hypothesis testing is a test statistic that under some
null hypothesis H0 has a known distribution. For example, H0 could be that two per-
formance estimates really are equal, with the alternative hypothesis H1 being that they
are different. The test statistic Z is a stochastic variable, and from our observations we
can compute a realization z of Z. If z has a value that under H0 would be very unlikely
to observe, then we are prone to reject H0. A p-value denotes the probability that we
erroneously reject H0.6 Obviously, we would like this probability p to be small before
we conclude that H0 is to be rejected, typically p 0.05 by convention. Figure 7.5
displays p-values graphically. A brief discussion of the use of p-values in decision
making can be found in [239].

This section reviews a handful of statistical tests that can be used to compare discrim-
ination and calibration between pairs of binary classifiers.

McNemar’s Test

With two classifiers κ1 and κ2 applied to the same set of labeled objects using fixed
suitable threshold values τ1 and τ2 for θ for each classifier, McNemar’s test is the ap-

6The situation of erroneously rejecting H0 is called a type I error in the statistical literature. The other
situation, where we erroneously accept H0, is called a type II error.
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propriate statistical test to perform to detect statistically significant differences in ac-
curacy [8, 43, 44, 58, 179, 183].

McNemar’s test counts the number of objects that κ1 classified wrongly but that κ2
classified correctly, and the number of objects that κ1 classified correctly but that κ2
classified wrongly. The following small table is then obtained:

d̂κ1
error correct

d̂κ2
error na nb
correct nc nd

Under the null hypothesis H0 that there is no difference between the accuracies of κ1
and κ2, we would expect nb and nc to be equal. An exact7 test can be made since then
nb would follow a Binomial distribution with parameters nb nc, 12 . However, such
a distribution can be very well approximated with the more easily manageable Nor-
mal distribution, even for quite small samples. McNemar’s test uses the continuity-
corrected Z statistic below, which under H0 follows a standard Normal distribution.
In some texts the χ21-distributed quantity Z2 is employed instead.

Z nb nc 1
nb nc

N 0, 1 (7.22)

Computing the observed value for Z enables us to perform a hypothesis test in the
usual manner.

Altman [8] discusses McNemar’s test in greater detail, and Salzberg [183] recommends
that McNemar’s test (or the exact Binomial variant on that test) should always be used
when comparing the accuracy of classification algorithms.

Hanley-McNeil’s Test

To statistically compare AUC values of two ROC curves derived from the same set of
cases, Hanley-McNeil’s test can be used.

Computations of the AUC of a classifier should always be accompanied by an esti-
mate of the variability of that estimate. Hanley and McNeil [75] provide the following
formula for the standard error SE AUC of the AUC estimate computed using the
trapezoidal rule of integration:

SE AUC 1
X0 X1

AUC 1 AUC
X1 1 Q1 AUC2
X0 1 Q2 AUC2

(7.23)

7An exact test has precisely the distribution claimed under H0.
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The quantities Q1 and Q2 in Equation 7.23 are distribution-specific quantities. Hanley
and McNeil claim that very good approximations can be obtained by Equation 7.24,
and they also outline amore complex and non-parametric way of computing SE AUC .

Q1
AUC

2 AUC Q2
2AUC2

1 AUC (7.24)

Using Equation 7.23, one can compute the smallest sample size one needs for obtain-
ing a sufficient degree of statistical precision.

When wewant to test the hypothesis that two estimated AUC values derived from the
same cases are really different, we have to take into account that the AUC estimates
are correlated since the data material is the same. If we know that one AUC value for
one classifier is very low, this affects our knowledge of the AUC estimates for the other
classifiers. Hanley and McNeil [76] provide a framework for statistically comparing
two different AUC values derived from the same cases. The main contribution of
their paper is a tabulation of values of the correlation quantity r in Equation 7.25,
for different values of AUC1, AUC2 and the computed correlations8 between the two
classifiers’ raw output values φ x for objects in the two decision classes X0 and X1.

SE AUC1 AUC2
SE2 AUC1
SE2 AUC2
2rSE AUC1 SE AUC2

(7.25)

The perhaps most important purpose of assessing the variability of the observed AUC
differences, is so that we can construct a statistic to use for hypothesis testing. With the
above definition of SE AUC1 AUC2 , Hanley and McNeil use the statistic Z defined
below.

Z AUC1 AUC2
SE AUC1 AUC2

N 0, 1 (7.26)

Under the null hypothesis H0 that the two ROC areas really are equal (and that the
true distribution actually is Normal), the test statistic Z follows a standard Normal
distribution. We can then reject H0, i.e., conclude that the two ROC areas are not
equal, if our observed value for Z is such that it does not lie within the allowed range
we set up according to our desired level of significance.

Quantitative Assessment of Calibration

Calibration is usually only assessed qualitatively by visually inspecting calibration
plots or covariance graphs, but quantitative assessment of calibration is also possible.

8Computed using either Pearson’s product-moment correlation or Kendall’s tau. See Hanley and
McNeil [76] for details.
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However, methods for this have often originally been developed with logistic regres-
sion models in mind, and carrying such statistics directly over to other model types
may yield unpleasant surprises in applied research. For instance, undefined division-
by-zero situations may occur. This because formulae may involve dividing by φ x
or its complement, and logistic regression models can never output identically 0 or 1
but approach these extreme values asymptotically. For other model paradigms such
as rule sets or decision trees, these extreme values are indeed possible outputs.

Hosmer-Lemeshow’s test [83], originally intended for use with logistic regression mod-
els, constructs a statistic from the points in the calibration plot.9 Simulations indicate
that this statistic is well approximated by a χ2-distribution with g 2 degrees of free-
dom under the null hypothesis that the model is appropriate calibration-wise. The
Hosmer-Lemeshow statistic can thus be used to assess quantitatively whether or not
the points in the calibration plot deviate from the 45-degree line through 0, 0 in a
statistically significant fashion.

However, there are several pitfalls with using Hosmer-Lemeshow’s test other than the
ones already described. The statistic is only applicable if the groups sizes are above 5,
and is undefined if the sum of model outputs within a group is zero. Furthermore, if
the model outputs tend to be either small ( 0.1) or large ( 0.9), then the test should
be used with caution [84].

Brier Score Tests

Statistics for assessing Brier scores often suffer from the same drawback as theHosmer-
Lemeshow statistic, namely that they have been developedwith methods in mind that
cannot output identically 0 or 1 but approach these extreme values asymptotically.
However, if a model does not produce such extreme values on an analyzed dataset,
such statistics may be useful after all. Bloch [16] reviews several statistics that can be
used to test whether the actual outcomes d x are compatible with the set of model
outputsφ x . Probabilities of some events must be explicitly chosen or known to use
such approaches, however.

Statistics for comparing two Brier scores obtained from the same set of cases against
each other exist, enabling one to test whether or not one model’s Brier score is better
than the Brier score of another model. Bloch [16] and Redelmeier et al. [178] discuss
such statistics and the corresponding tests in detail.

Miscellaneous

Both Hanley-McNeil’s and McNemar’s tests assume that the two classifiers that are
to be statistically compared have been applied to the same set of cases, and that we
have their corresponding observed outputs available. This might not always be the

9Actually, the Hosmer-Lemeshow statistic operates on the groups sums instead of on the group aver-
ages.
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situation, and if the datasets only partially overlap the methods are not applicable.
Metz et al. [121] propose an algorithm that allows an ROC analysis to be done, even
with only partially-paired data.

Other approaches, including non-parametric methods, than the one described for com-
paring correlated AUC estimates are possible, although such methods are less simple
and immediate. A non-parametric alternative to Hanley-McNeil’s test is provided by
DeLong et al. [40].

AUC estimates are uncertain since the computed points on the ROC curve have an in-
herent degree of uncertainty associated with them. Another approach to ascertaining
the uncertainty of the AUC estimate is to compute confidence intervals for the sensi-
tivities and specificities, and thus obtain a “confidence envelope” for the ROC curve,
i.e., a pair of curves that surround the ROC curve from above and below for which we
can be certain “enough” that the true ROC curve lies within. Bounds for the AUC can
thus be assessed via the bounds of the ROC curve. Computing confidence bounds for
ROC curves is explored by Schäfer [184].

ROC analysis for more than two outcome classes can be imagined. Then, in the three-
class case, an ROC curve would generalize to an ROC surface, with the volume under
this surface corresponding to the AUC. This is further explored by, e.g., Dreiseitl et
al. [48].

Lastly, it should be pointed out that combining statistical hypothesis testing with sys-
tematic partitioning methods as described in Section 7.2.1 is not entirely straightfor-
ward and should be done with caution. One reason for this is that the training and/or
testing sets for the splits may partially overlap, thus introducing dependencies across
the statistics computed per split. Dietterich [43, 44] analyzes this scenario for some
popular statistics for comparing error rates, and shows through simulations that er-
roneous conclusions are likely to be drawn if inter-split dependencies are ignored.
Dietterich also proposes a statistic that may be used for combining error rate com-
parisons with systematic partitioning methods, based on doing 2-fold CV five times.
Alpaydin [7] improves this statistic further.
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Chapter 8

The ROSETTA System

Sections of this chapter have previously appeared as [145, 147].

8.1 Introduction

Fields concerned with empirical modelling necessarily have a high experimental con-
tent, both because the sought after relationships are unknown in advance and because
real-world data is often noisy and imperfect. The overall modelling process thus typ-
ically consists of a sequence of several steps that all require various degrees of tuning
and fine-adjustments. Moreover, it may not beforehand be obvious which steps in
the modelling pipeline that are required, nor which of several alternative algorithms
that should be chosen for each step. As a result, the process of constructing a model
is an iterated waterfall cycle with possible backtracking on the individual steps. It is
therefore important to have a set of tools available that render possible this type of
flexible experimentation. However, a complete model construction and experimenta-
tion tool must comprise more than a collection of clever algorithms in order to be fully
useful. It is needed to set the tools in an environment such that intermediate results
can be viewed and analyzed, and decisions for further processing made. Basically, an
environment to interactively manage and process data is required.

This chapter introduces the ROSETTA1 system, a comprehensive set of software com-
ponents for discernibility-based data analysis. Rough sets and methods based on dis-
cernibility have gained significant scientific interest as a framework for data mining
and KDD [126, 168–170], but successful research in this field undoubtedly requires
good cooperation between theoreticians and practitioners. This interface can be en-
hanced by providing sophisticated tools and environments that support all aspects of
the iterative nature of model construction and assessment. In response to these needs,

1The Rosetta stone is a stone slab found in 1799 near the Egyptian town of Rosetta. Bearing parallel
inscriptions in Greek, Egyptian hieroglyphic and demotic characters, it made possible the decipherment
of ancient Egyptian hieroglyphics. The name ROSETTA can also be construed as an acronym, e.g., for a
Rough Set Toolkit for Analysis of Data.
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the process of using rough sets for KDD has been investigated and process patterns
typical to rough set KDD experiments been established. The ROSETTA system has
been designed and implemented as a result.

It is practical to differentiate between the computational kernel and the front-end of
ROSETTA. The computational kernel is a general C++ class library for KDD within
the rough set methodology, and offers an advantageous code base for researchers to
quickly assemble and try out new algorithms and ideas. The front-end is a state-of-
the-art graphical user interface (GUI) running under Windows NT/98/95. Together,
the kernel and the front-end constitute a powerful vehicle for practical discernibility-
related research and applications.

The ROSETTA kernel can be employed in two modes: Together with the GUI front-
end, and as a stand-alone command-line program. The former enables access to the
computational engine in a user-friendly environment, while the latter enables ROSET-
TA to be used as a computational engine called from elsewhere, e.g., from Perl scripts.

ROSETTA is probably the most complete, flexible and advanced rough set software
system of its kind currently available. The system also encompasses several stand-
alone utility programs that operate directly on output from the main ROSETTA pro-
gram, e.g., programs for statistical hypothesis testing.

This chapter gives a brief rundown of ROSETTA and some of its features. Section 8.2
outlines some of the background for initiating development of the ROSETTA system,
while Section 8.3 gives a brief overview of the ROSETTA GUI. Section 8.4 presents
how the typical discernibility-based KDD modelling methodology is supported by
ROSETTA.

8.2 System Justification

The initial impetus to develop a discernibility-based data analysis tool at this time
came from a perceiveddiscrepancy between the theoretical developments in the rough
set field and the scope and availability of tools for model realization. A set of software
components was called for to help bridge that gap. Furthermore, for the purpose of
this thesis, a flexible tool was needed to conduct experiments with medical applica-
tions in mind.

Software systems for performing rough set computations exist, but are scarce as the
field is still relatively young. Lists of known systems are compiled by Polkowski and
Skowron [170] and by Komorowski et al. [105]. Rather than basing ourselves on one
or more of these, the need to develop ROSETTA arose for the following main reasons:

Most existing systems tended to be highly specialized towards a particular rough
set algorithm or stage in the KDD process, and hence did not allow the degree
of flexibility and generality that was desired.

Source codewas generally not available, hencemaking any novel or non-standard
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analyses, applications and extensions difficult. For the few systems where source
code could be obtained, these were often written in interpreted languages of
commercial systems. The efficiency of a compiled language was essential, and
becoming dependent on a third-party run-time environment was not desirable.

The front-ends ofmost existing systems did notmatch up to current expectations
of user-friendliness in interfaces.

Very few of the existing systems allowed considerations to be made that are of
importance when working within the medical domain.

Additionally, some C++ code comprising the core of theRough Set Expert System (RSES)
had been made available courtesy of the Group of Logic at the University of Warsaw,
Poland [69, 217]. A lot of resources had gone into developing this, and it was natural
to exploit its existence to the extent possible. Using this as an initial core, the time
to develop an initial operational prototype could be brought down. Today, the RSES
library functions as an optional and value-adding ROSETTA component.

8.3 GUI Overview

The ROSETTA front-end runs under 32-bit Windows operating systems on Intel plat-
forms, and offers an environment in which the user in a simple way can view and
keep track of the individual data items in an analysis project. Emphasis has also been
put on making it easy to manipulate the data items and initiate computations. The
GUI is designed according to a strict object-oriented philosophy.

Briefly, features include:

Project trees: Each item in a data analysis project is represented by its own icon
specific to its type, and each project organizes these icons in a tree. The topol-
ogy of the tree conveys how the data items relate to each other in an intuitive
and immediate way. A branch from a parent item to a child item signifies a di-
rect derivation relationship, while siblinghood typically represents alternative
hypotheses being explored in the KDD process. A snapshot of a sample project
tree is provided in Figure 8.1.

Data views: All data items in project trees can be viewed in individual windows,
typically in grid views. Routed through data dictionaries, all data is displayed
to the user in terms from the modelling domain. Together with the project trees,
a collection of such views embody a comprehensive workspace. A snapshot of a
sample workspace is provided in Figure 8.2.

Context-sensitive pop-up menus: Most GUI objects, e.g., icons in project trees and
columns or rows in data views, are right-clickable and provide their own local
pop-up menus. This gives intuitive and easy access to the set of operations cur-
rently applicable to that particular object.
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Figure 8.1: An example ROSETTA project tree. Each data item is represented as a separate
icon, with the branches in the tree reflecting how the items relate to each other. Right-clicking
an icon brings up a pop-up menu for the selected object.

Support for drag-and-drop: As an alternative to pop-upmenus, the project tree also
has support for drag-and-drop. In the tree, not only are data items represented
by icons, but possible operations are iconified, too. Hence, to initiate a compu-
tation, an algorithm icon may be dragged and dropped onto a data icon, or vice
versa.

Comprehensive parameter dialogs: Most algorithms need to be supplied with some
parameters that determine details of their behavior. Often, default parameter
settings are acceptable, but for flexibility and generality expert tuning must be
possible. For some algorithms, combinations of parameters are only allowed
according to certain rules. ROSETTA provides comprehensive support for this
process by offering advanced parameter dialogs which may adapt according to
the currently specified settings.

Annotations: Data items can be annotated with user comments. Also, as new data
items are created or transformed, they get automatically stamped with history
details, revealing how they were created, which algorithms that were applied
to them, which parameter settings that were used, etc. Hence, logs document-
ing the modelling sessions are automatically generated, thus promoting repro-
ducibility of experiments between researchers when data is exchanged.
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Figure 8.2: An example ROSETTAworkspace, displaying several different types of data views.
A project tree, showing how all the current data relate to each other, is drawn in the top left
corner. All views display data in terms from the modelling domain.
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The ROSETTA GUI offers several other features, including a system for displaying
detailed progress messages and intermediate results, the ability to prematurely termi-
nate lengthy computations, and an on-line help system.

8.4 Methodological Support

This section briefly describes some of the support offered by ROSETTA at each stage
in the typical KDD process. In Section 2.2.2, the process of applying rough set meth-
ods for KDD was briefly outlined. The ROSETTA system was specifically designed
to support the discernibility-based modelling methodology, both with respect to algo-
rithmic features and the cognitive aspects of the GUI. At the same time, the system
should be flexible enough to grant expert users elbowroom.

For convenience, this section assumes that a predictive model is being produced, i.e.,
we have a designated decision attribute in our table. However, the steps are easily
generalizable to general information systems, i.e., unlabeled data. For a complete ac-
count of algorithms featured in ROSETTA, see Øhrn [139].

Typically, algorithms are invoked from the pop-up menus of the icons in the project
tree, e.g., by right-clicking on a “ ” icon. In the following, the symbol “ ” is used to
denote menu navigation.

8.4.1 Selection

This phase bears to study design. The study population is defined, a set of features is
defined and a modelling target is chosen. Together, this corresponds to assembling a
decision system from a data source.

We here assume that the selection phase also handles representational issues. For
instance, a categorical variable a with Va k can equally well be represented in the
less compact form of k binary attributes.2

ROSETTA offers support for almost all kinds of relevant data sources through the
Open Database Connectivity (ODBC) interface.3 Effectively, this enables ROSETTA to
import tabular data directly from a wide variety of sources, e.g., Excel spreadsheets,
text files and databases from systems such as Oracle, dBase, Access or SAS.

2The categorical attribute a can be expanded into binary ones av1 , . . . , avk , where avi x 1 if
a x vi and 0 otherwise. This is actually one way of letting negations enter the picture as discussed
in Section 3.4.2, since the descriptor avi 0 essentially equals a vi . However, the cost of intro-
ducing such binary expansions is a higher number of variables, which in turn entails an increase in the
computational workload.

3ODBC is an open, vendor-neutral interface for database connectivity that provides access to a wide
variety of computer systems. The ODBC programming interface enables applications to access data in
Database Management Systems (DBMSs) that use Structured Query Language (SQL) as a data access stan-
dard. This enables developers to not have to target a specific DBMS. Instead, users can add modules
called database drivers that link the application to their choice of DBMSs.



8.4. METHODOLOGICAL SUPPORT 99

i Semantics
Ea Ea v, v v Va
Ea Ea v2, v1 v1, v2 Va and v1, v2 Ea
Ea Ea

ra Ea Ea v1, v2 v1, v2 Va and v1 v2 ra
Ea V2a Ea

v1 v2 Ea Ea v1, v2
v1 v2 Ea Ea v1, v2 , v2, v1

Table 8.1: A ROSETTA IDG specification for an attribute a consists of a sequence of edge spec-
ifications. This table gives an overview of how various edge specification commands alter Ea.
For details, see Øhrn [139]. Before executing 1 , the graph has no edges, i.e.,
Ea . Here, Ea denotes the transitive closure of Ea, computed byWarshall’s algorithm [6,36].
Also, when specifying individual edges, the symbol ‘ ’ can be used as a wildcard.

During data import, data dictionaries are automatically constructed. Such dictionaries
are meta-data containing information about attributes, e.g., names, types and units.
All communication between the kernel and the front-end is routed through these dic-
tionaries, so that information to the user can be displayed in terms from the modelling
domain. Data dictionaries can also be imported and exported explicitly.

Also relevant to the selection phase is attribute masking, which can be done fromwithin
data views. By masking away one or more grid columns, selected attributes can be
made “invisible” in any subsequent calculations. A typical example for the use of this
feature is if we have columns which assign unique identifiers to each row, e.g., patient
names or social security numbers.

8.4.2 Preprocessing

This phase covers the issue of data cleansing, which is generally application specific.
Removing obvious outliers is one common preprocessing task. Another common task
is that of completion, i.e., the process converting a system with missing values into a
new system without any such “holes”.

For some completion strategies, both the set of objects and the set of attributes may
get altered, while other alternatives modify only one of these. ROSETTA offers sev-
eral completion functions, and options currently include variations of object removal,
value substitution and value expansion [70, 111]. Value substitution and expansion is
also known as data imputation [55].

Alternatively, rather than producing a completed information system to work with,
the user may opt to overload the notion of discernibility to handle missing values
directly, as discussed in Section 5.2.1. ROSETTA can employ general IDGs, and sup-
ports a small language in which IDGs can be conveniently expressed. See Table 8.1 for
a small glimpse of this.
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Editing of tables for preprocessing purposes can also be done manually from within
data views.

8.4.3 Transformation

Transformation of data may take place in a wide variety of ways, and which transfor-
mations that are suitable to apply is usually dictated by the application. One possi-
bility is to perform a general transformation on the coordinate system spanned by the
condition attributes, e.g., some kind of projection of the data onto a set of rotated or
skewed axes [131, 132]. Such transformations, however, may destroy or severely dis-
tort the semantics of the attributes, thus taking away some of the appeal of employing
rule-based models. Presently, therefore, we only consider semantics-preserving data
transformations.

The most common transformation procedure in discernibility-based KDD is that of
discretization, which basically corresponds to defining a coarser view of the world
through making the attributes’ value sets smaller. For numerical attributes, we can
introduce intervals which in turn may be given linguistic labels and be treated as qual-
itative rather than quantitative entities. For symbolic attributes, we might choose to
merge categories together.

Several alternative discretization functions are currently implemented within ROSET-
TA, including methods based on discernibility preservation [129–131, 133], entropy
minimization [47], equal frequency binning [131] and various naive approaches. At-
tributes can also be discretized manually, if domain knowledge for this exists.

Note that discretization may or may not be needed to carry out. If IDGs are employed
to realize Equation 5.7 or if we only have binary or symbolic attributes, then discretiza-
tion may be skipped.

Discretization is further discussed in Appendix D.

8.4.4 Data Mining ,

The purpose of the data mining step is to produce a model from our preprocessed
and transformed database. In our context we decompose the data mining step into a
multistep process, which in practice is often interleaved for reasons of spatial and com-
putational efficiency. First, reducts or approximations thereof are computed through a
reduction process. The reduct set might then be filtered down according to some crite-
rion, and then overlaid the transformed database in order to generate a set of decision
rules. The rule set might in turn also be subjected to some filtering scheme.

Current ROSETTA options for reduction include genetic algorithms [233,245], set cov-
ering heuristics [95], singleton approaches [82], brute force [217], dynamic reducts [12,
13] and approximate hitting set approaches [233]. Support for boundary region thin-
ning [192, 250] and tolerance relations [106, 192] via IDGs is provided.
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ROSETTA also offers several options for filtering away individual reducts or rules
from collections of such. In addition to basic properties such as, e.g., coverage and
accuracy, filtering criteria include attribute costs, advanced quality measures [22] and
classificatory performance on external hold-out databases [3–5, 231].

Several of the data mining algorithms in ROSETTA can employ meta-data. In addition
to IDG specifications, some algorithms can make use of attribute cost information, i.e.,
information about costs associated with obtaining the values for each attribute. This
kind of information can be used to steer algorithms towards solutions that would
be “cheap” to realize in practice, e.g., by letting reduct computation algorithms have
a propensity towards selecting attribute subsets with low costs rather than attribute
subsets with low cardinalities.

8.4.5 Interpretation and Evaluation

One approach to aiding in model inspection and interpretation is to produce small
and compact models through applying some kind of filtering in the data mining step.
A complementary approach is to accept large models and facilitate the inspection of
individual “strong” rules or patterns. The ROSETTA GUI allows individual model
components to be sorted according to various properties directly in the data views.

An ensemble of decision rules can be evaluated according to how well they classify
unseen objects. Current classification procedures offered by ROSETTA include sev-
eral different approaches based on voting, e.g., standard voting, object tracking and
weighted voting [217]. Prioritization according to rule specificity [126] is also imple-
mented. Classification using Naive Bayes [46] is available, too.

The result of classifying a batch of objects in ROSETTA is a confusion matrix. Ad-
ditionally, the system can generate detailed logs and a range of performance mea-
sures. Current options for assessing classificatory performance include ROC anal-
ysis [75, 216], calibration curves [136], Brier scores [128] and its covariance decom-
position [9], plus measures directly derivable from confusion matrices such as, e.g.,
classification accuracy.

To aid in statistical analysis of classificatory performance, the statistical tests of Hanley
and McNeil [76] and McNemar [58] are available as stand-alone utilities that operate
directly on ROSETTA output.

8.4.6 Automation ,

ROSETTA offers support for partial automation of lengthy and repetitive command
sequences. Through a simple scripting language, serial and parallel flows of data can
be defined and executed. Dedicated scripting support for k-fold CV is provided.
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8.4.7 Deployment ,

Classifiers can be exported from ROSETTA as source code, ready for subsequent de-
ployment. Information systems can be exported as sets of Prolog facts, while decision
rules can be exported as sets of Prolog rules. This establishes a link from ROSETTA to
advanced inference engines, where the rules can be utilized together with any avail-
able domain theories as part of an expert system. A set of decision rules realizing a
classifier can also be exported as fully working C++ code, suitable to be embedded in
external applications.

8.4.8 Miscellaneous

As ROSETTA currently does not incorporate any kind of plotting or advanced data vi-
sualization, data such as, e.g., information systems or indiscernibility relations, have
to be exported to other software packages to be visualized. Currently supported for-
mats are Matlab [120] and GraphViz [68].

Automatically compiled summary reports of the actions performed during a ROSET-
TA session can be exported to HTML, complete with a hyperlink representation of the
current project tree.

Other ROSETTA features include support for random sampling, partitioning, and
computation of set approximations within the variable precision model [249, 250].

8.5 Miscellaneous

This chapter has provided an overview of the ROSETTA system and some of its fea-
tures. However, for clarity, some points should also be made as to what ROSETTA is
not:

Even though medicine has been the primary application domain during devel-
opment of the system, ROSETTA is in itself a general-purpose system that is not
geared towards any particular application domain. By design, the system has
support for several features that are relevant for analysis of medical data, but
these features can, and probably should, be employed in other domains as well.

ROSETTA command scripts are in no way intended as a general programming
language. Although several operations not originally intended supported can be
achieved, command scripts are very specialized towards expressing data trans-
formation pipelines. For general programming tasks, the ROSETTA C++ class
library should be used.

ROSETTA is not intended as a DSS in the sense of being a tool for patient-specific
consultation, although this is possible. Rather, the system works with collections
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of data from sets of patients and produces output that can be put to use in pro-
grams specially tailored for decision-support of that kind.

As mentioned in Section 8.2, a portion of the computational kernel originates from the
RSES library. How that external legacy code technically fits into the ROSETTA kernel
is discussed in Section 10.3.3 and in Appendix B.

A website has been created where various electronic resources related to the ROSET-
TA system can be found [180]. In addition to providing a location from where to
download the system, the site includes extensive documentation, utilities, comments
and tips on how to use the program and its associated utilities.

As of December 16, 1999, 2970 downloads of ROSETTA from 1286 distinct users have
taken place since the system was first released in the summer of 1997. ROSETTA
has received very positive feedback from its users, and has been successfully ap-
plied to problems in a wide range of domains. In addition to being used for teach-
ing and seminars, publications reported by ROSETTA users where the system has
been employed include4 applications in power electronics [248], analysis of medical
data [25,49,209,210,231,254], satellite control [161,166], software engineering [159,160,
162,163], finance [73], public policy generation [118], medical ethics [11], history of sci-
ence [238], real-time decision-making [164], anthropology [51], selection of controller
gains [165], environmental modelling [65], and diagnosis of rotating machinery [103].
Less application-specific publications include papers on rule filtering [3,4], generation
of default rules [92] and rough data modelling [116].

4Publications authored or co-authored by Aleksander Øhrn have been omitted from this list. The
publications are listed in no particular order. The true list of publications is believed to be longer, due to
lack of feedback from some users.
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Chapter 9

A ROSETTA Case Study

9.1 Introduction

This chapter provides a small case study to exemplify how ROSETTA can be applied
to analyze a medical database. The goal of this example is not to obtain optimal mod-
elling results, but rather to show how ROSETTA can be used in a typical data mining
and KDD scenario. As a case study, a publicly available database on coronary artery
disease is employed.

For details concerning the methods employed in this case study and other ROSETTA
features, see Øhrn [139].

9.2 GUI Preliminaries

Chapter 8 gave a brief presentation of the ROSETTA GUI. For this case study, the
following ROSETTA GUI details are worth noting:

A decision system can be read into a new ROSETTA project by selecting
from the main menu, and will be placed immediately below the root of the

node in the project tree.

Branches in the project tree can be expanded or collapsed by left-clicking on the
“ ” or “ ” symbols next to the icons.

Right-clicking on an icon in the project tree brings up a pop-up menu for that
object. In the following, the symbol “ ” will be used to denotemenu navigation.

Left-clicking twice on an icon in the project tree can be used as a shortcut for
viewing that object in detail.

Grayed columns in views of decision systems indicate that the corresponding
attributes are “masked away” and subsequently ignored by the ROSETTA kernel

105
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in any analysis steps. Missing values are indicated by the string “ ”.

Rules can be sorted directly in their views by right-clicking the column to sort
by.

To rename an object, first left-click once on its icon to select it. Then left-click
once more on the icon’s label. The icon’s label is edited directly in place.

To view progress messages and warnings, select from the main
menu.

9.3 Data Material

As a case study, the Cleveland Heart Disease Database from the UCI Repository of
Machine Learning Databases [15] is examined. The database has recorded information
about 303 patients over 13 condition attributes of various types. Each patient also has
a binary decision attribute which reveals the presence or absence of coronary artery
disease. From a machine learning point of view, the goal is to induce a classifier that
predicts the value of the decision attribute.

The database, summarized in Table 9.1, stems from a clinical study by Detrano et
al. [42] in which 352 different logistic regression models were created and subse-
quently tested on data collected at other geographical sites. For further details about
the medical diagnostic problem, the data material and the precise semantics of each
attribute, see Detrano et al. [42].

9.4 Experimental Setup

Figure 9.1 demonstrates a typical machine learning setup. The main input to the
pipeline is the decision system from Table 9.1. This is subsequently split in two
parts, and a classifier is induced from one part and applied to the other in order to
harvest a performance estimate.

The individual steps in Figure 9.1 are explained below. Also shown are the corre-
sponding ROSETTA menu choices for invoking the algorithms from Figure 9.1.

C
Produces a complete table by removing all objects from U that have a missing
value for any condition attribute a A.

U1 x U a A, a x (9.1)

S 1

Splits U1 into two disjoint universes U2 and U3.
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Attribute Description Statistics
a1 AGE Age (years). 29–77 (56)
a2 SEX Male sex? 0.680
a3 CP Chest pain type:

Typical angina 0.076
Atypical angina 0.165
Non-anginal pain 0.284
Asymptomatic 0.475

a4 TRESTBPS Resting systolic blood pressure on ad- 94–200 (130)
mission to the hospital (mmHg).

a5 CHOL Serum cholesterol (mg/dl). 126–564 (241)
a6 FBS Fasting blood sugar over 120 mg/dl? 0.149
a7 RESTECG Resting electrocardiographic results:

Normal 0.498
ST-T abnormality 0.013
LV hypertrophy 0.489

a8 THALACH Maximum heart rate achieved. 71–202 (153)
a9 EXANG Exercise induced angina? 0.327
a10 OLDPEAK ST depression induced by exercise relative 0.0–6.2 (0.8)

to rest.
a11 SLOPE The slope of the peak exercise ST segment:

Upsloping 0.469
Flat 0.462
Downsloping 0.069

a12 CA Number of major vessels colored by
fluoroscopy:

0 0.581
1 0.215
2 0.125
3 0.066

0.013
a13 THAL Exercise thallium scintigraphic defects:

Normal 0.548
Fixed defect 0.059
Reversible defect 0.386

0.007
d DISEASE Angiographic disease status: Over 50% 0.459

diameter narrowing in any major vessel?

Table 9.1: Summary of attributes recorded for the 303 patients recorded in the Cleveland Heart
Disease database. For binary attributes, the prevalence is given. For numerical attributes, the
range and median are given. For other attributes, the distributions are given. DISEASE is the
decision attribute, indicating absence or presence of coronary artery disease.
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Figure 9.1: Experimental setup for the case study, outlining the flow of data. The content of the
input decision system is summarized in Table 9.1, while the individual pipeline components
are described in Section 9.4. is first cleansed of missing values to produce 1, and then split
into two disjoint subsystems, 2 and 3. 2 is discretized in a two-stage procedure, and 3 is
discretized using the cuts computed from 2. Reducts and rules are then computed from the
processed version of 2, and the rules are used to classify the objects in the processed version
of 3. From this classification, performance estimates are harvested.

U1 U2 U3 U2 U3 (9.2)

D1 2

Discretizes the numerical attributes in A according to the discernibility-based
multivariate procedure described in Appendix D. Produces a set of interval
boundaries Cuts1 as a side-effect.

Cutsi a, c c is a cut for attribute a computed by Di (9.3)

D2 4

A fallback routine for discretizing any numerical attributes that D1 did not com-
pute any cuts for. Employs an unsupervised univariate technique to do so, and
produces a set of interval boundaries Cuts2 as a side-effect.

D3 3

Discretizes a table using the interval boundaries contained in Cuts1.

D4 6

Similar to D3, but employs Cuts2 instead.

R 5
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Figure 9.2: A possible IDG file in ROSETTA format for dealing with missing values in the
Cleveland database. Basically, the IDG states that all values are equal to themselves and
that missing values match everything, effectively defining the discerns/3 predicate for CA and
THAL as in Equation 5.6. For attributes not listed, discerns/3 reverts to Equation 5.4.

For each object x U2, computes reducts relative to that object. Employs a
genetic algorithm to do so, in which information about attribute costs can be
used to steer the algorithm towards finding “cheap” solutions. Approximate
solutions are found via minimal approximate hitting sets.

G Creates decision rules using the reducts computed by R as templates. However,
for reasons of efficiency this step is done on-the-fly by R, and is transparent to
the user.

B 7

Uses the rules output from G to classify the objects in 7, and produces various
performance measures.

9.4.1 Comments

A few comments on the experimental setup in Figure 9.1 are in order:

We could have chosen several different ways of dealing with the missing values
in in the C step other than removing incomplete objects. However, since there
were so few objects with missing values, this option was selected. A different
approach altogether would have been to use IDGs as described in Section 5.2.1.
An example IDG file in ROSETTA format can be found in Figure 9.2.

The attribute discretization is performed in two stages due to the presence of the
discernibility-based D1 procedure, since it effectively computes a reduct of the
full decision system. This reflects itself in that D1 might find that for some at-
tributes, no cuts are needed as in fact the discernibility in the system is preserved
even when those attributes are disregarded. A choice then has to be made as to
how such redundant attributes should be dealt with. One option would be to
discard them completely. Here, however, we choose to keep them and revert to
discretizing them using algorithm D2.
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Discretization into intervals only makes sense for attributes whose domains can
be totally ordered. “Grouping” together symbolic attribute values in sets as a
symbolic counterpart to intervals on numerical domains is not currently imple-
mented in ROSETTA. The question on how to handle the symbolic attributes in
therefore has to be addressed.

The symbolic attributes a2, a3, a6, a7, a9, a11, a13 will in this case study be kept
as they are by employing “masking”, i.e., by making them invisible to the dis-
cretization routine before invoking it, and then reinstating the original masking
states upon completion. In database terms, masking is equivalent to temporar-
ily working on a projection of . For univariate discretization techniques, this
works fine. For multivariate techniques like D1, however, this will have the
effect that all discernibility considerations are done only on the basis of the visi-
ble numerical attributes a1, a4, a5, a8, a10, a12 , and may thus result in more cuts
than are strictly needed. To compensate for this, and to allow for noisy data, we
may opt to preserve “most” and not all of the discernibility in the visible portion
of the table by computing approximations of prime implicants of Equation D.6.

In the fallback D2 step, for the sake of simplicity, we will employ three intervals
for all unmasked attributes. This intuitively corresponds to labeling the values
as “low”, “medium” or “high” relative to the observations.
Note that if D1 leaves no attributes undiscretized, then steps D2 and D4 can be
skipped as they then collapse to simple pass-through identity operations.

For reduction in the R step we make use of a list of attribute costs to guide the
genetic algorithm towards finding low-cost solutions. Figure 9.3 lists a cost file in
ROSETTA format. The cost of an attribute set is currently defined as the sum of
the costs of the individual attributes. This definition does not take into account
that when tests are performed in groups, there may be discounts due to shared
common costs. Although not currently implemented, such a generalization is
straightforward to add.

In amore elaborate example, we could have included a filtering step in Figure 9.1
that would have filtered away “weak” or “expensive” rules. To simplify this case
study, such a step is not included.

A selection of performance measures will be harvested in the B step. In addition
to performing an ROC analysis, we will also generate a calibration plot, and
compute the Brier score and its covariance decomposition.

9.4.2 Parameters

Section 9.4 describes the steps in the pipeline, and from which pop-up menus the
corresponding algorithms can be invoked. If an algorithm name has a trailing ellipsis,
this means that the algorithms has a parameter dialog associated with it. In this case
study, you can use the parameters listed below at each step.
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Figure 9.3: A file with cost information in ROSETTA format. The costs are in Canadian dol-
lars, taken from the Ontario Health Insurance Program’s fee schedule. The listed costs are for
individual tests, considered in isolation. When tests are performed in groups there may be
discounts due to shared common costs.

Several algorithms take many more parameters than listed. If not explicitly specified,
default values should suffice. Some of the parameters can be set via

or other secondary parameter dialogs.

C No parameters required.

S Requires a parameter for determining U2 . U3 is determined as U1 U2 .

D1 Requires a location for Cuts1. Also requires parameters for controlling the ap-
proximation degree, and for selecting to exclude non-numerical attributes from
discretization by “masking”.

D2 Requires a location for Cuts2. Also requires parameters for controlling the num-
ber of intervals, and for “masking”. This step may or may not be needed to
execute, depending on D1.

D3 Requires a location for Cuts1, and a flag indicating the masking status at the time
of creating Cuts1.
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D4 Similar to D3. This step may or may not be needed to execute, depending on D1.

R Requires parameters for determining the discernibility type, and for defining the
genetic algorithm. The latter includes specifying a location of the cost file, and
parameters for controlling the approximation degree.

G Transparent to the user, as it is executed on-the-fly by R. No parameters re-
quired.

B Requires parameters for determining how the rule-based classification should
take place, and which performance estimates to harvest. In the parameter dialog
for the classifier, be sure to specify that the rules output from
the G step should be employed. In addition to generating a confusion matrix,
the parameters below generate a verbose log file, a calibration plot and an ROC
curve as side-effects. The calibration file also includes information about the
Brier score and its covariance decomposition.

9.4.3 Results

At this time, the reader should execute the steps in Figure 9.1 using the algorithms
specified in Section 9.4 and the parameters from Section 9.4.2. A natural sequence to
perform the operations in would be:

C, S, D1, D3, D2, D4, R, G, B

Note that, as discussed in Section 9.4.1, steps D2 and D4 may or may not be needed to
execute, and that step G is performed automatically behind the scenes by step R.

After execution of all steps, the ROSETTA project tree might look similar to the one
depicted in Figure 8.1.
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Attribute Intervals
a1 AGE , 52 , 52, 60 , 60,
a4 TRESTBPS , 131 , 131,
a5 CHOL , 237 , 237,
a8 THALACH , 148 , 148,
a10 OLDPEAK , 0.3 , 0.3,
a12 CA , 1 , 1,

Table 9.2: Intervals computed from 2 in Figure 9.1 bymeans ofD1 andD2. Cuts for attributes
a4, a5, a8, a10, a12 were computed by D1, an approximate Boolean reasoning algorithm, and
should be seen in conjunction to each other since this is inherently a multivariate technique.
As it happens, D1 found one cut for each of these attributes. Attribute a1 was discretized by
D2, a simple unsupervised univariate technique.

Figure 9.4: The confusion matrix output from step B in Figure 9.1, using the parameters sug-
gested in Section 9.4.2.

With the suggested parameter settings, the set of cuts computed from 2 by D1 and
D2 are listed in Table 9.2.

The set RUL 5, d counts 2728 rules. For viewing purposes, it is a good idea to sort
them according to their coverage. Table 9.3 lists a small handful of the highest-ranking
rules after sorting.

Output from step B in Figure 9.1 are a confusion matrix and three ASCII files, ,
and . The confusion matrix is depicted in Figure 9.4, generated by

always selecting the outcome class with the highest degree of certainty associated with
it. For binary outcomes as discussed in Section 7.4, this corresponds to τ 0.5. Other
thresholds could of course have been specified, resulting in different matrices. How
sensitivity, specificity, classification accuracy, PPV and NPV vary as a function of τ are
displayed in Figure 9.5.

Figure 9.4 also summarizes some results of the ROC analysis. The full ROC curve
resides in the file , along with some other information. Figure 9.5(d) displays
the full ROC curve, showing how sensitivity and specificity are traded off against each
other.
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Browsing the calibration plot file shows that the Brier score of RUL 5, d on
7 was 0.117. The covariance decomposition of this due to Arkes et al. [9] can also be

found. Figure 9.5(e) displays the full calibration plot. The classifier seems fairly well
calibrated.

Inspecting the verbose classification log file reveals that the fallback classifi-
cation was never invoked, which is perhaps not too surprising considering the high
number of rules in RUL 5, d .

9.5 Systematic Partitioning

The performance estimates obtained from executing the experimental setup in Sec-
tion 9.4 only emanate from a single random two-way split. More reliable estimates
are desired and can be obtained by systematically varying how the splitting step S is
performed, as discussed in Section 7.2.1.

To illustrate how ROSETTA can be used for this purpose, the ROSETTA script lan-
guage will be used to execute the pipelines in Figure 9.1 in a k-fold CV setting. To
do this, we start from the completed decision system 1, and execute the script in
Figure 9.6. This can be done by invoking the following option:

1

The script in Figure 9.6 consists of two parts: The first part describes the training
sequence D1, D2, R and G, and the second part describes the test sequence D3, D4 and
B. The rules generated in the first part are implicitly used in the second part. Also,
some simplifications from Section 9.4 in the B step have been introduced. In particular,
we only harvest ROC areas and classification accuracies. For k-fold CV, the pipelines
are run through k times. The S step from Figure 9.1 is implicit, and is done according
to the k-fold CV sampling scheme.

9.5.1 Parameters

The parameters for the individual components of the pipeline are given in Figure 9.6.
However, the CV framework itself needs some parameters. Here, we will use k 10.
The following parameters are suggested, where refers to Figure 9.6:
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Figure 9.6: A CV script in ROSETTA format, describing one pipeline for model induction and
another for model assessment. Each parameter set should reside on a single line, but is here
displayed on several lines. For parameters that are not listed, the default or currently set values
are employed.

9.5.2 Results

After applying the algorithm from Section 9.5 to 1 using the parameters from Sec-
tion 9.5.1, a CV log file should have been produced. The CV log file con-
tains a detailed breakdown of the data flows in Figure 9.1 for each iteration, with a
performance summary at the end. Figure 9.7 displays an excerpt of the summary por-
tion of .

9.6 Comments

The goal of this example has not been to obtain optimalmodelling results, but rather to
demonstrate how ROSETTA can be used in a typical data mining and KDD scenario.
Even better performances than the ones reported in Section 9.4.3 and Section 9.5.2 can
almost surely be obtained through composing better pipelines and tweaking the algo-
rithms’ parameters. However, even the results obtained in this off-the-cuff case study
compare very favorably with the results on the Cleveland database that are reported
in the literature. Holte [82] has compiled a large survey of reported classification ac-
curacies obtained from applying various machine learning methods to the Cleveland
database. The accuracy results obtained in this case study surpass every method in-
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Figure 9.7: An excerpt of the summary portion of the CV log file resulting from having exe-
cuted the script in Figure 9.6.

cluded in Holte’s survey.1 A similar survey of AUC values does not exist, but the
presently obtained median AUC value of 0.916 seems acceptable.

The inclusion of cost information in the R step was done to illustrate how ROSETTA
can put such background knowledge to use. However, due to the limited size of the
database, the genetic algorithm might find most, and perhaps all, prime implicants
anyway, so the effect the costs have in the steering the search process might not be as
large as it might have been if the number of condition attributes had been higher.

Although not demonstrated, another use of the costs in Figure 9.3 would be to filter
and evaluate the rules according to the cost of checking their antecedents. This can be
achieved in ROSETTA by invoking the following option:

RED

ROSETTA also offers the option to evaluate rules according to a large number of mea-
sures of rule quality. This can be done by invoking the following option:

RUL

Lastly, to test if the performance of twomodels differ significantly in a statistical sense
as described in Section 7.4.6, this can be done with the HYPOCLASS program that ac-
companies ROSETTA. Currently, HYPOCLASS can perform McNemar’s and Hanley-
McNeil’s tests, and operates directly on ROSETTA output.

1As this survey was done in 1993, it probably does not fully reflect today’s situation. The simulation
results are encouraging, nevertheless.



Chapter 10

Design and Implementation

Sections of this chapter have previously appeared as [140, 145].

10.1 Introduction

The ROSETTA system was briefly introduced in Chapter 8 as a tool for supporting
and executing the KDD process within a discernibility-based framework. This chap-
ter delves beneath the surface of the ROSETTA system and presents the design and
architecture of the software. Through examining some of the pragmatical issues aris-
ing from the KDD process, main design parameters are made clear and their proposed
solutions outlined.

Section 10.2 outlines the system requirements and some of the rationale behind im-
posing these. The requirements for the computational kernel and the front-end are
discussed in Section 10.2.1 and Section 10.2.2, respectively. A more thorough presen-
tation and examination of the design and implementation of the computational kernel
can be found in Section 10.3, while similar issues related to the front-end are discussed
in Section 10.4.

This chapter is inherently software engineering oriented, and can be skipped without
loss of continuity. For some sections, rudimentary knowledge of object-oriented soft-
ware design and the C++ language is required. An outline of the ROSETTA source
code library can be found in Appendix B.

10.2 System Requirements

In practice, a data analyst setting up a KDD pipeline is faced with a multitude of
choices that have to be made, some of which are listed below. It is in the wake of these
that some central system requirements of the ROSETTA system have surfaced:

119
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Which of the steps in the pipeline are necessary for the application at hand? The topol-
ogy of the pipeline may differ with regards to both the purpose of the KDD task
as well as the nature and state of the data material. Moreover, each of the phases
in Figure 2.1 may themselves be composed of several substeps. A KDD toolkit
should therefore offer a flexible means of constructing different pipeline topolo-
gies, preferably in a dynamic fashion so that the pipeline can have the ability to
adapt to intermediate results during the course of processing, if such is requisite.

Which algorithms should be employed at the various stages? There is almost always
more than one way to accomplish a certain objective. Several algorithms may
be candidates for the same task, each with different trade-offs with respect to
computational complexity, accuracy and spatial requirements. In essence, inter-
changeability is paramount so that each functional building block in the pipeline
can be easily substituted with other blocks that perform a similar task.

Which parameters should be used for a given algorithm? Selecting the appropriate
algorithms for each step in the KDD process is usually only part of the problem.
Most often, the algorithms require a set of parameters that have to be manu-
ally specified and that may have considerable impact on the performance of the
algorithm. Furthermore, in many situations it is desirable to repeat the same
computational process with different sets of parameters. An easy way of pass-
ing parameters that is susceptible to automation is therefore needed.

Which hypotheses should be pursued in the mining process? The KDD process is
both interactive and iterative of nature, with a definite exploratory flavor. That
is, even though the mining steps are typically as previously outlined at large,
the person performing the data analysis makes several decisions along the way
as intermediate results unfold, effectively deciding the specifics of the next few
analysis steps. In many cases, at each level of analysis, several competing hy-
pothesesmay be candidates for further exploration, and several algorithms yield-
ing different results may be equally well suited. To cope with such a high de-
gree of fan-out, it is hence imperative to be able to operate in an environment
which allows one to interactively manage and process data, while retaining data-
navigational abilities.

How can I programmatically automate the process? As part of the process of search-
ing for a good pipeline composition, the data analyst will invariably want to
chain candidate building blocks together to see how they interact and comple-
ment each other, and observe their overall output or performance. However,
having to manually perform all the required steps would be extremely tedious
work, especially if performance evaluation is done within a statistical resam-
pling framework. An easy way to automate this process, at least partially, is
therefore required.

Section 10.2.1 and Section 10.2.2 outline further requirements specific for the compu-
tational kernel and the front-end.
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10.2.1 Kernel Requirements

The ROSETTA kernel is a general C++ class library offering all the most common
rough set related structures and operations, and is intended for use by researchers as
a toolkit for aiding rapid prototyping of new algorithms, as well as for automating
sequences of steps in the overall KDD process.

A chief global requirement has been to keep a sharp distinction between the kernel
of the system and the front-end. The kernel provides the relevant data structures and
computations to be performed on these, while the front-end manages the manipula-
tion and triggering of such. The kernel is fully independent of the front-end. This
separation is important so that parts of the kernel can be embedded in other applica-
tions and employed on platforms to which the front-end cannot be ported.

Prior to development of ROSETTA, the RSES system [217] already contained some
working C++ code for certain rough set calculations. Courtesy of Warsaw Univer-
sity, portions of this code was made available. An important design parameter for
the ROSETTA kernel was therefore that it should encompass the RSES legacy code
and employ it as an optional “plug-in” component. This is further explored in Sec-
tion 10.3.3.

Several design parameters have been emphasized in the construction and design of
the kernel library:

Maintainability: The object-oriented features provided by the C++ language should
be fully employed together with suitable advanced object-oriented design pat-
terns. This promotes software component reuse and significantly contributes to
the maintainability, flexibility and extensibility of the library.

Extensibility: The library should cater for easy addition of new data structures
and algorithms, as well as incorporation of legacy code. Notably, the system
should engulf most of the core code of the RSES system, but without having to
be dependent on its presence nor letting its state of design influence the overall
design of ROSETTA.

Flexibility: The design should allow for dynamically defined constructs and offer
a versatile means of combining algorithms. Using existing library contents to try
out new ideas should be easy and straightforward.

Modularity: The kernel library should be composed of several individual sub-
libraries with strict rules concerning their interdependencies. This minimizes
recompilation and clarifies the overall library architecture.

Usability: The operational behavior of the kernel should be consistent, and class
interfaces should be uniform, complete andminimal. There should be a common
way of doing things, a common idea permeating the library.

Efficiency: The kernel should not be inefficiently implemented. It is a common
misconception that the efficiency of numerical or scientific software written in
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C++ must be sacrificed on the altar of object-orientation. This is not necessar-
ily the case. The key to avoiding this is to be aware of what goes on behind
the scenes, and to avoid writing code in critical inner loops that might incur a
considerable overhead, e.g., implicit generation of temporary objects.

Portability: The kernel should have no dependencies upon the front-end, and
cutting-edge language constructs should, if used, be abstracted away by means
of, e.g., macros in order to make the kernel as compiler-invariant as possible.

How these requirements have been met are discussed in Section 10.3.

10.2.2 Front-End Requirements

The observations on the nature of the KDD process as well as general requirements on
modern GUIs have lead to the formulation of the front-end requirements for ROSET-
TA. The resulting front-end is a GUI for interactive manipulation, construction and
application of objects provided by the kernel. Windows NTwas chosen as the primary
target platform. The most important front-end design requirements have been:

User-friendliness: The front-end should be intuitive, perspicuous and easy to
use, and conform to the standard Windows GUI norms. Furthermore, the GUI
should be object-oriented in the sense that the objects being manipulated should
be represented as distinct and individual items in the interface, with the opera-
tions that are natural to perform on the objects available directly from the objects
themselves.

Support the overall KDD process: In order to function as an integrated system, the
front-end should cater for all steps in the modelling process; from target data se-
lection and preprocessing, via the actual mining procedures, to postprocessing,
evaluation and presentation of the results.

Data-navigation: During the whole modelling process, a vast multitude of differ-
ent objects is likely to be generated. In order to retain navigational abilities and
avoid drowning in data, it is therefore of vital importance how data is organized
in the front-end. A front-end design goal has hence been to set the data in an en-
vironment where it is immediately clear which objects that exist and how they
relate to each other.

Reflection of kernel contents: The front-end should reflect the contents of the ker-
nel. However, additional functionality will be added to the kernel incremen-
tally, ultimately leading to unpleasant front-end maintainability problems to
deal with if not properly handled from the beginning. A front-end design goal
has therefore been that incremental additions made to the kernel should reflect
themselves automatically in the front-end, with little or no additional front-end
programming involved.

How these requirements have been met are discussed in Section 10.4.
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10.3 The Computational Kernel

This section describes the design of the ROSETTAC++ rough set class library and how
the kernel design goals have been achieved, and discusses the rationale behind some
of the software engineering design decisions taken along the way. In addition, some
examples of use are provided.

The ROSETTA kernel has been constructed with the design patterns and C++ lan-
guage issues discussed by Meyers [122, 123] and Gamma et al. [61] as a guide. The
techniques used comprise several of those described, both behavioral, creational and
structural. Some software engineering issues concerning these are really only hinted
at in this section.

10.3.1 Handles

Perhaps the most common source of C++ programming errors relates to the man-
agement of pointers. It is often the case that some objects are shared across an ob-
ject ensemble, something that opens up a wealth of potential problems concerning
ownership and administration. To alleviate this, the ROSETTA C++ class library uses
“smart” pointers or handles.

A handle is a templatized proxy around a traditional C-style pointer, with additional
logic that ensures pointer validity and automatically takes care of memory manage-
ment issues through reference counting. Handles have operators overloaded to ensure
that they have the same semantics as traditional pointers, and automatically initialize
to . Moreover, a handle automatically deletes the object it refers to if it, when it
leaves its scope or is reassigned, is the last handle referencing the object.

Although extremely simple, this garbage collectionmechanism automatically and seam-
lessly minimizes or eliminates the problem of memory leaks, dangling pointers and
multiple deletes, and significantly simplifies memory management and increases the
safety of memory operations.

The described handle implementation only works as intended if the structures in
memory form a directed acyclic graph. Pointers that introduce cycles must be ordinary
“dumb” pointers given special attention. However, this shortcoming does currently
not pose a problem, since a typical project defines a tree or a pipeline, a cycle-free
structure.

10.3.2 Transitive Self-Identification

The use of run-time type identification (RTTI) in C++ is a controversial issue, since it to
many degrees defeats the inherent polymorphic features of the language and opens up
the door to code abuse and the writing of unmaintainable code. RTTI should therefore
be used judiciously, and virtual functions employed instead if possible. Yet, there are
some situations where RTTI is convenient. To this end, most commercial C++ code
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libraries therefore supply some sorts of RTTI mechanism, and RTTI is even an integral
part of the new ANSI/ISO C++ language standard.

Since, at the time of development, many existing compilers did not yet support this
language feature, the ROSETTA library offers RTTI emulation. Since public inheri-
tance models the is-a relation, the RTTI language feature is easily emulated via the
use of virtual functions. Adding the property of transitive self-identification to a class
in the ROSETTA library is effortlessly done through the calls to macros. In addition,
various supplementary information such as, e.g., textual class descriptions may stored
along with the registering of each type identifier.

10.3.3 Legacy Code

Incorporation of external legacy code into the ROSETTA kernel has been done by
means of a layering approach similar to the “Adapter” structural pattern [61]. By
writing adaptors or wrappers that inherit from abstract classes, and embedding the
appropriate objects from the external libraries in these, the external library is effec-
tively hidden, yet made available to add value. The derived wrapper class then per-
forms a conversion between the interface of the abstract object and the interface of the
embedded object from the external library.

The wrapper classes are never referenced directly as this would render the system de-
pendent on the presence of the wrapper classes and thus indirectly upon the design
and incorporation of the external code. Instead the system always operates on the
level of the abstract base classes, deferring the decision of which kind of leaf-node ob-
ject in the class hierarchy that actually does the work to the overloading constructs of
the C++ language. This makes the system independent of the presence of the external
code, and enables substitution of the wrapper classes with other alternative imple-
mentations. Alternative implementations may also co-exist in parallel.

The wrapper approach works very well in practice. ROSETTA has been tested with
various different configurations, and has been verified to function as a fully function-
ing system even when all external legacy code is omitted.

A short comment on efficiency might be in order here. Operating on the level of ab-
stract base classes means that we are dealing with virtual functions. Since inlining of
virtual functions does not make too much sense, this means that we have to incur the
overhead associated with a function call. However, this slight penalty in performance
is usually negligible, except perhaps for in extremely critical inner loops.

10.3.4 Creational Patterns

Since we as discussed in Section 10.3.3 wish to operate on the level of abstract objects
and abstract objects cannot be instantiated, we need a creational pattern to overcome
this in situations where objects need to be created. This has been done by applying
a hybrid of the “Abstract Factory” and “Prototype” creational patterns [61]. Mak-
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ing leaf-node objects available for use throughout the system is done by installing
small, empty prototype objects to an , a static object managing a pro-
totype pool. Furthermore, all classes have a virtual duplication method that returns a
clone of themselves. By passing a type identifier to the object manager, the pool of in-
stalled prototypes is scanned by means of the transitive self-identification procedure
described in Section 10.3.2. The installed prototype that matches the desired object
type the most closely is then ultimately duplicated and returned, i.e., inexact matches
are allowed. Although the can be operated on directly, a static inter-
mediate “factory” is also available.

Apart from installation of the prototype objects, the and C++ keywords are
thus never used directly to create or destroy objects in the ROSETTA library. Objects
are instead dynamically allocated by the creational pattern outlined above, while the
handle mechanism from Section 10.3.1 automatically takes care of the object destruc-
tion.

10.3.5 Main Object Dichotomy

It is worth noting that many algorithms are often implemented in terms of other algo-
rithms. In essence, we have the notion of composite or compound algorithms. Con-
sider for instance the conceptual procedure for computing dynamic reducts, outlined
in Section 5.2.6. The basic formulation of the algorithm does not specify which sam-
pling scheme to use, nor with which algorithm the subtable reduct calculation should
be performed with. Coding various choices as sequences of conditional tests ulti-
mately leads to unmaintainable code. Hence, the sub-algorithms themselves should
be parameterized.

As a second motivating example, consider the case of the overall KDD process. As
previously noted, the whole process is really a sequence of individually tunable steps
that can be viewed as a pipeline of algorithms, with the output of one algorithm being
the input to the next. In order to achieve partial automation of this process, it would
be desirable to be able to chain algorithms together dynamically in a flexible fashion.
Again, this leads to the design pattern of representing complex operations on objects
as separate objects in their own right. This is highly reminiscent of the role functions
have as so-called first-class elements1 in functional programming languages such as
Scheme [1].

The main dichotomy in the ROSETTA kernel is between structural and algorithmic
objects. Structures are simple data containers and have only methods for simple ad-
ministration and access, while complex computational procedures are represented as
separate and interchangeable algorithm objects. An example of a structural object
might be a decision table, while an example of an algorithmic object would be a re-
ducer, i.e., an algorithm that computes a set of reducts. This separation, a variation of

1Important “rights and privileges” of first-class elements are that they can be named by variables,
passed as arguments to procedures, returned as the results of procedures, and included in data struc-
tures.
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the “Visitor” and “Strategy” behavioral patterns [61], achieves among other:

Enabling replacement or addition of new algorithms without having to modify
existing structures, and vice versa. The structural classes rarely change, while
defining new operations over the structures is a lot more common. When intro-
ducing a new algorithm to the system, the separation thus not only eliminates
introducing bugs to the structural object the algorithm operates on, but also has
a positive effect on library interdependencies and hence recompilation.

Greater flexibility by enabling algorithms to be passed as parameters and dy-
namically chained together to form computational sequences.

Simpler, smaller and more lucid class interfaces. The interfaces of the struc-
tural classes avoid getting polluted with an abundance of distinct and unrelated
methods.

Enables library clients to include into their projects only those parts of the library
needed for their task at hand.

Note that any legacy code does not necessarily have to employ this architecture in
order to be incorporated as previously described, although this would make an incor-
poration process more immediate.

10.3.6 Algorithm Application

In a rough set framework, the natural result of an algorithm if applied to a structure
is often yet another structure. For instance, a set of reducts is created when apply-
ing a reduct computation algorithm to a decision table, and a set of rules is produced
when applying a rule generation algorithm to a set of reducts. In other cases, the algo-
rithm directly modifies the structure it is applied to. In the ROSETTA kernel setting,
algorithms are applied to structures by passing them through a single virtual
method on the structure object. For composite structures, the method may be
overloaded to allow for individual processing of the substructures.

The return value semantics of the virtual method are simple: If a new structural
object is the natural endpoint of the algorithm, the new structure is returned. If the
algorithm produces no new structural object but operates on and possibly modifies
the input structure itself, the input structure is returned. Lastly, if an error occurs,
nothing is returned. Optionally, if exception handling is desired used, an exception is
raised.

The RTTI emulation from Section 10.3.2 can be used to define families of function-
ally similar algorithms, e.g., algorithms that carry out attribute discretization, or algo-
rithms that compute reducts. Together with the outlined procedure, this implements
the “Strategy” behavioral pattern [61]. This means that algorithms within the same
family are fully interchangeable, letting them vary independently from clients that
use them.
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Each algorithm object keeps its own local set of parameters. Parameters are passed
to algorithm objects through a standardized virtual interface. The
parameter string is parsed and keyword/value pairs automatically delegated to the
right accessor methods. Library clients thus have to deal with a single method only,
although on the cost of several keyword/value pairs. However, this approach is more
susceptible to automation through script files, and smoothes out minor syntactical is-
sues such as case sensitivity. The accessor methods can also be called directly.

10.3.7 Miscellaneous

In many cases it is desirable to know from which structure a structure has been de-
rived, and in what way the structure was created. To this end, structures can be an-
notated in the way that they can automatically be “touched” with a description of
which operation that was performed on them, which algorithm that was used and
with which parameter set and so on. Done systematically, this offers a means of auto-
matically generating documentation of the modelling session. The annotation is also
reversible in the sense that an extract of the annotation can be passed as a parameter
set to an algorithm, and hence be used as a means of automatically regenerating the
computation.

10.3.8 A Small Example

To exemplify how the ROSETTA rough set C++ library can be programmatically ap-
plied, consider the following example of a complete albeit highly simplified KDD task:
A decision table residing on an external storage medium is read and preprocessed by
an attribute discretization algorithm. Reducts are subsequently computed, decision
rules generated and exported to Prolog format. In the process, several intermedi-
ate structures are generated. The processing pipeline is displayed graphically in Fig-
ure 10.1. In a slightly extended example, the pipeline would be equipped with several
intermediate postprocessing algorithms for weeding out “weak” reducts and rules,
e.g., according to their support basis or cost.

The small C++ program in Figure 10.2 completely implements the pipeline in Fig-
ure 10.1, using a suitable set of algorithms. As can be seen, a very modest degree of
programming is actually required.

10.4 The GUI Front-End

The ROSETTA front-end runs under Windows 95/98/NT and reflects the contents of
the kernel C++ library. The GUI offers a user-friendly environment to interactively
manage and process data, something that is invaluable when the model construction
steps to take are not known beforehand but depend on decision-making as various
intermediate structures unfold.
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Data
!!

0 && Import
table

&& Discretize
attributes

&&

Cuts
!!

Compute
reducts

RED && Generate
rules

RUL && Export
rules
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!!

Figure 10.1: A small example pipeline. From tabular data residing on an external storage
medium, decision rules in Prolog format are produced. Figure 10.2 displays how this pipeline
can be completely implemented using the ROSETTA kernel C++ library.

Figure 10.2: Complete implementation of the pipeline in Figure 10.1 using the ROSETTA ker-
nel C++ library. Three lines of code have been omitted where indicated, as these are irrelevant
for the current exposition.



10.4. THE GUI FRONT-END 129

10.4.1 Workspace

As previously argued, the generation of multiple intermediate structures requires that
they get organized in some fashion in order for the user to retain data-navigational
abilities. The ROSETTA GUI organizes its data in projects. A project is a collection
of structures that all belong or are relevant to the same modelling task. More than
one project may be open at the same time. The main window in the front-end of
each project is therefore a tree view, where individual objects are represented as sepa-
rate icons in the tree. How the various structures relate to each other is immediately
apparent from the topology of the tree. As the modelling session unfolds, the tree
is automatically updated to reflect the objects’ interrelationships. The user may also
manually edit the tree. A snapshot of a sample project tree is provided in Figure 8.1.

The project tree gives a bird’s-eye view of the total state of the ongoing experiment.
One can also zoom in and view the projects’ individual member structures. Viewing
of most structures is done in a matrix-like grid, in which the structures can also be
manually edited or otherwise manipulated. By means of an optional dictionary, deci-
sion tables and all structural objects derived from such can be displayed to the user in
terms from the modelling domain. In total, all the different views embody a compre-
hensive workspace. A snapshot of a sample workspace is provided in Figure 8.2.

10.4.2 Method Invocation

A central concept in the ROSETTA GUI is that there should be maximal proximity
between the object being manipulated on and the triggering of the manipulation itself.
The GUI therefore heavily makes use of context-sensitive pop-upmenus, invocable by
right-button mouse clicks. The operations that are natural to perform on an object are
hence available directly from the object itself, with the list of potential actions being
dependent on the object’s type and state. For instance, a menu of actions that are
natural to perform on a decision table is invocable from the decision table’s icon, and
amenu of actions that are natural to perform on a single column (attribute) in the table
is invocable from the column header in the grid view of the table.

As a supplement and alternative to the context-sensitive pop-up menus, another GUI
feature underscoring the proximity concept is the support for drag-and-drop. Using
drag-and-drop, an algorithm may be applied to a structure by dragging the icon of
the algorithm and dropping it onto the icon of the structure to apply it to, or vice
versa. The dialog box for entering parameters associated with the algorithm will then
automatically pop up. For instance, to compute the reducts in a decision table, the
icon of an installed reducer algorithm may be dragged and dropped onto the icon of
the decision table in the project tree.
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10.4.3 Kernel Reflection

A goal in constructing the ROSETTA GUI was that incremental additions made to the
kernel should reflect themselves automatically in the front-end with a minimum of
programming effort. By scanning the prototype pool from Section 10.3.4 for installed
objects, the front-end can automatically determine which structures that are available
and which operations that are possible to perform on them. These can then automat-
ically be made available to the user in the right places in the project tree and in the
context-sensitive pop-up menus. Consequently, once a new structure or algorithm
has been written, all that is needed to make them accessible in the front-end are the
appropriate installation calls to the prototype pool.
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Chapter 11

Identifying Population Subgroups

The contents of this chapter have previously appeared as [104, 141, 151].

11.1 Introduction

This chapter explores how the semantics of the boundary region of a rough set can
be exploited to identify subgroups of special interest in a larger population. The tech-
nique is an instance of feature extraction, where a new feature is constructed on the
basis of existing ones in order to make subsequent modelling easier or more inter-
pretable. Such new features might either serve as condition attributes or inputs to a
modelling scheme, or, as in this case, as a decision attribute or output to model.

In particular, feature extraction for the following problem is investigated: With the
increasingly rapid developments in medical technology, it is often the case that new
medical tests are devised that are powerful with respect to diagnosis or prognosis.
But even though a test is deemed as powerful, it may be the case that it is expensive to
perform, invasive, cause patient discomfort or for other reasons be preferable to use
sparingly. Furthermore, as argued by Harrell et al. [77], the yield of a new medical
test should always be assessed in the context of other available information. It could
very well be the case that combinations of more readily available parameters could
enable one to arrive at the same diagnosis or prognosis in many cases, while the new
test might only be really necessary to perform in very difficult cases. On the other
hand, there might be cases that are so difficult to diagnose or prognosticate that the
test would not be very helpful with respect to the decision problem at hand.

This chapter outlines a method that enables one to identify a population subgroup
for which there exists no Boolean combinations of parameters free for a set of spec-
ified tests that would enable one to arrive at a diagnosis or prognosis with a high
enough degree of certainty. In other words, this identified subgroup consists of the set
of patients for which knowledge of the outcome of the specified tests are absolutely
necessary for making a diagnosis or prognosis. Having identified and labeled this
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subgroup, one can feed this extracted “identification feature” into a machine learning
procedure for subsequent modelling of the identified subgroup. As a case study, a
myocardial infarction problem is investigated.

Section 11.3 presents the identification methodology, while Section 11.3.1 defines suit-
able measures for evaluating rough set approximations. A description of an iden-
tification experiment can be found in Section 11.4, with the identification results in
Section 11.5 and a discussion in Section 11.6.

11.2 Preliminaries

The mathematical foundations of this chapter are outlined in Chapter 5, in particular
the sections on variable precision rough sets in Section 5.2.3. The same notation and
terminology is employed in the following.

For the sake of simplifying the exposition, we will in the following assume that the
decision problem at hand is binary, i.e., that Vd 0, 1 . This is by no means an
unreasonable assumption since in practice this situation is extremely frequent.

It is worth noting that this chapter does not make use of any computer-intensive con-
structs. Rough sets in themselves are simple to compute, the computationally de-
manding burden of calculating reducts does not come into play in the following.

11.3 Methodology

Let denote a decision system, and let B A denote a set of condition attributes that
we are interested in avoiding to employ, if possible. The purpose of the identification
process is to, in an oracle-like manner, identify patients x U for whom it is possible
to determine d x without having knowledge of B. The output of this process is a new
decision system that can be fed into a modelling procedure.

Rough set theory deals with the approximation of sets, e.g., the set of all patients that
will either die or have a myocardial infarction within a certain follow-up period, or
the set of all patients susceptible to a certain treatment. The set X, defined below,
typically constitutes the set of patients that one would like to approximate and find
minimal descriptions of during a modelling stage.

X x U d x 1 (11.1)

The identification procedure consists of monitoring how the boundary region of X
changes when attributes B are removed from A. Obviously, some patients may mi-
grate into the boundary region while others will remain fixed. We are interested in
identifying the former subgroup of the population.
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The patients that migrate into the boundary region of Xwhen attributes B are removed
from A may do so from either the lower approximation or the outside region. This
subgroup corresponds to the patients where knowledge of B is strictly required for
identifying the approximation region to which they belong. Intuitively, these patients
may be labeled as “possible but difficult” to diagnose or prognosticate, but where
additional knowledge of B (or at least a subset of B) is crucially required to do so.

For all other patients, acquiring knowledge of B will have no effect with respect to
which approximation region they end up in. This is due to one of two reasons:

We already have enough information in A B to determine their membership
status in X within a reasonable degree of certainty. This translates to the set of
patients that remain fixed in the outside region or the lower approximation when
we remove B from A, i.e., the patients for whom a sufficiently accurate assign-
ment of membership or non-membership in X can be made without knowledge
of B. Intuitively, these patients may be labeled as “easy” to diagnose or prognos-
ticate.

Their degree of membership or non-membership in X does not become suffi-
ciently high or low when we consider A instead of only A B. This translates
to the set of patients that remain fixed in the boundary region when we remove
B from A, i.e., the patients for whom a sufficiently accurate assignment of mem-
bership or non-membership in X cannot be made, even with knowledge of B.
Intuitively, these patients may be labeled as “impossible” to diagnose or prog-
nosticate.

The set of migrating patients can formally be defined as in Equation 11.3. Further
subdividing the set of migrating patients into where they migrate from is of course
possible. These ideas are displayed graphically in Figure 11.1.

boundary A, π ,X AπX AπX (11.2)

migrate A, B, π ,X (11.3)
boundary A B, π ,X U boundary A, π ,X

Having defined the set of migrating patients, constructing a new decision system π

from that can be used to model this patient group is straightforward, as shown in
Equation 11.5. The identification process pinpoints the patients for which a Boolean
combination of descriptors free for B exist for predicting the value of d, but does not in
itself reveal any discerning characteristics of the identified patient group. For this, the
decision system π can be passed on to a machine learning procedure for subsequent
modelling of this patient group.
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U
A B πX
AπX
X
AπX
A B

π
X

Migrates from
lower approx.

Migrates from
upper approx.

Figure 11.1: Monitoring the change in the boundary region of X when attributes B are re-
moved from A. The set of patients that migrate into the boundary region are of particular
interest.

dπ x 1 if x migrate A, B, π ,X
0 otherwise (11.4)

π U, A B dπ (11.5)

11.3.1 Approximation Evaluation

The set approximations done in the identification step can be done with varying de-
grees of precision π . Of interest is then to construct approximations in the standard
sense, as well as with more relaxed precision requirements. To evaluate the approxi-
mations, define sensitivity and specificity of the approximations as the following quan-
tities:

sensitivity A, π ,X AπX X
X (11.6)

specificity A, π ,X U AπX U X
U X (11.7)

Approximation sensitivity (respectively specificity) is thus to be interpreted as the
number of objects that we correctly approximate as members (respectively non-mem-
bers), divided by the actual number of members (respectively non-members).

Approximation accuracy is defined as the ratio between the total number of correctly
approximated objects and the total number of objects, and is a weighting between the
sensitivity and specificity.
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accuracy A, π ,X (11.8)
X
U sensitivity A, π ,X U X

U specificity A, π ,X

11.4 Experiments

This section describes an identification experiment using a real-world dataset from
a myocardial infarction prognostic problem. The data material has previously been
analyzed by Geleijnse et al. [64].

Exercise testing provides important diagnostic and prognostic information in patients
with known or suspected coronary artery disease. However, a large portion of pa-
tients with chest pain may not be able to exercise adequately, thus reducing the detec-
tion of coronary artery disease. For such patients, alternative stress modalities have
to be used. In [64], a group of patients with chest pain underwent a dobutamine-
atropine technetium-99m sestamibi single-photon emission computed tomography
scintigraphic study. Using multivariate logistic regression, it was found that the single
most important independent predictor for future hard cardiac events (cardiac death or
non-fatal myocardial infarction) was an abnormal scan pattern. However, performing
a scintigraphic scan is a relatively expensive procedure, and may for some patients
not really be fully necessary as knowledge of the outcome of the scan may be redun-
dant with respect to making a prognosis. If one through considering combinations of
more readily available parameters could make the same decisions, one could thereby
minimize the number of scans acquired and hence potentially cut both costs and use
of resources.

The contents of the decision system are summarized in Table 11.1. There are 418
patients in the universe U, with the DEATHMI attribute as the decision attribute d
and all other attributes defining the set of condition attributes A. All attributes are
binary-valued, signifying the absence or presence of some feature. The cut-off values
used for discretization of the inherently numerically valued attributes were decided
upon externally by medical experts. There were no missing values in the data.

The 418 patients are all patients with chest pain, referred for the evaluation of sus-
pected myocardial ischemia. The data in the decision system is largely the same as
having been previously analyzed in [64], with some exceptions. 26 of the 418 patients
with early elective coronary revascularization within 60 days after stress testing were
excluded from the statistical analysis performed in [64]. None of these sustained a
major cardiac event before coronary revascularization. The 26 patients could not be
excluded from the present analysis, due to lack of knowledge of exactly which patients
they were.

The attributes listed in Table 11.1 and used in the present analysis are a subset of those
used in [64]. The endpoint or decision attribute is the same, reporting any subse-
quent hard cardiac events within a certain follow-up period. The APSTRESS and STT
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Attribute Description Prevalence
a1 AGE Over 70 years old? 0.191
a2 OLDMI Prior infarction? 0.490
a3 HYPERT Hypertension? 0.428
a4 DM Diabetes? 0.144
a5 SMOK Smoking? 0.280
a6 CHOL Hypercholesterolemia? 0.251
a7 GENDER Male? 0.569
a8 HFMED History of dec. cordis? 0.196
a9 ANGP History of angina? 0.249
a10 APSTRESS Angina during stress? 0.278
a11 STT ST-T changes? 0.311
a12 SCANABN Abnormal scan? 0.684
d DEATHMI Cardiac death or infarction? 0.112

Table 11.1: Summary of attributes recorded for the 418 patients used in the present identifica-
tion experiment. All variables are binary-valued, with the prevalence as indicated. DEATHMI
is the decision attribute, indicating whether a hard cardiac event occurred within the follow-
up period. Condition attributes APSTRESS, STT and SCANABN are stress test related, while
the other condition attributes are readily available clinical parameters.

attributes were acquired by means of the dobutamine-atropine stress test, while the
SCANABN attribute originates from the scintigraphic scan described in Section 11.4
and found to be the single most important independent predictor1 for future hard car-
diac events [64]. All other attributes were selected primarily due to their simplicity
and ease of acquisition.2 For a more detailed description of the patient group and the
precise semantics of each attribute, see [64].

Relating Table 11.1 to Equation 11.1, we are interested in forming approximations of
the set of patients with DEATHMI entries of 1, i.e., the set of patients that either died
or had a myocardial infarction within the follow-up period. Following the notation of
Section 11.3, this was done when excluding the following attribute sets:

B SCANABN : SCANABN was singled out in [64] as the single most impor-
tant independent predictor for DEATHMI, while at the same time being expen-
sive to perform and thus desirable to employ sparingly.

B APSTRESS, STT, SCANABN : These attributes constitute the results from
the stress test described in Section 11.4. Removing them leaves only more readily
available clinical attributes for predicting DEATHMI.

1Out of the 47 patients with a DEATHMI entry of 1, 44 also had a SCANABN entry of 1. Out of the
371 patients with a DEATHMI entry of 0, 242 had a SCANABN entry of 0.

2This was done while on a research stay in Trondheim by Piotr Szymański, MD, from the Postgraduate
Medical School, Dept. of Cardiology, Warsaw, Poland.
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B
π Approx. region a12 a10, a11, a12
0 Upper approx. 78 96 163

Lower approx. 29 28 19
Boundary region 49 68 144
Outside region 340 322 255
Sensitivity 0.617 (29/47) 0.596 (28/47) 0.404 (19/47)
Specificity 0.916 (340/371) 0.868 (322/371) 0.687 (255/371)
Accuracy 0.883 (369/418) 0.837 (350/418) 0.656 (274/418)

0.1 Upper approx. 78 79 92
Lower approx. 29 28 19
Boundary region 49 51 73
Outside region 340 339 326
Sensitivity 0.617 (29/47) 0.596 (28/47) 0.404 (19/47)
Specificity 0.916 (340/371) 0.911 (338/371) 0.865 (321/371)
Accuracy 0.883 (369/418) 0.876 (366/418) 0.813 (340/418)

0.2 Upper approx. 60 62 83
Lower approx. 29 28 19
Boundary region 31 34 64
Outside region 358 356 335
Sensitivity 0.617 (29/47) 0.596 (28/47) 0.404 (19/47)
Specificity 0.957 (355/371) 0.949 (352/371) 0.887 (329/371)
Accuracy 0.919 (384/418) 0.909 (380/418) 0.833 (348/418)

0.5 Upper approx. 52 47 32
Lower approx. 52 47 32
Boundary region 0 0 0
Outside region 366 371 386
Sensitivity 0.872 (41/47) 0.809 (38/47) 0.553 (26/47)
Specificity 0.970 (360/371) 0.976 (362/371) 0.984 (365/371)
Accuracy 0.959 (401/418) 0.957 (400/418) 0.935 (391/418)

Table 11.2: Approximating X x U DEATHMI x 1 with different attribute sets
A B and precision levels π .

11.5 Results

Table 11.2 lists the detailed results of identifying the set of migrating patients. The
numbers indicate the cardinalities of the approximation regions in question. The drops
in sensitivity and specificity can be attributed to exactly those patients that migrate
into the boundary region when the indicated attributes are removed. Note that π
0.5 amounts to always selecting the most probable category, and hence results in the
empty boundary region.3

The main results from Table 11.2 can be summarized as follows:

Using all attributes, the approximation sensitivity ranged between 61.7% and
3Technically, the variable precision rough set model is not defined for π 0.5. Here, possible ties are

resolved by assigning the objects in question to the interior of the set.
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Approx. region π 0, 0.1, 0.2 π 0.5
Upper approx. 35 25
Lower approx. 2 25
Boundary region 33 0
Outside region 383 393
Sensitivity 0.105 (2/19) 0.842 (16/19)
Specificity 0.960 (383/399) 0.977 (390/399)
Accuracy 0.921 (385/418) 0.971 (406/418)

Table 11.3: Approximating X0 from Equation 11.9 with A SCANABN and various sec-
ondary precision levels π .

87.2%, depending on the chosen precision level π . Correspondingly, the approx-
imation specificity ranged between 91.6% and 97.0%.

Removing SCANABN , the size of the boundary region increased by 19 from
49 to 68 patients (for precision level π 0), causing only a minor 2.1% drop in
approximation sensitivity. The corresponding drop in approximation specificity
was 4.8%.

Removing APSTRESS, STT, SCANABN , the size of the boundary region in-
creased by 95 from 49 to 144 (for precision level π 0), causing a major 21.3%
drop in approximation sensitivity. The corresponding drop in approximation
specificity was 22.9%.

11.5.1 Meta Results

The small drop in approximation sensitivity and specificity in Table 11.2 when only
SCANABN is removed seems to suggest that there is a substantial potential gain in
considering combinations of less expensive and more easily available parameters in
lieu of performing a scan.

These small drops are explained by the fact that relatively few patients migrate into the
boundary set when only SCANABN is removed. But how accurately can we expect to
be able to identify them without SCANABN? In order to answer this, we note that the
set Xπ defined in Equation 11.9 is by definition rough without the SCANABN attribute
and crisp with it. We can then proceed to perform a rough meta-analysis of Xπ , for
various secondary precision levels π . Table 11.3 summarizes the results of a meta-
analysis of X0. Note that only 19 patients are members of X0, as can be read from
Table 11.2.

Xπ x U dπ x 1 (11.9)

The main results from Table 11.3 can be summarized as follows:
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The approximation sensitivity ranged between 10.5% and 84.2%, depending on
the chosen secondary precision level π . Correspondingly, the approximation
specificity ranged between 96.0% and 97.7%.

The upper approximation of X0 counted 35 patients (for secondary precision
level π 0). The corresponding lower approximation counted 2 patients.

11.6 Analysis and Discussion

As can be read from Table 11.2, excluding only the SCANABN attribute results in only
a minor drop in approximation sensitivity and specificity. Since so few patients mi-
grate into the boundary region, this seems to suggest that there is a substantial po-
tential gain in considering combinations of more easily available parameters in lieu of
performing a scan. But even though the number of migrating patients is low, what
matters in practice is our ability to identify them. If the upper approximation of the
set of migrating patients had been extremely large, nothing much would have been
gained. However, as can be read from Table 11.3, the upper approximation of the mi-
grating set counts nomore than 35 patients, even for the most conservative values of π
and π . This means that we cannot define X0 well internally, although we can circum-
scribe it fairly well. In practice, one would presumably send all patients in the upper
approximation to acquire a scan. Assuming this to be true, the fact that the lower ap-
proximation counts only 2 patients and the approximation sensitivity is so low may
not be important. And at any rate, 35 patients represents a relatively low percentage
of the total number of patients.

Also evident from Table 11.2 is that the drop in both approximation sensitivity and
specificity is substantial when the set APSTRESS, STT, SCANABN , i.e., all stress test
information, is excluded. This seems to confirm the already known fact that stress
testing yields valuable prognostic information.

Since the dataset is not exactly identical as the one used in the statistical analysis
in [64], as explained in Section 11.4, results between the two are not directly com-
parable. But more importantly, the foci of the two analyses are different in nature.
Whereas the statistical analysis sought to assess the prognostic power of the nuclear
scan procedure, the rough set identification procedure sought to identify those pa-
tients for whom the procedure will presumably be of no help, and helps prepare for
subsequent modelling of this subgroup.

It should be emphasized that the reported quantities in Section 11.5 are sensitivities
and specificities of the set approximations as defined in Section 11.3.1, and are not to be
interpreted as the performance of a classifier induced in the normal train/test fashion.
If they were to be interpreted as such, the reported quantities would correspond to
the performance of a classifier applied to the same data it was derived from, and thus
gives an over-optimistic estimate of the performance an induced model may have on
unseen data. So the reported quantities are thus relevant for the identification step
and not a modelling step, but do provide a valuable estimate of the minimal loss of
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performance a classifier induced without the excluded attributes might experience.

We note that unless the attribute (or set of attributes) we want to assess the prognostic
power of (in our case, e.g., SCANABN) is a member of every reduct, then themigration
set will necessarily be empty, since no degradation in the set approximation will take
place. This is because there must then exist at least one reduct in which the attribute
of interest is not a member, and these reducts, by definition of a reduct, preserve the
indiscernibility relation.

Lastly, it should be noted that the issue of redundancy of a test addressed in this
chapter is meant with respect to some particular decision making situation. A test
may have multiple purposes and uses, and the presented identification methodology
focuses on one such use, namely for classification into the decision classes defined
through the decision attribute. For instance, a scintigraphic scan is useful for other
things than predicting hard cardiac events, for instance to decide on future treatment.



Chapter 12

Anonymizing Sensitive Data

The contents of this chapter have previously appeared as [148].

12.1 Introduction

This chapter investigates how Boolean reasoning can be used to make the records in a
database anonymous. In a medical setting, this is of particular interest due to privacy
issues and to prevent the possible misuse of confidential information. As electronic
medical records and medical data repositories get more common and widespread, the
issue of making sensitive data anonymous becomes increasingly important.

Broadly speaking, the field of medical informatics can be said to concern itself with
the capture of medically related data in a structured way and with ways to distribute
and analyze these data to ultimately increase efficiency and the quality of healthcare.
But as time progresses and more data becomes electronically available and shared,
the challenge of protecting patient confidentiality becomes greater and more difficult.
Woodward [243], Clayton et al. [33] and Sweeney [215] list several issues and chal-
lenges that this important problem complex raises, and provide several examples of
how electronic medical records can be misused and have been misused in the past.

It is a common misconception that sensitive information is kept confidential simply
because some directly identifying fields in the database, such as name or social se-
curity number, have been removed or obfuscated. Such databases may have been
de-identified, but they are not likely to be anonymous. For example, a combination of
attributes such as ethnicity, date of birth, gender and zip code may very well enable
one to almost uniquely identify a patient by linking this information up to an exter-
nal source of information, such as publicly available census data. This was demon-
strated in practice by Sweeney [215]. Sweeney [213] defines the distinction between
de-identification and anonymity as follows:

In de-identified data, all explicit identifiers, such as social security number,
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name, address and phone number are removed, generalized or replaced
with a made-up alternative; anonymous, however, implies that the data
cannot be manipulated or linked to identify any individual.

Since any external information source may be used for linking, the only way to be cer-
tain that data is truly anonymous is therefore to make sure that the data is anonymous
within the database itself. By that we mean that for each patient in the database there
has to be at least one other patient from which the first patient cannot be discerned, at
least with respect to the database fields that are most likely to be used for linking.

The fields of data mining and knowledge discovery are concerned with automating
the detection and discovery of patterns in large volumes of data. Many such tech-
niques are based on extracting identifying patterns that are then typically used for
constructing association rules or for prediction or classification purposes. However, if
identifying patterns can be found, they can also be employed in reverse to make the
database they were extracted from anonymous. If we suppress some or all of the infor-
mation described by the patterns, they become invalidated. This chapter investigates
how an approach based on Boolean reasoning can be used to find and subsequently
mask away combinations of field values that can be used to identify individual pa-
tients in a medical database.

Section 12.4 presents an anonymization methodology based on suppressing selected
database entries, while Section 12.5 briefly reviews the features of two anonymiza-
tion software systems. An example of the operation of the proposed cell suppression
algorithm is presented in Section 12.6. Lastly, an analysis of different aspects of the
algorithm and a discussion can be found in Section 12.7.

12.2 Preliminaries

Themathematical foundations of this chapter are outlined in Chapter 4 and Chapter 5,
in particular the sections on discernibility and discernibility functions. The same nota-
tion and terminology is employed in the following. In particular, a database is in this
context viewed as an information system , as defined in Section 5.2.

An overall assumption underlying cell suppression is that anonymization can be par-
tially achieved through suppressing entries in the database, and that entries that are
suppressed or “missing” cannot be used to discern between objects in the universe.
Relating to Section 5.2.1, this means that the discerns/3 predicate is defined as in Equa-
tion 5.6, given below for reference. We can view a missing value as a variable that can
be unified with everything.

discerns a, x, y a x a y and a x and a y (12.1)

Depending on the semantics of the problem at hand, in some situations a missing
value in a database might in reality signify a valid value, e.g., “not applicable”, rather
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than “unknown”. It will in the following be assumed that a missing or suppressed
value denotes the latter. This should not be a controversial assumption, as it can be
guaranteed through some simple preprocessing, e.g., filling the appropriate empty
cells with dummy values such as “Not applicable” or “-999999”.

The following exposition has deliberately been made with the goal of highlighting the
“data mining in reverse” aspect of anonymization via cell suppression. Hence, the
algorithms presented here should be taken as conceptual ideas rather than as absolute
guides for practical implementation. This will be further discussed in Section 12.7.3.

12.3 Main Approaches

The presented approach to anonymization is based on mathematical logic and in-
discernibility. Complementary techniques often have statistical roots [57, 87]. Den-
ning [41] also outlines various approaches to database inference controls.

In statistical disclosure control, many techniques are used to anonymize data that are
guaranteed to preserve some statistic such as the mean or variance of an attribute,
however on the cost of “corrupting” the data. Examples of such techniques might be
to add noise or perturbations in a controlled manner, or to simply randomly swap the
attribute values around for a large number of the objects. Clearly, in many situations it
is critical that the “truthfulness” of the data are preserved through the anonymization
process. Obtaining anonymized data that preserves a higher-order statistic but that
“lies” could, in a medical setting for instance, be potentially life-threatening if serving
as a basis for medical care. For these reasons, the term computational disclosure control is
sometimes employed instead, where truth-preserving anonymization is paramount.

Basically, there are three main approaches to making a database more anonymous
while preserving the truthfulness of the data:

Outlier removal. Certain rows or columns objects and/or attributes are removed
altogether.

Generalization. The value sets are made smaller.

Cell suppression. Selected database entries are locally suppressed.

These approaches are by no means mutually exclusive, but complement each other.
A full-fledged system for anonymization of sensitive data should probably apply a
mixture of all three techniques to achieve optimal results.

An issue that should be considered when selecting methods for making a database
anonymous is how the recipient of the processed data is going to make use of it. If the
recipient is a researcher doing a data analysis project, complete but generalized data
would probably be preferred to very specific data with missing values. This simply
because most data analysis tools do not handle missing values in databases very well.
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If, however, the processed data is only going to be used for browsing or for simple
queries, difficulties associated with the handling of missing data might not matter.

12.3.1 Removing Outliers

A database may contain objects that in some sense significantly stray from the rest of
the database contents. Such objects are referred to as outliers. If such an abnormal
object can be identified, removing it from the database is a safe but perhaps overly
radical way of maintaining anonymity. Conversely, if an outlier is labeled so because
of a deviant value of a particular attribute, removing the attribute from the database
would aid inmaintaining the anonymity of the outlier. Attribute removal is equivalent
to joining equivalence classes.

Removing or dropping outliers from a database is not entirely unproblematic, though.
In the medical domain, the outliers often constitute the interesting cases. Moreover, if
the dropped outliers belong to some subgroup of the population, removing themmay
skew the distribution of data as perceived by the recipient of the processed database.

12.3.2 Generalization

The value set of many attributes can often be ordered or organized in a hierarchy.
For example, diagnose codes can be organized according to the ICD-9 classification
system [59], and dates and numerical values can be sorted. The generalization process
amounts to defining a coarser view of the world. This is done by reducing the set of
possible values an attribute is allowed to take on, and may thus make two previously
discernible objects indiscernible. If the attribute values can be semantically organized
in a tree structure, this indiscernibility can be achieved by substituting the attribute
value for an object with a more general attribute value somewhere above it in the
tree. If the attribute values can be sorted or ordered along a line, generalization can
be done by grouping the values into intervals. Otherwise, generalization can be done
by forming subsets of the value set and assigning the same value to all elements in the
subset.

In the machine learning literature, this is also referred to as discretization or grouping.
In the statistical disclosure control community, generalization is also called global re-
coding.

12.3.3 Cell Suppression

Cell suppression consists of blanking out selected attribute values for outliers. Cell
suppression thus preserves the number of rows and columns in the original database,
and does not “blur” the perceived values of the non-suppressed entries. The algo-
rithms we present in this chapter are examples of cell suppression.
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procedure anonymize x
PA x p p is a term of BCF fA x
invalidate PA x , x

procedure invalidate P, x
while P
a select P
a x
P P p P a occurs in p

function select P
return argmax

a
p P a occurs in p

Figure 12.1: Pseudo-code for making an object x U in a database anonymous. First,
the set PA x of patterns that can be used to identify x are computed. Each pattern p is then
subsequently invalidated by suppressing the value of an attribute a that occurs in p. This is
done with a bias towards suppressing as few attribute values as possible.

12.4 Methodology

Based on the theoretical foundations in Chapter 4 and Chapter 5, this section presents
the fundamental building blocks needed to assemble an algorithm for making a data-
base anonymous via cell suppression.

12.4.1 Basic Algorithm

In order to make an object x U anonymous, we can execute the anonymize proce-
dure outlined in Figure 12.1. First, we compute the set PA x of prime implicants of the
discernibility function fA x . The set PA x thus summarizes all the ways in which x
can be identified. Now, in order to make x anonymous we have to disable each pattern
p PA x from being applicable. A pattern p can be rendered inapplicable if at least
one of the attribute values it contains is suppressed. The invalidate procedure imple-
ments a simple greedy algorithm for suppressing attribute values for all p PA x ,
with a bias towards suppressing as few attribute values for object x as possible. First,
the attribute a that occurs the most often in the set PA x is determined by the select
function. The value of attribute a is then suppressed, and the set of remaining valid
patterns updated. This process is repeated until all the patterns are invalidated. Al-
though not listed, a post-processing stepmight be desirable to add after the invalidate
procedure to hamper the suppressed values from being reconstructed. This issue will
be discussed in Section 12.4.4.
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What the procedure anonymize actually does is to enlarge the indiscernibility set
RA x , or, equivalently, add edges to the indiscernibility graph GA. This ensures us
that, after execution of the procedure, object x is less identifiable than before, but still
does not allow us to control and check if an object is “anonymous enough”. In fact,
anonymize may not even be necessary to execute if this is the case to start with. A
prerequisite for resolving this issue is to be able to numerically quantify the degree of
anonymity of x in the context of the database .

Quantifying Anonymity

Letting fA x denote the number of factors in the unsimplified representation of the
discernibility function fA x , we can define the degree of anonymity for object x with
respect to a database as shown below. Since no object is discernible from itself,
fA x can be no larger than U 1. Furthermore, RA x always includes x, so the
total number of objects U must equal the number of objects RA x that are indis-
cernible from x plus the number of objects fA x that are discernible from x.

αA x
RA x 1
U 1 1 fA x

U 1 (12.2)

The quantity αA x thus gives us a way to measure how anonymous x really is in the
context of . If αA x 0, then x is uniquely identifiable by attributes A and hence
completely non-anonymous. Conversely, if αA x 1, then x cannot be discerned
from any other object and is hence completely anonymous.

Equation 12.2 is a very simple one, and an issue it does not take into account is
the practical difficulty involved with identifying x. For instance, two objects that
are uniquely identifiable would both have an anonymity measure of 0, regardless of
how the complexity of the identifying patterns of the two objects differ. Intuitively, a
uniquely identifiable object that can only be identified through a very complex pattern
would be said to be more anonymous than a uniquely identifiable object that has sev-
eral very simple identifying patterns. In order to cover this notion, a refinement of the
formula forαA x should also incorporate PA x as well as the lengths (and possibly
nature) of the prime implicants p PA x .

Having a way to quantify the degree of anonymity for a single object x enables us to
express the overall level of anonymityαA U of a full database in a variety of ways.
For example, we can simply compute the average value ofαA x for all objects in the
database.

αA U
1
U x U

αA x (12.3)

A chain is only as strong as its weakest link, so another possibility would be to define
the overall anonymity level as the smallest αA x for any object x.
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procedure anonymize , τ
repeat
done true
for each x U
if αA x τ
anonymize x
done false

until done

Figure 12.2: Pseudo-code for one possible way of making a database “anonymous enough”.
The anonymize procedure in Figure 12.1 is called repeatedly for each object until all objects
have a degree of anonymity no less than a specified threshold τ .

αA U min
x U

αA x (12.4)

The way anonymity is quantified here is rather traditional. A bin size, in the terminol-
ogy of Sweeney [213], is mathematically the same as the cardinality of an equivalence
class,1 and hence, conceptually, overlaps with the definition of αA x . As currently
formulated, however, the set RA x is a general cluster and not necessarily an equiv-
alence class. Determining an optimal bin size is outside the scope of this chapter, but
some heuristics and problems regarding this issue are described in [213].

12.4.2 Anonymizing a Database

Now that the fundamental building blocks have been outlined, they can be com-
bined in a multitude of ways in order to assemble an algorithm where the degree
of anonymity can be controlled. One possible example is shown in Figure 12.2. More
elaborate implementations could also include individual anonymity levels τx. Addi-
tionally, if a more refined definition of αA x was developed, a function that related
this to τx could be passed to the invalidate procedure as an additional third argument,
and be used to possibly abort thewhile loop before the set of identifying patterns was
fully emptied.

It should be pointed out that making an object anonymous may alter the discernibility
functions for other objects. Hence, different orderings in the for loop in Figure 12.2
may yield different anonymizations of . Alternative implementations could either
fix a “good” ordering, or compute the identifying patterns for all objects and then in-
validate them in two separate for loops that are executed sequentially. This would
make the result order-independent, and is outlined in Figure 12.3. However, Fig-
ure 12.3 has the cost of possibly suppressing slightly more cells than strictly necessary,

1If all equivalence classes have a cardinality higher than k, this is often referred to as k-anonymity.
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procedure anonymize , τ
while αA U τ
for each x U
PA x p p is a term of BCF fA x

for each x U
invalidate PA x , x

Figure 12.3: Pseudo-code for another possible way of making a database “anonymous
enough”. In this case, contrary to Figure 12.2, the result in independent of the order the ob-
jects are processed in. Also, the anonymity threshold τ is relative to the whole database and
not relative to each individual object. However, slightly more cells than necessary may be
suppressed.

since there is no test for αA x per object. Had we introduced such a test, ordering
would once again matter.

12.4.3 Relative Anonymization

It might be the case that even thoughαA x is substantially larger than zero, all mem-
bers of RA x have the same value for some attribute d. Thus, we may still be able to
infer the value of d x , even though we cannot ascertain exactly which record in that
corresponds to object x. This leads us to consider the concept of d-relative anonymity,
i.e. anonymity with respect to attribute d.

Relative anonymity has definite practical importance. For example, attribute d could
denote the result of a HIV test, x could refer to a Hollywood celebrity, and we want
to ensure that the celebrity’s HIV status is kept confidential even if a tabloid journalist
gains access to the database. Obviously, our ability to block inferences about the value
of d x is determined by the spread of values d takes for all objects in RA x . In the
following, for sake of simplicity, d will be assumed to not be a member of A and to
not have any missing values. Relating to Chapter 5, we now interpret a database as a
decision system rather than an information system.

In order to ensure d-relative anonymity for object x, we must be able to answer the
following: Which patterns that match x enable us to infer the value of d x ? As it happens,
this pertinent question can be answeredwithin the present framework by a slight twist
of the previously proposed anonymization procedures. Our focus hence turns from
identifying patterns to patterns that constitute antecedents of propositional rules.

For rule generation, the key observation to make is that we do not need to discern
x from objects that have the same value for attribute d as x has. Or, more precisely,
we do not need to discern between objects that have the same value for a generalized
version A of d, defined by Equation 5.36. The generalized attribute A when applied
to x simply summarizes the set of values that the objects in the indiscernibility set
RA x take on for attribute d.
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procedure anonymize x, d
PA x p p is a term of BCF f dA x
invalidate PA x , x

Figure 12.4: Pseudo-code for making object x U in a database anonymous relative to
attribute d. The invalidate procedure is defined in Figure 12.1.

A variation of the basic anonymize algorithm with focus on d-relative anonymity is
given in Figure 12.4. The only difference between Figure 12.1 and Figure 12.4 is that we
compute the prime implicants from f dA x instead of from fA x , where A functions as
a “filter”, as defined in Section 5.3.4. Each element of PA x determines a pattern p that
defines a decision rule as defined in Section 6.3.1. The set of decision rules generated
this way are both complete and minimal with respect to descriptors in [192]. The
comment made in Section 12.4.1 about an additional anti-reconstruction step to be
executed after the invalidate procedure, also applies here. This issue will be further
discussed in Section 12.4.4.

After executing the anonymize procedure in Figure 12.4, A x 1. However, we
still lack a way of numerically quantifying how well an inference about the value of
d x is blocked. Having such a measure would enable the procedure in Figure 12.4 to
be employed in a wider database setting, similar to Figure 12.2 or Figure 12.3.

It should be pointed out that using the generalized decision A as a “filter” as defined
in Section 5.3.4 and employed in Figure 12.4 is typically suitable for one anonymiza-
tion cycle only, if the algorithm in Figure 12.4 is to be used as a component of the
procedures in Figure 12.2 or Figure 12.3. The reason for this is that after one cycle for
each object, all objects may then have the same generalized decision value. If Vd 2
this is definitely the case, since then the function fdA x will have no factors. Hence,
if d-relative anonymization is to be repeated until some anonymity criterion is met,
then a slightly different version than Equation 5.37 should be used as a basis for Equa-
tion 5.42, for instance by using π

A from Equation 5.40 as a “filter” instead of A.

Quantifying Relative Anonymity

The relative degree of anonymity αA x, d for an object x with respect to an attribute
d gives a measure of how well the value of d x is “disguised” in RA x . As noted,
our ability to block inferences about the value of d x is determined by the spread of
values d takes for all objects in RA x .

αA x, d A x 1
Vd 1 (12.5)

A naive way of defining αA x, d is given by Equation 12.5. If αA x, d 0, then all
objects in RA x have the same value for attribute d. Conversely, if αA x, d 1, then
all possible values for d are represented in RA x . However, the definition above says
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nothing about the internal distribution of values within RA x , and hence yields little
information about the certainty with which one can make an inference about d x .

The difficulty of determining d x increases with the degree of heterogeneity of RA x
with respect to d. A natural way of incorporating this notion is by letting αA x, d
vary proportionally to the entropy2 or disorder of RA x with respect to d, as defined
by Equation 12.7.

Pr v RA x
y RA x d y v

RA x
(12.6)

αA x, d
v Vd

Pr v RA x log2 Pr v RA x (12.7)

An extended definition of αA x, d should also take into account RA x , similarly to
howαA x was defined in Section 12.4.1.

12.4.4 Hampering Reconstruction

The presented anonymize algorithm ensures that RA x 1, or, in the case of d-
relative anonymization, that A x 1. This alone, however, does not ensure that
any query posed to the processed database will not return a single row, although any
such returned single row will almost certainly contain suppressed values. In some
special cases, suppressed values are reconstructible if outside knowledge about the
value sets of the suppressed attributes are applied together with a priori knowledge
about the database contents. To exemplify, consider querying the toy database in
Table 12.1 for all black females. The query will return the singleton x3 , assum-
ing that missing values match everything. Of course, a query for all female Eski-
mos would also yield the same query result, but if we know beforehand that the
database definitely contains a black person, then the suppressed value for the Ethnicity
field for object x3 can effectively be reconstructed. In order to hamper a suppressed
value from being deterministically reconstructible using knowledge external to the
database, more information may need to be suppressed. If this is not an issue, an
anti-reconstruction post-processing step may not be necessary.

Assume that a x has been suppressed, and let â x denote a x prior to suppression.
Define the subset N a, x as those objects in RA x for which attribute a has not been
suppressed, and that have a different value for a than object x had originally.

N a, x y RA x â x a y (12.8)
2On a historical note, the term entropy was introduced at the suggestion of John von Neumann to

Claude Shannon. Allegedly, von Neumann said this use of the term was safe since few people could
define entropy no matter how it was used.
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Gender Ethnicity . . .
U a1 a2 . . .
x1 F Caucasian . . .
x2 F Caucasian . . .
x3 F . . .
x4 M Asian . . .
x5 M Asian . . .

Table 12.1: A small toy database exemplifying how suppressed values can be reconstructed
if background knowledge of the database contents is available. A query for all black females
would return the singleton x3 , assuming that missing values match everything.

If we suppress a y in addition to a x for some y N a, x , this would rectify our
particular problem. In our example in Table 12.1, this corresponds to suppressing the
Ethnicity field for either object x1 or object x2 as well. Doing this in a nested loop
for all suppressed variables for all objects is one way of hampering reconstruction
that can be invoked as a post-processing step to perform after the invalidate call in
either of the outlined anonymize algorithms. Since such additional suppression for
one object might alter the indiscernibility set for another object, the same comment
made in Section 12.4.2 about order-dependence also applies here. Also, there is the
question of selecting which object in N a, x to additionally suppress. In case of d-
relative anonymity, we would typically select an object y such that d y d x .

Note that additional suppression using the N a, x construction may or may not be
necessary or helpful in hampering a x from being reconstructed, depending on what
external knowledge we expect a reconstructor to have. Suppose for instance that our
query for black females returned two objects, both with the Ethnicity field suppressed.
If we knew beforehand that the database must contain one black female, we still can-
not be sure which of the two returned records that belong to that individual. But if we
knew beforehand that the database must contain two black females, both suppressed
Ethnicity fields are reconstructible. There is thus a problem- and recipient-specific limit
on the effort one should put into hampering reconstruction. Consider for instance the
extreme upper bound of an omniscient reconstructor. Then, he or she will be able to
reconstruct the entire table, even if we suppress every single field in the database.

As noted and demonstrated, suppressed cells can often be reconstructed through clev-
erly applying background knowledge of some sort.3 Denning [41] describes several
methods of attack on disclosure techniques, all of which involve using released statis-
tics and supplementary knowledge to solve a system of equations for some unknown.

3In fact, to be absolutely sure that confidentiality is not breached, the data should perhaps not have
been released in the first place. This illustrates that confidentiality is just as much a policy issue as it is a
technological issue.
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12.5 Software Systems

Software systems for making confidential databases more anonymous exist. A review
of and comparison between the Datafly [214] and µ-ARGUS [87] systems is done by
Sweeney [213]. Neither Datafly nor µ-ARGUS address relative anonymization. The
Datafly system performs generalization and may remove outliers entirely, but does
not incorporate cell suppression. The µ-ARGUS system also performs generalization,
but performs cell suppression instead of removing the outliers.

This chapter has focused on presenting a formal mathematical approach for detecting
identifying combinations of fields in a database. In the µ-ARGUS system, this prob-
lem is addressed in a very limited manner by only considering combinations of two
or three fields among a certain subset specified by the user. Larger combinations or
combinations that involve attributes outside the specified subset go undetected. The
Datafly system combats the problem in a better way by requiring that the cardinality
of the equivalence classes of objects with respect to a specified subset of attributes be
no less than a certain threshold. If this requirement cannot be met, generalization of
the value set of one of the attributes considered is attempted. Outliers may be dropped
in the process, and identifying combinations of attributes outside the specified subset
may still go undetected.

12.6 Examples

A prototype for performing the outlined anonymization procedures has been imple-
mentedwithin the framework of the ROSETTA library [145,147]. This section provides
examples of how the outlined Boolean reasoning algorithms operate.

12.6.1 Anonymization

Consider the small example database in Table 12.2(a). All objects in the database are
uniquely identifiable, and most of the records have identifying characteristics even
when the SSN attribute is held aside. After one iteration of the anonymization al-
gorithm outlined in Figure 12.3, the database has been transformed into the “more
anonymous” database shown in Table 12.2(b). In this database, each object has at least
one other object from which it cannot be discerned.

As a case study, object x5 will be considered in detail. First, the discernibility function
fA x5 is constructed as shown below. Each conjunction in the POS formula stems
from one of the other objects, and expresses how that particular object can be discerned
from object x5.
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SSN BirthYear Gender Ethnicity Zip
U a1 a2 a3 a4 a5
x1 0123456789 1964 M Caucasian 02116
x2 1234567890 1964 F Caucasian 02138
x3 2345678901 1970 M Black 02144
x4 3456789012 1968 F Asian 02166
x5 4567890123 1969 F Black 02156
x6 5678901234 1970 M Black 02144
x7 6789012345 1964 F Caucasian 02138
x8 7890123456 1969 F Asian 02116
x9 8901234567 1968 F Asian 02166
x10 9012345678 1964 M Caucasian 02166

(a) Before

SSN BirthYear Gender Ethnicity Zip
U a1 a2 a3 a4 a5
x1 1964 M Caucasian
x2 1964 F Caucasian 02138
x3 1970 M Black 02144
x4 1968 F Asian 02166
x5 1969 F
x6 1970 M Black 02144
x7 1964 F Caucasian 02138
x8 F Asian
x9 1968 F Asian 02166
x10 1964 M Caucasian

(b) After

Table 12.2: Example database before and after one anonymization cycle.
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fA x5 a1 a2 a3 a4 a5
a1 a2 a4 a5
a1 a2 a3 a5
a1 a2 a4 a5
a1 a2 a3 a5
a1 a2 a4 a5
a1 a4 a5
a1 a2 a4 a5
a1 a2 a3 a4 a5

We then proceed to compute BCF fA x5 , which semantically represents the same
function as fA x5 but rather expressed as a minimal SOP formula. Each term in
BCF fA x5 represents a minimal identifying pattern for object x5, and the set PA x5
comprises all of these.

BCF fA x5 a1 a2 a4 a3 a4 a5

The invalidate procedure then suppresses the cell entries that would otherwise iden-
tify object x5. This is done by initially noting that the Ethnicity attribute occurs the
most frequently in PA x5 . This field is therefore suppressed for object x5, and those
elements in PA x5 that contain this attribute are removed from PA x5 . This leaves
only two disjoint elements in PA x5 (namely SSN and Zip ), so these are in turn
also suppressed for object x5.

From Table 12.2(a) to Table 12.2(b), the indiscernibility set RA x5 has grown from the
singleton x5 to the set x5, x8 , hence increasing our crude measure of anonymity
αA x5 from 0 to 1/9.

12.6.2 Relative Anonymization

If we augment the small example database in Table 12.2(a) with an extra attributeHIV,
we obtain the database shown in Table 12.3(a). We want to anonymize the database
relative to the HIV variable, blocking deterministic inferences about the HIV status
of each patient. After one iteration of the anonymization algorithm outlined in Fig-
ure 12.3, but using the discernibility function computed modulo HIV as shown in Fig-
ure 12.4, the database in Table 12.3(a) has been transformed into the database shown
in Table 12.3(b). In the processed database, each object will have at least one other
object indiscernible from itself that has a different value for the HIV variable.

Again, object x5 will be considered in detail. To construct the HIV-relative discernibil-
ity function f dA x5 , we can simply drop those conjunctions from fA x5 that discern
object x5 from objects with negative HIV values.
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SSN BirthYear Gender Ethnicity Zip HIV
U a1 a2 a3 a4 a5 d
x1 0123456789 1964 M Caucasian 02116 Positive
x2 1234567890 1964 F Caucasian 02138 Positive
x3 2345678901 1970 M Black 02144 Negative
x4 3456789012 1968 F Asian 02166 Negative
x5 4567890123 1969 F Black 02156 Negative
x6 5678901234 1970 M Black 02144 Negative
x7 6789012345 1964 F Caucasian 02138 Negative
x8 7890123456 1969 F Asian 02116 Positive
x9 8901234567 1968 F Asian 02166 Negative
x10 9012345678 1964 M Caucasian 02166 Negative

(a) Before

SSN BirthYear Gender Ethnicity Zip HIV
U a1 a2 a3 a4 a5 d
x1 1964 M Caucasian Positive
x2 1964 F Caucasian 02138 Positive
x3 M Negative
x4 F Asian Negative
x5 1969 F Negative
x6 M Negative
x7 1964 F Caucasian 02138 Negative
x8 F Asian Positive
x9 F Asian Negative
x10 1964 M Caucasian Negative

(b) After

Table 12.3: Example database before and after one anonymization cycle relative to HIV.
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f dA x5 a1 a2 a3 a4 a5
a1 a2 a4 a5
a1 a4 a5

The prime implicants of f dA x5 are then computed and subsequently blocked by the
invalidate procedure. Each term in BCF fdA x5 represents a minimal antecedent for
a rule that could otherwise be used to deterministically predict the value of variable
HIV for object x5.

BCF f dA x5 a1 a4 a5

From Table 12.3(a) to Table 12.3(b), the indiscernibility set RA x5 has grown from the
singleton x5 to the set x4, x5, x8 . As a result, the set of possible HIV values for the
objects in RA x5 has grown from Negative to Negative, Positive .

12.6.3 Remarks

Neither Table 12.2(b) or Table 12.3(b) have been exposed to any kind of anti-recon-
struction scheme, as outlined in Section 12.4.4. As it happens, Table 12.3(b) is a good
example of a situation where hampering reconstruction of attribute a4 is a good idea
if we expect a reconstructor to know beforehand that the database contains a black
female. In this case, we would also suppress the value of attribute a4 for object x8,
since x8 N a4, x5 and d x8 d x5 .

Alternatives to performing such post-processing include more anonymization cycles,
another definition of the discerns/3 predicate in Section 5.2.1, or a less conservative
implementation of the invalidate procedure in Figure 12.1.

12.7 Analysis and Discussion

This chapter has considered the problem of making databases with sensitive contents
anonymous, and framed the problem in the formal mathematical setting of Boolean
reasoning. Furthermore, an algorithm has been presented that can be used to mask
away combinations of values that serve as identifying patterns for individual records
in a database, or for a particular field in the database.

The presented algorithm has several desirable properties:

It has a firm, mathematical foundation.

The degree of anonymity can be tailored according to the specific needs of the
recipient, and according to the amount of trust we place in the recipient. Fur-
thermore, the required measure of anonymity can be specified as far down as to
the individual objects in the database.
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Outliers are not removed, but are only partially masked in order to make them
acceptably anonymous.

The framework can be used to both preserve object anonymity as well as to block
deterministic inferences about specified database fields.

However, the presented algorithm in its most basic form would probably still not be
sufficient for most real-world anonymization applications as a stand-alone system.
The most prominent reason for this is that the algorithm does not incorporate any
kind of generalization feature. Initial generalization of the databases could rather
quickly ensure an acceptably large bin size on a per attribute basis, and might even
circumvent the problems described in Section 12.4.4 by making any equivalence class
for any object with respect to the full attribute set A a non-singleton. Additionally,
an anonymization approach based on discernibility is best suited for categorical vari-
ables. When dealing with variables over numerical domains, generalization or dis-
cretization thus becomes an important and necessary preprocessing step.

A suitable place for the presented algorithm would therefore be as a subsystem of a
larger and more elaborate anonymization system such as Datafly, where it could be in-
voked after generalization has taken place. Using the algorithm we presented would
allow us to verify that no further generalization is needed, or to locally suppress en-
tries for outliers instead of removing them altogether from the database. Also, the
procedure may be used to detect identifying combinations of fields not included in
the subset of attributes that have to be specified by the user in both the Datafly and
µ-ARGUS systems, and to perform relative anonymization.

12.7.1 Interpretation and Links

Many of the mathematical ideas employed in this chapter can be justified and ex-
plained in terms of rough set theory, as outlined in Chapter 5. Skowron [192] discusses
tolerance information systems and applications of Boolean reasoning in conjunction
with tolerance relations and indiscernibility phenomena. It is worth noting the close
relationship between how the identifying patterns are detected and howdecision rules
are generated in the rough set approach of rule induction. In fact, an identifying pat-
tern really defines a classification rule if we envision our database to be augmented
with an extra one-to-one attribute d.

In the basic formulation of rough set theory, the indiscernibility relation RA defined in
Section 5.2.2 would have to be an equivalence relation, and the anonymity of an object
xwould consist of it being “hidden” in the upper approximation of the singleton x .
The upper approximation, in turn, is a special case of the more general topological
notion of closure.

There is an intimate link between prime implicants of discernibility functions and the
notions of keys and functional dependencies in relational databases. If we consider the
full database’s discernibility function as defined in Equation 5.21, a prime implicant p
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of this function actually defines a minimal functional dependency P A P in table
, where P is the set of attributes that occur in p.

The cell values that are suppressed for object x in the invalidate procedure in Fig-
ure 12.1 actually form an implicant of the Boolean POS function BCF fA x , where
the implicant is composed of the complemented Boolean variables returned by the
select function. We typically want the implicant to be a prime implicant, to avoid
unnecessary suppressions from taking place. Hence, the suggested definition of the
select function seems reasonable. In fact, the invalidate procedure together with the
currently defined select function implements a variation of the set covering heuristic
defined by Johnson [95].

12.7.2 Changing Biases

As noted, the select function in Figure 12.1 makes the invalidate procedure have a
bias towards suppressing as few cells as possible, i.e., having a bias towards prefer-
ring short terms of BCF BCF fA x . However, it can easily be redefined to provide
other behaviors. For example, one may instead choose to the return the attribute that
minimizes a user-defined cost. That way, user preferences can be incorporated.

Processing data to ensure anonymity necessarily causes a certain degree of loss of in-
formation. The challenge of any anonymization process is to preserve as much infor-
mation as possible, while ensuring a preset level of anonymity. One way of measuring
the data-quality or information content is to compute the entropy or disorder in the
database, according to standard information-theoretic formulae. Therefore, instead
of having the user define the attribute costs, an alternative would be to overload the
select function to additionally take into account the information loss that results by
suppressing a x .

12.7.3 Complexity Issues

The biggest drawback of the algorithm, as presented, is its potential complexity. In
general, computing all prime implicants is an NP-hard problem [192]. However, this
theoretical drawback does not necessarily render the approach useless in practice. An
exhaustive computation is still feasible unless the number of attributes A is very
high. If only the attributes considered likely to be used for linking to external data
sources are input to the anonymization process (demographic fields, typically), this
may in itself bring the problem down to a feasible size. Additionally, simplification
and absorption as discussed in Section 5.2.4 can often reduce the size of the problem
significantly. And either way, computationally efficient heuristics exist that can be
used to search for individual prime implicants. If only some prime implicants are
computed, the heuristics can be equipped with a suitable bias so that the short (and
thus presumably more “easily” detectable) patterns are given priority.

Computing the entries of the discernibility matrix is an O U 2 A process, and this
will probably in practice be a limiting factor for very large databases. However, cer-



12.7. ANALYSIS AND DISCUSSION 161

procedure anonymize x
B pick BCF fA x
for each a B
a x

Figure 12.5: The algorithm from Figure 12.1 revisited. A far more efficient implementation.
The function pick picks one of the prime implicants of fA x according to some criterion.
Such a prime implicant is easily computed.

tain simplifications can be made. First of all, the matrix is symmetric and has empty
diagonal entries, so less than half thematrix actually needs to be computed. Moreover,
since Boolean algebras have the property of multiplicative idempotence, we need only
consider the number of distinct objects Ud , so the complexity can be brought down
to O 1

2 Ud Ud 1 A . If the database is to be anonymized several times or with
different recipient profiles, the matrix can be precomputed and stored so that it only
needs to be computed once.

Lastly, it should be stressed that the exposition in this chapter has deliberately been
made with the goal of highlighting the “data mining in reverse” aspect of anonymiza-
tion via cell suppression. Hence, the algorithms presented here should be taken as
conceptual ideas rather than as absolute guides for practical implementation. In Sec-
tion 12.7.1 and Section 12.7.2, the observation was made that all the different minimal
sets of attributes to suppress for an object x was given by BCF BCF fA x . How-
ever, since a Boolean function and its canonical form are semantically equivalent, there
is no need to actually compute Blake’s canonical form twice. Once will suffice, since
BCF BCF fA x and BCF fA x are equivalent. Furthermore, since fA x is a POS
formula, fA x will be a SOP formula.4 The complexity of computing BCF fA x
is therefore brought down to that of eliminating duplicates and carrying out absorp-
tion, as described in Section 5.2.4. But even this operation might not be needed to
carry out in full, since we only need one prime implicant. A more efficient formula-
tion of Figure 12.1 is given in Figure 12.5. For further efficiency, savings can likely be
made if computation of a prime implicant is done on-the-fly while iterating over the
discernibility matrix during function construction.

12.7.4 Record Order and Multiplicity

An issue that the Boolean reasoning algorithm does not address that could potentially
be used to identify an object is the object’s order of occurrence in the database. Data is
often entered sequentially into the database, and if the order of occurrence for an object
is known, the record for that individual can always be located by a fixed look-up call.
However, this situation can be easily remedied by simply permuting or scrambling
the objects in the database, either before or after anonymization.

4If the function is implemented as a list of bit sets, then complementing the function involves no
computation whatsoever, but is simply a matter of reinterpreting the data structure.
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Another issue not explicitly addressed is that several records in the database may stem
from the same patient, for instance if each record denotes a separate patient visit. If
we know that a certain patient has extremely many visits, the database records for
that patient may potentially be identified on the basis of such multiplicity information
alone. This issue also has bearing to the validity of the assumption that the database
is a single flat table and not multiple tables. Ways to overcome these problems are
briefly discussed in [213].

12.7.5 Additional Suppression

Additional suppression in order to hamper suppressed database fields from being re-
constructed was discussed in Section 12.4.4. Another issue to consider when taking
a recipient’s a priori knowledge into account is whether some fields that have not
been suppressed perhaps should be suppressed. For instance, if a recipient some-
how knows that the database in Table 12.3(b) contains exactly one person born in
1969, then it doesn’t matter if a query for all people born in 1969 will return the set
x3, x4, x5, x6, x8, x9 . Since we have one match that is exact for the BirthYear field,
the recipient has effectively located the row belonging to that particular person, and
the set of possible values of the HIV field has been reduced to a singleton. If one has
reason to believe that a non-trusted recipient of a processed database possesses back-
ground information of this type, a suitable post-processing scheme to counter-effect
that information should be invoked.



Chapter 13

Diagnosing Acute Appendicitis

Portions of this chapter have previously been published as [142, 143].

13.1 Introduction

Acute appendicitis is one of the most common problems in clinical surgery in the
western world, and its diagnosis is sometimes difficult to make, even for experienced
physicians. The costs of the two types of diagnostic errors in the binary decision-
making process are also very different. Clearly, unnecessary operations are desirable
to avoid. But failing to operate at an early enough stage may lead to perforation of the
appendix. Perforation of the appendix is a serious condition, and leads to morbidity
and occasionally death. Therefore, a high rate of unnecessary surgical interventions is
usually accepted. Analysis of collected data with the objective of improving various
aspects of diagnosis is therefore potentially valuable.

This chapter reports on an analysis of a database of patients thought to have acute
appendicitis. The main objective of this study has been to address the following two
questions:

1. Based only upon readily available clinical attributes, does a computer model
perform better than a team of physicians at diagnosing acute appendicitis?

2. Does a computer model based upon both clinical attributes and biochemical at-
tributes perform better than a model based only upon the clinical attributes?

These two issues have previously been addressed in the medical literature by Hallan
et al. [71,72] using the same database of patients as presently considered. Multivariate
logistic regression, the de facto standard method for analysis of binary data in the
health sciences, was used in those studies. This paper addresses the same issues, but
rather using one of the simplest approaches to rule-based classification imaginable,
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namely a collection of univariate if-then rules. Univariate if-then rules are also referred
to as 1R rules.

Section 13.3 briefly reviews the applied methodology, while Section 13.4 provides an
overview of the data material and the experiments. The experimental results are given
in Section 13.5 and are analyzed statistically in Section 13.6. A discussion and conclu-
sions can be found in Section 13.7 and Section 13.8.

13.2 Preliminaries

Themathematical foundations of this chapter are outlined in Chapter 6 and Chapter 7.
In particular, Section 6.4.1 about univariate rules and Section 7.4.3 and Section 7.4.6
about ROC curves and hypothesis testing are of relevance. Appendix C is also of
relevance. The same notation and terminology is employed in the following.

A nice feature of 1R rules is that they are extremely fast and easy to construct, and do
notmake use of any computer-intensive constructs. As such, 1R rules can be seen as an
extreme case of what Kowalczyk [108] calls rough data modelling. In rough data mod-
elling collections of equivalence classes are used directly as classifiers. These equiva-
lence classes are typically constructed by a bottom-up search procedure which can be
quite fast if only attribute subsets of limited sizes are considered. 1R rules can also
be viewed as a simple case of Mollestad’s [126, 127] default rules, where the bottom-up
lattice search is prematurely aborted. 1R rules have also previously been investigated
by Holte [82].

13.3 Methodology

LetU denote the universe of patients, let A denote the set of classifier input attributes,
and let d denote the outcome attribute. The set of 1R rules is defined as follows:

1R A
x U a A

if a a x then d d x (13.1)

If numerical attributes are to be properly incorporated into classification rules, they
need to be discretized. Discretization amounts to searching for intervals or bins, where
all cases that fall within the same interval are grouped together. This enables numeri-
cal attributes to be treated as categorical ones, and several algorithms for this purpose
are available. In this study, for simplicity, all numerical attributes were discretized
using a simple “equal frequency binning” technique. This fully automatic approach
simply divides the attribute domain into a predetermined number of intervals such
that each interval contains approximately the same number of cases.

To make the most out of scarce data, k-fold CV as described in Section 7.2.1 was em-
ployed. In the training stage of the CV pipeline, the union of the k 1 blocks were first
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discretized using an equal frequency binning technique with three bins. Intuitively,
this corresponds to labeling the values “low”, “medium” or “high”. 1R rules were
subsequently computed from the discretized union of blocks. In the testing stage,
the hold-out block was first discretized using the same bins that were computed in
the training stage, and the cases in the discretized hold-out block were then classi-
fied using standard voting among the previously computed 1R rules, as outlined in
Section 6.4.1.

The results from the voting processes among the 1R rules were used to construct ROC
curves, as described in Section 7.4.3. Performance measures for each iteration were
harvested by computing the area under the ROC curves, computed using the trape-
zoidal rule for integration, as well as their associated standard errors as determined
by Equation 7.23.

Two variations of k-fold CV were applied. First, a single 10-fold CV replication was
performed, corresponding to how CV is traditionally employed. Additionally, five
different replications of 2-fold CV was performed, as proposed by Dietterich [43, 44]
and Alpaydin [7]. Running several replications with k 2 was chosen to keep the test
sets large enough so that the standard errors of the AUC estimates would be reason-
able. With higher values for k and thus smaller test sets, computing the AUC based
on only a few cases would mean that the resulting estimates would have a very high
degree of variability,1 something which in turn would mean that any significant dif-
ferences that might be present would almost surely go undetected in a subsequent
statistical analysis stage. Also, with k 2, folds for each replication are completely
independent since neither the training sets nor the test sets overlap.

The outlined procedure was done for the five different classifiers below, all with the
goal of predicting the presence or absence of acute appendicitis on the basis of various
clinical and biochemical attributes. By using the same seed to the random number
generator used for sampling, we can reproduce all the random samples and thus en-
sure that the division into k blocks is identical across all classifiers.

Simple 1R: A computer model realized through a collection of univariate if-then
rules, based only upon readily available clinical attributes.

Extended 1R: A computer model realized through a collection of univariate if-
then rules, based upon the same attributes as the simple 1R model, but with
additional access to the results of certain biochemical tests.

Physicians: A classifier realized by probability estimates given by a team of physi-
cians, based upon the same attributes as the simple 1R classifier.

Best B1R: A 1R computer model realized through considering only the single
best biochemical attribute.

Best C1R: A 1R computer model realized through considering only the single
best clinical attribute.

1As an extreme case, consider leave-one-out CV. Then, the standard error would not even be defined.
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Attribute Description Statistics
a1 AGE Age (years). 3–86 (22)
a2 SEX Male sex? 0.553
a3 DURATION Duration of pain (hours). 2-600 (22)
a4 ANOREXIA Anorexia? 0.693
a5 NAUSEA Nausea or vomiting? 0.708
a6 PREVIOUS Previous surgery? 0.093
a7 MOVEMENT Aggravation of pain by movement? 0.615
a8 COUGHING Aggravation of pain by coughing? 0.599
a9 MICTUR Normal micturation? 0.872
a10 TENDRLQ Tenderness in right lower quadrant? 0.860
a11 REBTEND Rebound tenderness in right lower 0.553

quadrant?
a12 GUARD Guarding or rigidity? 0.307
a13 CLASSIC Classic migration of pain? 0.494
a14 TEMP Rectal temperature ( C). 36.4–40.3 (37.7)
a15 ESR Erythrocyte sedimentation rate (mm). 1–90 (10)
a16 CRP C-reactive protein concentration (mg/l). 0–260 (12)
a17 WBC White blood cell count ( 109). 2.9–31 (12.1)
a18 NEUTRO Neutrophil count (%). 38–93 (80)
d DIAGNOSIS Acute appendicitis? 0.381

Table 13.1: Summary of attributes recorded for the 257 patients thought to have acute appen-
dicitis. For binary attributes, the prevalence is given. For numerical attributes, the range and
median are given. DIAGNOSIS is the decision attribute, indicating whether the patient really
had acute appendicitis. Condition attributes ESR, CRP, WBC and NEUTRO are the results of
biochemical tests, while the other condition attributes are readily available clinical parameters.

Lastly, a statistical analysis comparing their differences was performed using themeth-
ods of Hanley and McNeil [76] and Alpaydin [7].

13.4 Experiments

The methodology outlined in Section 13.3 has been applied to a medical database
with 257 patients thought to have acute appendicitis, summarized in Table 13.1. The
257 patients were referred by general practitioners to the department of surgery at a
district general hospital in Norway, and were all suspected to have acute appendicitis
after an initial examination in the emergency room. Attributes a1, . . . , a14 are readily
available clinical attributes, while attributes a15, . . . , a18 are the results of biochemi-
cal tests. The outcome attribute d is the final diagnosis of acute appendicitis, and was
based on histological examination of the excised appendix.

After the clinical variables were recorded the physician also gave an estimate of the
probability that the patient had acute appendicitis, based on these. The estimated
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Attribute Mean (SD) Attribute Mean (SD)
a17 WBC 0.783 (0.079) a7 MOVEMENT 0.603 (0.093)
a13 CLASSIC 0.725 (0.090) a14 TEMP 0.598 (0.094)
a18 NEUTRO 0.718 (0.093) a3 DURATION 0.568 (0.042)
a11 REBTEND 0.703 (0.083) a4 ANOREXIA 0.568 (0.114)
a16 CRP 0.679 (0.126) a15 ESR 0.556 (0.069)
a2 SEX 0.655 (0.100) a5 NAUSEA 0.538 (0.063)
a12 GUARD 0.642 (0.102) a6 PREVIOUS 0.516 (0.062)
a8 COUGHING 0.631 (0.081) a9 MICTUR 0.509 (0.057)
a10 TENDRLQ 0.613 (0.061) a1 AGE 0.504 (0.162)

Table 13.2: Results from a 10-fold CV run where each attribute is evaluated according to how
well that attribute functions as a classifier on its own. The attributes are sorted according to
their mean AUC values.

Classifier Definition
Simple 1R 1R a1, . . . , a14
Extended 1R 1R a1, . . . , a18
Best B1R 1R a17
Best C1R 1R a13

Table 13.3: Defining the various 1R classifiers from Section 13.3 in terms of Equation 13.1. The
best biochemical and clinical attributes were determined from the simulations in Table 13.2.

probabilities were given in increments of 10% from 0% to 100%. Nine residents with
two to six years of surgical training participated in the study. These estimates directly
define a realization of the certainty function φ defined in Section 7.4.

For a detailed description of the patient group and the attribute semantics, see [71,72].
The same set of 257 patients was analyzed in [71], while a superset containing 305
patients was analyzed in [72]. Logistic regression was used in both studies.

To determine which attribute to employ for the single-attribute 1R classifiers, each
attribute was initially evaluated according to howwell each it functioned as a classifier
on its own. This was done by carrying out 18 10-fold CV simulations, one for each
attribute ai, and in simulation i only employing rules involving attribute ai. The results
can be found in Table 13.2. As can be seen, most of the attributes obtain very lowAUC
scores when considered in isolation. One notable exception is biochemical attribute
WBC, which obtains a mean AUC value of 0.783 with the employed discretization.
The best clinical attribute is CLASSIC, with a mean AUC value of 0.725.

A summary of the various 1R classifiers from Section 13.3 defined in terms of Equa-
tion 13.1 can be found in Table 13.3.
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13.5 Results

The results from the 10-fold CV simulation and the five different replications of 2-fold
CV are given in Table 13.4 and Table 13.5, respectively. All simulations were carried
out using the ROSETTA software system [145,147]. The physicians and the simple 1R
classifier both made use of the clinical variables only, while the extended 1R classifier
had additional access to the results of the biochemical tests. On average, the extended
1R classifier seemed to perform somewhat better than both the simple 1R classifier
and the team of physicians. The simple 1R classifier and the physicians seemingly
perform approximately the same, with the former achieving a slightly better average
score.

It is trivial to produce a classifier that classifies the training data perfectly. Although
this would be a very optimistically biased estimate, 1R rules are so simple they do not
possess enough degrees of freedom to overfit the data much. Reference ROC curves
obtained when applying the classifiers to the full set of 257 patients from which they
were constructed are displayed in Figure 13.1 and Figure 13.2. Table 13.6 provides
details of theWBC and CLASSIC classifiers.

The exact same set of 257 patients has been previously analyzed by Hallan et al. [71]
using multivariate logistic regression. In that study the set of cases was randomly split
in two halves, and a regression model derived from one half was applied to the other
half. This was done for 20 random splits, and the mean AUC and the standard devia-
tion of the 20 samples was calculated. A regression model based upon only the clinical
attributes had a mean AUC of 0.854 (0.028), while a regression model based on both
the clinical attributes and the biochemical attributes had a mean AUC of 0.920 (0.024).
Carlin et al. [27] have also analyzed the same set of patients, but used traditional rough
set methods. This was also done with 20 random splits, and the mean AUC and the
standard deviation of the 20 samples was 0.850 (0.024) for a model based on clinical
variables, and 0.923 (0.023) for a model based on both the clinical attributes and the
biochemical attributes. In all fairness it should be said that both the logistic regression
and rough set studies only included clinical attributes a2, a8, a10, a11, a12, a13 , and did
not include biochemical attribute a15. However, this was done because Hallan et al.
found that adding other clinical attributes or attribute a15 did not improve the models
further.

13.6 Analysis

In order to draw any trustworthy conclusions from the results in Section 13.5, a statis-
tical analysis has been performed. The standard tool for comparing correlated AUC
values is Hanley-McNeil’s method, outlined in Section 7.4.6. However, this method
is usually employed for a single two-way split only and not in a CV setting. In a CV
setting one might very well ask what the models to assess really are. One could of
course perform the Hanley-McNeil test for each fold, but it is somewhat unclear how
to combine the collection of obtained p-values. Furthermore, one might question the
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Physicians Simple 1R Extended 1R Best B1R Best C1R
1 0.837 (0.081) 0.879 (0.071) 0.932 (0.053) 0.775 (0.093) 0.654 (0.109)
2 0.831 (0.089) 0.875 (0.078) 0.916 (0.065) 0.853 (0.084) 0.794 (0.097)
3 0.872 (0.074) 0.908 (0.064) 0.961 (0.042) 0.768 (0.096) 0.696 (0.106)
4 0.827 (0.104) 0.887 (0.087) 0.891 (0.086) 0.632 (0.129) 0.842 (0.100)
5 0.639 (0.113) 0.709 (0.106) 0.827 (0.087) 0.682 (0.109) 0.561 (0.116)
6 0.733 (0.103) 0.818 (0.089) 0.915 (0.063) 0.852 (0.082) 0.730 (0.104)
7 0.729 (0.102) 0.815 (0.088) 0.839 (0.082) 0.759 (0.098) 0.768 (0.096)
8 0.935 (0.061) 0.892 (0.077) 0.967 (0.043) 0.850 (0.089) 0.712 (0.112)
9 0.914 (0.077) 0.940 (0.065) 0.996 (0.017) 0.786 (0.112) 0.842 (0.100)
10 0.912 (0.084) 0.858 (0.104) 0.951 (0.064) 0.873 (0.099) 0.652 (0.138)

Mean 0.823 (0.089) 0.858 (0.083) 0.920 (0.060) 0.783 (0.099) 0.725 (0.108)
Median 0.834 (0.087) 0.877 (0.083) 0.924 (0.064) 0.780 (0.097) 0.721 (0.105)
SD 0.095 (0.016) 0.065 (0.015) 0.055 (0.022) 0.079 (0.014) 0.090 (0.013)

Table 13.4: Results from a single 10-fold CV run. AUC quantities are given for each iteration,
with standard errors in parentheses.

Physicians Simple 1R Extended 1R Best B1R Best C1R
1 1 0.795 (0.045) 0.844 (0.040) 0.911 (0.031) 0.802 (0.044) 0.722 (0.049)

2 0.844 (0.037) 0.840 (0.037) 0.919 (0.027) 0.788 (0.042) 0.701 (0.048)
2 1 0.813 (0.040) 0.826 (0.039) 0.893 (0.032) 0.755 (0.045) 0.722 (0.047)

2 0.819 (0.042) 0.838 (0.040) 0.925 (0.028) 0.848 (0.039) 0.699 (0.050)
3 1 0.755 (0.045) 0.823 (0.040) 0.898 (0.031) 0.828 (0.039) 0.703 (0.048)

2 0.881 (0.035) 0.868 (0.037) 0.924 (0.028) 0.748 (0.047) 0.717 (0.049)
4 1 0.794 (0.042) 0.826 (0.039) 0.899 (0.031) 0.814 (0.040) 0.654 (0.050)

2 0.839 (0.040) 0.865 (0.037) 0.930 (0.027) 0.766 (0.046) 0.768 (0.046)
5 1 0.791 (0.043) 0.833 (0.039) 0.899 (0.031) 0.786 (0.043) 0.714 (0.048)

2 0.845 (0.038) 0.821 (0.041) 0.901 (0.031) 0.789 (0.044) 0.708 (0.049)

Mean 0.818 (0.041) 0.838 (0.039) 0.910 (0.030) 0.792 (0.043) 0.711 (0.048)
Median 0.816 (0.041) 0.835 (0.039) 0.906 (0.031) 0.788 (0.044) 0.711 (0.048)
SD 0.036 (0.003) 0.017 (0.001) 0.013 (0.002) 0.032 (0.003) 0.028 (0.001)

Table 13.5: Results from five different 2-fold CV runs, each replication with a different seed to
the random number generator. AUC quantities are given for each fold and replication, with
standard errors in parentheses.
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Figure 13.1: Reference ROC curves obtained when applying the classifiers to the full set of
257 patients from which they were constructed. The top dotted line represents the extended
1R classifier, while the middle solid line represents the simple 1R classifier. The physicians
are represented by the bottom dashed line. The AUC values and their standard errors of the
classifiers are 0.817 (0.029) for the physicians, 0.859 (0.026) for the simple 1R classifier, and
0.924 (0.019) for the extended 1R classifier.
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Figure 13.2: Reference ROC curves obtained when applying the classifiers to the full set of
257 patients from which they were constructed. The top dashed line represents the physi-
cians, the middle solid line represents theWBC classifier, and the bottom dotted line denotes
the CLASSIC classifier. The AUC values and their standard errors of the classifiers are 0.711
(0.034) for the CLASSIC classifier, 0.795 (0.030) for theWBC classifier, and 0.817 (0.029) for the
physicians.
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Classifier Condition φ x
Best B1R WBC x 9.7 0.047

9.7 WBC x 14.0 0.419
14.0 WBC x 0.674

Best C1R CLASSIC x = 0 0.185
CLASSIC x = 1 0.583

Table 13.6: Rules for predicting acute appendicitis using only attributes WBC or CLASSIC,
the best biochemical and clinical attributes respectively. The listed cuts and φ x values were
computed from the full set of 257 patients. For the results in Table 13.4 and Table 13.5, however,
these are computed dynamically per fold and replication.

usefulness of this approach altogether if many folds are used due to the then small
sizes of the test sets, as briefly discussed in Section 13.3. For this reason, the results
from the 10-fold CV simulations in Table 13.4 are not statistically analyzed.2 For 2-fold
CV, however, the test sets may be large enough for such an analysis to be viable. The
results in Table 13.5 have been analyzed using the method of Hanley and McNeil on a
per-fold basis, and Table 13.7 contains the p-values per fold per replication.

Simply averaging the p-values in Table 13.7 to obtain a summary p-value would not
capture any systematic variations in differences in performance across folds and repli-
cations, information which is obviously of importance. There are, however, statistical
analysis methods that have been specifically designed for combining CV together with
detection of differences in performance. One such method is the 5x2CV test, originally
proposed by Dietterich [43,44] for comparing error rates, and subsequently improved
by Alpaydin [7]. Applying the improved 5x2CV F-test to the results in Table 13.5
yields that there is no significant difference between the physicians and the simple 1R
classifier (p 0.613), but that the extended 1R classifier is significantly better than
both the physicians (p 0.03) and the simple 1R classifier (p 0.0003). Further-
more, there is no significant difference between the physicians and theWBC classifier
(p 0.766). However, the physicians perform significantly better than the CLASSIC
classifier (p 0.048).

2To get around the analysis problem of the small test sets and the subsequent high degree of un-
certainty associated with the AUC estimates, one might envision that, for each classifier, all the pairs
d x ,φ x from all the test sets were “pooled” together. These pools would then form a larger col-
lection of test classifications per classifier, and could be used for statistical comparisons. With AUC
as the performance measure, however, pooling of the classifications of the test sets may result in man-
gling the results and introducing undesirable and unfair effects. For example, both the classification
sets 0, 0.1 , 0, 0.5 , 1, 0.9 and 0, 0.05 , 1, 0.3 , 1, 0.7 , 1, 0.95 result in perfect AUC values of
1. Pooled together, however, the AUC value is 0.917. Since the individual classifications that contribute
to the pool stem from training and testing with different data, it hardly seems fair to impose the same
threshold across all pool contributors, as is done if the total pool is considered.
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Physicians Simple 1R Extended 1R
Simple 1R Extended 1R Physicians

1 1 0.3043 0.0323 0.0127
2 0.9171 0.0076 0.0559

2 1 0.7798 0.0289 0.0558
2 0.6946 0.0057 0.0153

3 1 0.1634 0.0064 0.0016
2 0.7558 0.0756 0.2573

4 1 0.4699 0.0084 0.0112
2 0.5733 0.0305 0.0322

5 1 0.4098 0.0250 0.0192
2 0.5963 0.0114 0.1746

Mean 0.5664 0.0232 0.0636
Median 0.5848 0.0182 0.0257
SD 0.2325 0.0214 0.0846

Table 13.7: Pairwise statistical analysis of the results in Table 13.5, done on a per fold per
replication basis. All p-values are 2-sided and computed using the Hanley-McNeil method for
comparing correlated AUC values, described in Section 7.4.6.

13.7 Discussion

If A is a singleton, then 1R A is a true univariate classifier. Otherwise, 1R A can be
seen as a multivariate classifier composed of several univariate classifiers. The various
1R classifiers perform surprisingly well wrt. discrimination on the acute appendicitis
database. A 1R approach will fail, however, in situations when certain combinations
of parameters are needed to discerns between objects. One such example situation is
depicted in Figure 13.3. The present success of 1R rules suggests that such situations
are not very common in the acute appendicitis database.

This study has focused on discrimination only, and has not touched upon the issue
of calibration. Calibration is one of the issues discussed by Hallan et al. [72], and is
an important feature if the classifier is to be used in an interactive decision-support
setting. Preliminary investigations suggest that the simple and extended 1R classifiers
with standard voting do not exhibit particularly good calibration, as one also from
the smear effect in Figure 13.3 might be tempted to suggest holds for 1R models in
general. However, as explored in Section 7.4.4, this might be rectified through a recal-
ibration procedure. For the WBC and CLASSIC classifiers, the φ x values equal the
probability of disease given x as estimated from the training data, and should hence
be well calibrated.3

3This is because with these classifiers we can be sure that only one rule will fire. In fact, we can
be sure that no more than one rule will fire if our rule base is constructed by overlaying an attribute
set A, not necessarily a singleton, over the whole data table and reading off the descriptions of the
equivalence classes and using these as rule antecedents. Such an approach resembles Kowalczyk’s rough
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Figure 13.3: A 1R approach will fail in certain situations. This figure depicts two simple log-
ical classification tasks, XOR and AND, and how various 1R classifiers will be able to model
these situations by assigning certainty factors φ x to x 0, 1 2 by voting. In the XOR sit-
uation, a 1R approach will fail completely. In the AND situation, however, 1R a, b will
be able to fully reproduce the true situation if we threshold φ x appropriately afterwards,
even though the values around 1, 1 get smeared. 1R a and 1R b will only be able to
partially reproduce the true AND situation.

In Section 13.1, it was argued that performing a large number of unnecessary opera-
tions was preferable to missing any cases of acute appendicitis. This corresponds to
prioritizing test sensitivity before test specificity. Selection of classifiers and thresh-
olds under various cost scenarios is discussed in Section 7.4.3. As can be seen from
Figure 13.1, the simple 1R classifier and the physicians display virtually identical per-
formance in the area of ROC space of interest, while the extended 1R classifier outper-
forms them both everywhere.

A point that is oftenmade in favor of inducing rule-based classifiers is the potential for
knowledge discovery, since classification rules is a representation that can be inspected
and interpreted by non-experts. 1R rules will in practice probably yield mostly known
simple facts since they do not relate any attributes together in their if-part, but the
computational effort to induce them is negligible and the resulting set of rules is often
quite small andmanageable. Moreover, simulations by Holte [82] showed that the best
individual 1R rules were usually able to come within a few percentage points of the
error rate that more complex models can achieve, on a spread of common benchmark
domains. The present study suggests that this might be true for other performance
measures, too.

The already small 1R models can probably be reduced even more without sacrificing
the discriminatory performance, by filtering away those rules that deal with less im-
portant attributes. The results by Carlin et al. [27] and the attribute selection done by
Hallan et al. [71] seem to support this conjecture.

data modelling [108].
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The equal frequency binning technique used for discretizing the numerical attributes
was chosen for the sake of simplicity. Other more advanced discretization techniques
could potentially yield slightly better results. For example, preliminary experiments
suggest that the AUC score for the extended 1R model can be increased slightly using
the automatic algorithm outlined by Nguyen and Skowron [133].4 However, for the
objectives in Section 13.1, optimality is not critical.

It may at first glance seem a bit odd that it is easier to detect a statistically significant
difference between the two 1R classifiers than between the extended 1R classifier and
the physicians, even though the average extended 1R performance is closer to the
average simple 1R performance than to the average performance by the physicians.
This can be attributed to the fact that the estimates made by the physicians display
greater variance than the 1R estimates, which are thus more easily separable.

On a technical note, it should be stated that the 5x2CV F-test makes a simplifying
assumption when it comes to applying the test to AUC performance measures. The
term σ2 in Equation C.3 should really be a function of i and j, i.e., not constant across
all folds and replications. An estimate that takes this into account can be computed
using Equation 7.25. However, the simplification that σ2 is constant may not be all
that bad, and hopefully the errors that this simplification introduces may even cancel
each other out. Note that assuming a constant valueσ2 is not the same as setting r 0
in Equation 7.25.

13.8 Conclusions

Based on the results in Section 13.5 and the analysis in Section 13.6, the answers to the
two main questions raised in Section 13.1 are:

1. Based only upon readily available clinical attributes, does a computer model
perform better than a team of physicians at diagnosing acute appendicitis? Not
significantly, at least not with a set of very simple 1R classification rules as the computer
model.

2. Does a computer model based upon both clinical attributes and biochemical at-
tributes perform better than a model based only upon the clinical attributes?
Yes, even with a set of very simple 1R classification rules as the computer model there
is a significant improvement when biochemical attributes are additionally taken into ac-
count. Furthermore, the best biochemical attribute alone performs on par with a team of
physicians having knowledge of only clinical attributes.

Of course, these conclusions are with respect to AUC as the performance measure and
the equal frequency discretization scheme outlined in Section 13.3.

4The Boolean reasoning algorithm of Nguyen and Skowron is inherently multivariate. The utility of
using multivariate discretization algorithms for 1R rules is debatable, since 1R rules do not make use of
information about combinations.
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Although not directly comparable, it hardly seems likely that the results reported in
the literature and repeated in Section 13.5 based on logistic regression [71, 72] or com-
plex rough set models [27] are significantly different from the 1R results reported in
this study.
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Chapter 14

Summary and Results

14.1 Summary

Part I

In Chapter 2, the context was set by very briefly introducing the fields of data mining
and KDD and medical informatics. Several general points were then made about the
intersection of these fields, and arguments were made as to why many issues that are
often ignored or glossed over in the machine learning literature ought to be consid-
ered when the medical domain is targeted. The items covered included comments on
the availability, quality and management of medical data, and on some of the chal-
lenges that KDD practitioners face in this regard. The importance of attribute costs
was also discussed, as was the implications this has for the indiscriminate use of Oc-
cam’s razor as a guide for model selection. The validity of simplifying assumptions
was then addressed. As for model assessment, it was argued that the widely popular
performance measure of classification accuracy is by itself inadequate for the medical
domain. More refined discriminatory measures are called for, and the need to consider
the issue of calibration was also discussed.

Chapter 3 provided a thorough review of the literature on rough sets in medicine, and
systematized the reported applications into main categories. Some of the appeal logi-
cal methods based on discernibility have as a foundation formedical machine learning
was then outlined, and advantages and drawbacks of the approach were subsequently
discussed in detail.

Part II

Chapter 4 gave a brief introduction to Boolean reasoning, the main tool for solving
minimization problems in discernibility-based modelling. Through encoding a prob-
lem as a Boolean function, solutions to the problem could be obtained from prime
implicants of this.
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The main exposition of discernibility-based modelling was given in Chapter 5. Start-
ing from the concept of a discernibility matrix, it was shown how a binary indiscerni-
bility relation could be defined. Properties of this relation depended on how we chose
to define the notion of discernibility, and the role of tolerance relations was demon-
strated through an example from the medical domain. It was further shown how the
indiscernibility relation could be employed as a basis for assembling rough set ap-
proximations, and how prime implicants of Boolean discernibility functions could be
used to discard functionally superfluous information. By varying which objects we
chose to discern between and how we defined discernibility to take place, a broad
range of different functions with different interpretations and applications could be
constructed.

In Chapter 6 it was shown how prime implicants of the Boolean discernibility func-
tions could be employed as templates for minimal conjunctive patterns and decision
rules. Important numerical quantities of such patterns and rules were then presented,
and it was investigated how, via voting, ensembles of decision rules could be utilized
to assign certainty measures to decision classes for new and unseen objects.

Chapter 7 discussed ways of assessing classifier performance of particular relevance
for medical applications. The concepts of discrimination and calibration for evalu-
ation of binary outcome classifiers were discussed, and ROC analysis was explored
in detail. Some important statistical tests for comparing performance estimates were
subsequently presented.

Part III

Chapter 8 gave an initial presentation of the ROSETTA software system for discernibi-
lity-based data analysis, developed to meet the requirements imposed by the medical
domain as discussed in the previous chapters. An overview of the system’s main fea-
tures was provided. ROSETTA has already served as a simulation tool for researchers
world-wide in a broad range of domains, also outside of medicine.

An example of how ROSETTA could be employed to analyze a medical database was
given in Chapter 9. As a case study, a real-world database on coronary heart disease
was selected. It was demonstrated how decision rules could be extracted and their
classificatory performance evaluated, both in a simple two-way split experiment as
well as in a computer-intensive 10-fold CV setting. How background cost information
could be put to use was also demonstrated. Although optimal results was not the goal
of the case study, the obtained results compare favorably with results reported in the
literature.

Chapter 10 provided a software engineering view of the ROSETTA system, dissecting
the system’s architecture and explaining the rationale underlying some of the central
design decisions by relating to issues arising from the KDD process. Examples of
how the ROSETTA C++ library could be employed to quickly assemble relevant KDD
pipelines were also given.
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ROSETTA can be used to tackle a wide variety of tasks, not only traditional data min-
ing and KDD applications. The suite of applications in Part IV serve as a demonstra-
tion of this.

Part IV

In Chapter 11, an application was given on how the semantics of the boundary re-
gion of a rough set could be exploited to identify interesting subgroups of a larger
population. Through monitoring how the boundary region changed when some in-
formation was withheld, one could pinpoint exactly which patients that caused the
subsequent drops in approximation sensitivity and specificity. As this patient group
corresponded to those for whom knowledge of the withheld information was crucial,
identifying this group could be relevant in the context of developing rules for screen-
ing. As a case study, a real-world database on forecasting hard cardiac events was
analyzed. Not only did the simulations suggest that potential savings could be made
with respect to carefully selecting which patients that should have a scintigraphic scan
performed, but the identified population subgroup could also be circumscribed fairly
well using other available information.

Chapter 12 reported on an application where discernibility considerations were used
to decide on which information to suppress before disseminating sensitive medical
data. Being an exercise in data mining in reverse, the proposed algorithm was based
on the observation that if we knew which minimal combinations of information that
could be used to identify individuals, thenwe also knewwhich information that ought
to be suppressed to block such identification from taking place. Some thoughts on how
the degree of anonymization could be controlled were also presented.

An application on using very simple classification rules to diagnose acute appendicitis
was presented in Chapter 13. Through extensive simulations on a real-world database,
the diagnostic performance of a small collection of very simple rules was compared
to that of a group of experienced physicians. Based only on clinical attributes, the
rules performed better on average, but not significantly so in a statistical sense. If
biochemical attributes were added to the computer model, however, the performance
improvement became significantly better. It was also demonstrated that a computer
model based only on a single biochemical attribute performed no worse than a team
of physicians working with clinical information.

14.2 Main Results and Contributions

For a data-driven modelling methodology to gain broad acceptance in a new domain
and generate an impact, the methodology has to be prepared to undergo some adap-
tation and assimilation to the domain, at least superficially. This goes not only to how
the actual inductive learning takes place and domain-specific factors that have to be
considered, but also to how the resulting models are presented and evaluated. This
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thesis has shown how discernibility-based methods can be equipped to posses several
qualities that are needed for analyzing tabular medical data, and how these models
can be evaluated according to current standard measures used in the health sciences.
To this end, tools have been developed that make this possible, and some novel med-
ical applications have been devised in which the tools are put to use.

The perhaps most immediate contributions of this thesis are Parts III and IV, the RO-
SETTA system and applications comprising original contributions in their entirety.
Parts I and II largely, but not exclusively, report and build on relevant work reported
in the literature. In order to cross-fertilize the affected fields, scattered works have
been brought together and assessed, rephrased and generalized to fit a certain context.

Through the work presented in this thesis, the versatility of discernibility-based meth-
ods for empirical modelling in general has been demonstrated. By examining aspects
of the medical domain, several issues for data-driven modelling that become particu-
larly important in the context of medicine have been illuminated. Some of the most
important identified issues have subsequently been held up to the current state-of-
the-art in modelling based on the relatively young fields of discernibility and rough
sets, and it has been shown how the relevant methodology can be suitably adapted
and employed.

Evaluation measures central in the health sciences have been carried over to the
field of rough sets. It has been demonstrated how rough set classifiers can be
evaluated through ROC analysis, how calibration can be appraised, and how
set approximations can be assessed in terms of sensitivity and specificity. This
seems to be novel in the context of rough sets.

It has been outlined how the use of attribute costs can be embedded in the model
construction process. By employing cost information in the reduction process,
low-cost rather than low-cardinality solutions can be obtained. Costs can also be
made use of for model filtering and evaluation purposes.

It has been made clear how one by overloading the notion of discernibility can
cater for, e.g., hierarchically ordered attribute values. In the medical domain,
such hierarchies can be encountered in some CMTs. Missing values can be per-
ceived as a special case of this.

Starting from a theoretically well-founded approach, a modelling methodology has
been established and an extensive toolkit for discernibility-based empirical modelling
has been designed and implemented. The software system, ROSETTA, is a robust,
user-friendly and powerful system for discernibility-based KDD, and has by design
been accommodated with the necessary features for analyzing tabular data from the
medical domain. A large number of researchers from all over the world have down-
loaded ROSETTA and employed the system in published works. As such, the ROSET-
TA system constitutes a contribution to the advancement of applied discernibility-
based modelling, both within medicine as well as in general.
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By and large, discernibility-based data analysis can be varied along two main axes:
Which objects in the universe of discourse that we deem it necessary to discern be-
tween, and how we define that discernibility among these objects is allowed to take
place. This thesis has explored various facets of this also in three novel and distinctly
different medical applications:

By observing the flux in approximation regions when our indiscernibility re-
lation changes due to the removal of some information, an approach to iden-
tification of interesting population subgroups was presented. Geared towards
pinpointing objects for whom a certain battery of expensive medical tests could
be avoided, a prognostic problem in cardiology was used as a case study. For
the purpose of predicting future hard cardiac events, a group of patients was
identified for whom a scintigraphic scan could be avoided wrt. their discernibil-
ity status. Furthermore, meta-approximations showed that this group could be
fairly well circumscribed. On a general level, the proposed method is a contri-
bution towards lowering costs and increasing efficiency in healthcare.

Discernibility considerations coupled with Boolean reasoning enable us to com-
pute minimal, identifying patterns of various kinds. By noting that we can very
well choose to obfuscate these patterns, an approach to anonymization of sen-
sitive medical data via cell suppression was outlined. In an increasingly com-
puterized world, the issue of preserving confidentiality is not likely to become
any less important. By showing how discernibility can provide a foundation
for cell suppression, a contribution has been made to the sound management of
sensitive medical data.

Through reducing the set of discerning attributes to singletons, it was investi-
gated how extremely simple classification rules could be used to diagnose acute
appendicitis. From a clinical viewpoint, it is of interest to determine how well
computer models compare with medical doctors. Extensive simulations showed
that a simple computer model was on par with a team of experienced surgeons
with respect to diagnosing acute appendicitis, and the added value of certain
biochemical attributes was also demonstrated.
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Chapter 15

Further Work

15.1 Introduction

This chapter comments on issues that are candidates for future work. The items are
categorized into the following sections:

General: Comments on a few general issues related to discernibility-based mod-
elling as discussed in Parts I and II.

Tools: Discusses issues pertaining to software tools and the ROSETTA system in
particular, as presented in Part III.

Applications: Suggests some further directions to investigate for the applications
presented in Part IV.

These items are discussed in Section 15.2, Section 15.3 and Section 15.4, respectively.

15.2 General

In Section 2.4.3 the distinction between discrimination and calibration was outlined.
The popular approach of using standard voting to resolve conflicts in rule-based clas-
sifiers seems to perform adequately for discrimination, as witnessed by numerous
applications in the literature. As for calibration, the status is more uncertain since this
is seldom if ever reported on. Both the applications in Chapter 9 and in Chapter 13
discriminate well, while preliminary investigations suggest that the latter is not partic-
ularly well calibrated but exhibits a clear tendency to cluster the φ x values densely
around a central value. It is clearly of interest to develop solid recalibration methods
to remedy this and similar situations, as outlined in Section 7.4.4. Further research is
needed in this regard. Additionally, more studies are needed to obtain a clearer picture
of the relative merits wrt. calibration of the voting schemes described in Section 6.4.
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How IDGs could be used to overload the notion of discernibility for each condition
attribute was described in Section 5.2.1. A natural continuation of this line of thought
is to further allow IDGs to be employed for decision attributes as well. A suitable place
to introduce such a scheme would be in Equation 5.37, which would be generalized to
take the IDG for the decision attribute into account.

Tolerance relations in rough set data analysis can in some sense be said to still be in
their infancy. The theory is mature and well developed, but their use for practical
applications in data mining and KDD is rarely reported on since, often, equivalence
relations suffice or are simpler to work with. However, tolerance relations are attrac-
tive for several reasons. Not only can one use IDGs to take attribute value semantics
into account, but their use can also minimize the need to have to discretize or other-
wise preprocess the data. More experience is needed with hands-on uses of tolerance
relations, as this might identify areas of pragmatical importance.

Approximate decision rules are usually produced in the induction step by means
of various techniques, e.g., dynamic reducts or methods inspired by default reason-
ing [126, 127]. Both these techniques are fairly computationally intensive. In the case
study in Chapter 9, an approximate solution to the discretization problem was em-
ployed. The relative merits remain to be determined of (i) letting a traditional algo-
rithm compute proper reducts from data tables where inconsistencies have been in-
troduced in the preprocessing stage versus (ii) letting a computer-intensive algorithm
compute approximate reducts from data tables where discernibility has been fully pre-
served. Also, how the two approaches are best combined is of interest to ascertain.

A great deal of work can be done to improve upon some of the areas discussed in
Section 3.4. E.g., the potential rule-based models have for offering traceable or ex-
plainable predictions is sometimes hampered by the size of the rule set. Schemes to
make large rule-based models more manageable are clearly of interest to develop.

A more formal connection between dynamic reducts from Section 5.2.6 and bagging
and boosting from Section 7.2.1 should be established. Conceptually, the techniques
share a number of common traits that hint of making a formal unification possible.
For example, a discernibility function constructed from a sampled subsystem is likely
to be similar to one constructed from a bootstrapped information system. Ideas from
boosting might also yield valuable clues on how to best sample subsystems in a dy-
namic reduct framework.

In discernibility-based data analysis, Boolean reasoning is traditionally used to com-
pute reducts, i.e., minimal sets of attributes. But similar techniques can also be applied
to compute subsets of objects that are minimal with respect to some criterion. Inter-
esting and practical applications of this should be able to find.

Although, as demonstrated, some background knowledge can enter the discernibility-
based modelling process, it would be of great interest to develop schemes for model
induction in the presence of domain theories, e.g., in the situation where initial causal
relationships between attributes can be established a priori by domain experts. The
use of such background knowledge should be fully optional, though, since in general
such relationships may be difficult to establish.
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15.3 Tools

This section lists some possible future enhancements to the ROSETTA tool. Some of
the suggestions are simple to implement and can easily be added, while others require
substantial programming resources.

There are several features that can be added to ROSETTAwithout too much effort. All
the groundwork has already been laid, and the required elements for implementing
the features are already in place in the ROSETTA library. These features include:

Viewing of the general conjunctive patterns from Section 6.2.3 as association
rules in the GUI.

The use of IDGs for preprocessing purposes, along the lines of Hu et al. [86]
where they outline how concept hierarchies can be used to “group” symbolic
attribute values together as a kind of discretization.

Cost-assessment of a set of attributes where shared costs are handled, as dis-
cussed in Section 9.4.1. In order for a more realistic assessment of costs for use
in guiding computations and model filtering and evaluation, this feature should
be added.

Augment ROSETTAwithmore formats for data export, allowing improved visu-
alization of ROSETTA output.1 Models could also be exported to the developing
PMML2 language [37] to ease the interchange of models between software.

Add support for other resampling methods than CV. Also, augmenting ROSET-
TA with a bagging or boosting feature would be useful.

Extend the ROSETTA GUI with a simple decision-support module designed to
offer both case-based and model-based explanations.

Further developments that would require a medium amount of programming efforts
include:

Modularize the executable using dynamic link libraries (DLLs). Orthogonal
components such as the GUI, the kernel and the RSES library could then re-
side in separate DLLs, allowing for individual updates. End-user written DLLs
could also be detected and loaded into the system at run-time, making ROSET-
TA extensional in a dynamic sense.

1There are several extensive data mining systems that tightly integrate visual and analytical tech-
niques, with specialized visualization techniques for decision trees, rule sets and decision tables. See,
e.g., MineSet [125] from Silicon Graphics, Inc. Output from ROSETTA could be piped into such systems.

2The Predictive Model Markup Language (PMML) is a simple markup language that uses XML as its
meta-language in a manner similar to the way Hypertext Markup Language (HTML) uses SGML as its
meta-language.
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Substitute existing GUIwidgetswith controls that offer alternative and improved
ways of displaying data to the user.3 The incorporation of such into the ROSET-
TA GUI might further increase the usability of the system, and, as man-machine
and user interface technologies progress, prolong the time until the current RO-
SETTA interface seems outdated.

Optimize the memory allocation scheme to increase speed and avoid memory
fragmentation.

Extensions that will probably require considerable programming and design work
include:

Parallelization of the computer-intensive procedures in ROSETTA amenable to
such. For instance, entries in a discernibility matrix can be computed indepen-
dently, and genetic algorithms are well suited for distributed computing. To
increase efficiency, selected critical portions of ROSETTA could be rewritten to
exploit this, e.g., using the Parallel Virtual Machine [153] software package.4

Development of a general programming language and an interpreter for ad hoc
programming, where the features of the ROSETTA kernel are offered as primi-
tives, and that can be invoked from within the ROSETTA GUI. For expressive
simplicity, the language should possess a modelling-oriented syntax. An initial
investigation on how this might be done has already been carried out [2]. Fig-
ure 10.1 also hints in the direction of visual programming languages.

Development of data structures and algorithms that can handle very large vol-
umes of data, such as, e.g., molecular biological sequence databases. Data ac-
cess patterns and spatial requirements for storing temporary working structures
would have to be examined closely, and even quadratic algorithms may yield
unacceptable running times for extremely large databases.

Several of the extensions proposed in this section do not necessarily have to be done
within ROSETTA. As an alternative, several of the features can equally well be imple-
mented as, e.g., Perl scripts that employ the command-line version of ROSETTA as a
computational engine, or scripts that operate on and transform and process ROSETTA
input and output.

3For example, in the case of very large project trees, so-called hyperbolic trees might provide less clut-
tered views than ordinary trees. Also, large data tables can be displayed to the user in more concise ways
than as simple 2D spreadsheets. Several companies specialize in developing and selling such advanced
GUI controls, see, e.g., the homepage of Inxight Software, Inc. [89]. Their Hyperbolic Tree and Table Lens
controls are GUI widgets of the types described. A number of good, free GUI controls and programming
ideas can be found at the CodeGuru website [34].

4Parallel Virtual Machine (PVM) is a freely available software package that permits a heterogeneous
collection of UNIX and/or NT computers hooked together by a network to be used as a single large
parallel computer. PVM has more or less become a world-wide de facto standard for heterogeneous
distributed computing.
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15.4 Applications

Identification of Population Subgroups

Chapter 11 proposed an application that exploited the semantics of rough set bound-
ary regions. With respect to the particular database in Table 11.1, there are two
obvious directions for further exploration:

Induce decision rules from the original database . Examining the resulting
rules might reveal medically interesting relationships between factors contribut-
ing to future hard cardiac events. Quantitative assessment of the prediction qual-
ity of the induced rules, e.g., in the form of an ROC analysis, would also be of
interest.

Induce decision rules from the derived database π . Examining the result-
ing rules might reveal concise descriptions of the patients that migrate into the
boundary region, and hence help to define a screening protocol.

There are several reasons why these tasks were not carried out in Chapter 11. Firstly,
they lie outside the scope of the presented identification process, although they do
form a logical precursor and sequel to this. But moreover, the following factors were
present:

As argued in Section 3.4.2, very close cooperation between the data analyst and
the domain experts responsible for collecting the data is necessary for any actual
knowledge discovery to take place. Unfortunately wrt. to interpretation of rules
for clinical relevance, our contacts at the Dutch hospital where the data mate-
rial was collected were technical and not medical personnel. Also, geographical
distance was a prohibitive factor.

The previous study [64] of the database in Table 11.1 was of a pure KDD nature,
in which the full datamaterial was used to derive a logistic regressionmodel that
was subsequently interpreted to find factors contributing to future hard cardiac
events. As such, no portions of the data material were held aside for testing and
assessment of predictive performance. Thus, we had no baseline with which to
compare the predictive performance of any decision rules derived from .

Lastly, an item that would be nice to do is to graphically depict the quality of the
rough set approximations by plots akin to ROC curves. Fixing A and X, the precision
parameter π can be varied and Equation 11.6 and Equation 11.7 be invoked to generate
plot points. These plots may in turn be used to determine a suitable value for π in
practice.
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Anonymization of Sensitive Data

Chapter 12 presented how discernibility considerations could provide a foundation
for cell suppression. Further research can be done along several axes:

Develop alternative ways of quantifying anonymity, letting Equation 12.2 take
into account some of the issues discussed in Section 12.4.1. Equation 12.5 could
also be further developed along similar veins.

Develop good heuristics for determining good object-orderings for anonymiza-
tion on the database level, as discussed in Section 12.4.2.

Develop good control strategies for guiding the anonymization process. Possible
heuristics could, e.g., focus on how the indiscernibility sets become enlarged,
i.e., which objects that get added at each iteration. Also, how should recipient
profiles and preferences best be captured by the control heuristics?

Investigate further how cell suppression, generalization and outlier removal
complement each other. How can an “optimal” mixture of these techniques be
determined for practical anonymization?

Diagnosing Acute Appendicitis

Chapter 13 explored how very simple classification rules could be used to diagnose
acute appendicitis. Candidate items for further research include:

Investigations of issues related to 1R models and calibration, since the experi-
ments addressed discrimination only.

Investigations of how various discretizations influence the result. Can a signif-
icant difference be detected between the simple 1R classifier and the team of
physicians if another discretization method is used?

How can the already small collections of 1R rules be filtered down to even
smaller rule sets?

Would the introduction of bagging or boosting be able to make the simple 1R
model significantly better than the team of physicians?

Furthermore, it could be of interest to induce multivariate rules from the database in
Table 13.1 for the purpose of medical interpretation and KDD.
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Appendix A

Nomenclature

In addition to standard symbols from set theory and logic, the notation used in this
work is summarized below. Pointers to the sections where the notation is first defined
and introduced are also given. Lastly, a list of some of the abbreviations employed
throughout the thesis is given for reference.

Notation

Symbol Description Section
An information or decision system. 5.2, 5.3

A, B, . . . Sets of attributes in an information system. 5.2
AπX, AπX Lower and upper approximations of a set. 5.2.3
a1, a2, . . . Individual attributes in an information system. 5.2
a1, a2, . . . Boolean variables corresponding to attributes. 5.2.4
B A carrier set in a Boolean algebra. 4.2
C A confusion matrix. 7.3
d A decision attribute in a decision system. 5.3
A, π

A A generalized decision attribute. 5.3.2, 5.3.3
Ea A set of edges in an IDG. 5.2.1
fA, f dA A discernibility function of an object. 5.2.4
FA(x) A characteristic formula of an object. 6.2.3
gA, gdA A discernibility function of an information system. 5.2.4
GA An indiscernibility graph. 5.2.2
MA, Md

A A discernibility matrix. 5.2.1, 5.3.3
PAT A set of general patterns. 6.2.3
RA, RdA An indiscernibility relation. 5.2.2
RED A set of reducts. 5.2.5, 5.3.5
RUL A set of decision rules. 6.3.1
U The universe of objects in an information system. 5.2

Continued. . .
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. . .Continued
v An attribute value. 5.2
Va The value set of an attribute. 5.2
X1, X2, . . . Decision classes. 5.3.1
x, y, . . . Individual objects in the universe of discourse. 5.2
φ Estimates the certainty that an object has outcome 1. 7.4
κ A classifier. 7.1
π A precision level of a rough set approximation. 5.2.3
θ Binarizes the output ofφ wrt. a threshold. 7.4
τ A threshold value employed by θ. 7.4
µXA The rough membership function. 5.2.3

Denotes a missing value. 5.2
a Defines a partial order on an attribute’s value set. 5.2.1

Abbreviations

Abbreviation Description Section
AUC Area under the ROC curve. 7.4.3
CMT Controlled medical terminology. 2.3.1
CV Cross-validation. 7.2.1
DBMS Database management system. 3
DLL Dynamic link library. 15.3
DSS Decision support system. 2.3.1
EMR Electronic medical record. 2.3.1
GUI Graphical user interface. 8.1
ICU Intensive care unit. 2.4.3
IDG Indiscernibility definition graph. 5.2.1
KDD Knowledge discovery in databases. 2.2
HSV Highly selective vagotomy. 3.2.1
MFC Microsoft foundation classes. B
NPV Negative predictive value. 7.3
ODBC Open database connectivity. 8.4.1
PMML Predictive model markup language. 15.3
POS Product of sums. 5.2.4
PPV Positive predictive value. 7.3
PVM Parallel virtual machine. 4
ROC Receiver operating characteristic. 7.4.3
RSES Rough Set Expert System. 8.2
RTTI Run-time type identification. 10.3.2
SE Standard error. 7.4.6
SOP Sum of products. 4.3
SQL Structured query language. 3
STL Standard template library. B



Appendix B

The ROSETTA C++ Library

Directories

A brief overview of the directory structure of the ROSETTA C++ library is found be-
low. The library is distributed across several directories, each with strict rules govern-
ing their interdependencies.

kernel Contains the computational kernel of ROSETTA.

basic Contains elementary structures, e.g., smart pointers and classes for refer-
ence counting, basic structures such as a strings and bitsets, macro defini-
tions, management of identifiers, type definitions of vectors, maps, sets and
other basic containers, etc.

system Contains wrappers for standard C system files. Functions as a portabil-
ity layer.
sys Contains wrappers for certain standard C system files. Functions as a

portability layer.
stl Contains the STL implementation in use. Implementations of basic con-

tainers such as vectors, maps and sets, etc.
structures Contains code for higher-level structures such as decision tables, col-

lections of reducts and rules, discernibility matrices and functions, ROC
curves, etc.

algorithms Contains code for higher-level algorithms such as algorithms for
discretization, computation of reducts, filtering of reducts and rules, vot-
ing, import/export routines, etc.

utilities Contains code for various utilities, such as random number generators,
tools for statistical hypothesis testing, computation of partitions, common
mathematical operations, etc.

rses Contains code relevant to the RSES library.
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library Contains legacy code from the RSES library.1

structures Contains encapsulating wrappers for some of the structural ob-
jects from the RSES library.

algorithms Contains encapsulating wrappers for some of the algorithms
from the RSES library.

sav Contains code relevant to the SAV library.
library Contains legacy code from a library for genetic computations.2

ea Contains general code for genetic algorithms.
hits Contains code specific for applying genetic algorithms to compute

minimal hitting sets.
algorithms Contains encapsulating wrappers for some of the algorithms

from the SAV library.

frontend Contains the GUI front-end of ROSETTA.

algorithms Contains algorithmic objects that depend onMFC and theWindows
platform, specifically ODBC code.

dialogs Contains code for handling the logic behind the dialog boxes.
structuredialogs Contains code for handling the logic behind the dialog

boxes related to structural objects such as statistics dialogs, etc.
algorithmdialogs Contains code for handling the logic behind the dialog

boxes related to algorithmic objects such as dialogs for entering algo-
rithm parameters, etc.

views Contains code for displaying structural objects in the front-end such as
views for decision tables, project trees, etc.

common Contains potentially front-end dependent code called from the kernel, e.g.,
methods for giving error messages, installing prototype objects and their associ-
ated dialogs, etc.

Statistics

Table B.1 contains some library statistics.

Development Tools

The baseline platform for ROSETTA development has beenWindows NT, and the pri-
mary development environment has been the Microsoft Visual C++ compiler and its

1Developed at the Group of Logic, University of Warsaw, Poland [69].
2Developed by Staal Amund Vinterbo, Knowledge Systems Group, NTNU, Trondheim.
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Directory Files Lines
kernel/basic 32 7386
kernel/system 16 35
kernel/system/sys 2 2
kernel/structures 88 28416
kernel/algorithms 168 28307
kernel/utilities 25 4455
kernel/rses 2 228
kernel/rses/library 97 17121
kernel/rses/structures 12 5478
kernel/rses/algorithms 26 3437
kernel/sav/library/ea 64 3012
kernel/sav/library/hits 16 1218
kernel/sav/algorithms 2 902
frontend 14 5153
frontend/algorithms 4 1081
frontend/dialogs 8 1083
frontend/dialogs/structuredialogs 18 2498
frontend/dialogs/algorithmdialogs 96 13883
frontend/views 24 9942
common 8 2118

722 135755

Table B.1: ROSETTA C++ library statistics. The number of lines of C++ code is counted using
a simple line count, and thus also includes blank lines and comments. Binary resources (e.g.,
bitmaps) are not included, neither are some external libraries (e.g., STL and Objective Grid
Lite).
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integrated development environment [234]. The GUI front-end was developed using
Microsoft Foundation Classes (MFC), a collection of C++ classes that simplify Win-
dows GUI programming, and is implemented as an MFC Multiple Document Inter-
face application following the standard MFC document/view architecture. A com-
mercial third-party MFC grid control package, Objective Grid Lite [135] from Stingray
Software, was used to realize the matrix-like views of various structural objects in the
GUI. For reasons of portability, MFC is not employed in the computational kernel.
Instead, basic containers such as vectors and associative maps and basic algorithms
such as sorting are culled from the Standard Template Library (STL). The STL variant
used has been STLport [211], an adaptation of Silicon Graphics’ STL implementation
where great care has been taken to make the templates as portable and robust as pos-
sible against compiler bugs and platform quirks. The ROSETTA installation program
was generated by GkSetup [66], and Microsoft Visual SourceSafe [235] was used for
source code version control. Versions currently in use at the time of writing are Win-
dows NT 4.0, Visual C++ 6.0, Objective Grid Lite 6.1, STLport 3.2, GkSetup 1.73 and
Visual SourceSafe 6.0.

Two design requirements from Section 10.2.1 were that the kernel should be portable
and independent of the front-end. Indeed, the kernel has been successfully compiled
under version 1.1.2 of the GNU egcs compiler on a Sun SPARCStation running SunOS
5, and a command-line version of ROSETTA under UNIX is fully operative. Porting
the GUI front-end to run on other platforms than Windows should also in principle be
possible, but would, due to the use of MFC, require some relatively expensive com-
mercial third-party libraries.



Appendix C

The 5x2CV Test

The 5x2CV F-test, proposed by Alpaydin [7] as a robust improvement to a test pro-
posed by Dietterich [43], can be used to quantitatively compare the performance of
two classifiers. As its name implies, the test is based on performing five replications
of 2-fold CV.

Let i j denote the difference between the performance measures of the two classifiers
on fold j 1, 2 of replication i 1, . . . , 5 . The average difference in performance
on replication i is ¯ i and the estimated variance is s2i .

¯ i i1 i2
2 (C.1)

s2i i1 ¯ i 2 i2 ¯ i 2 (C.2)

Let H0 denote the null hypothesis that the two classifiers perform equally well. Under
H0, i j can be treated as being N 0,σ2 distributed, and we have:

A
5

i 1

2

j 1

2
i j

σ2
χ210 (C.3)

B
5

i 1

s2i
σ2

χ25 (C.4)

f A 10
B 5

5
i 1

2
j 1

2
i j

2 5
i 1 s2i

F10,5 (C.5)

We then reject H0 if the statistic f is sufficiently large. For 95% confidence, f 4.74.
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Appendix D

Discretization

Main Categories

Broadly speaking, we can view discretization as a function D that applied to a system
yields a system such that the attributes a1, . . . , am, d in are transformed into

attributes a1, . . . , am, d in , where ai is the transformed version of ai and Vd
Vd and Vai Vai for all i 1, . . . ,m .

D U, A d U, A d (D.1)

In ROSETTA, algorithms for automatic discretization of numerical attributes generally
fall into one of three categories:

Each condition attribute is considered in isolation, and no knowledge of any outcome or
decision attribute is employed in the process: An example of this is a simple equal
frequency binning technique, which operates on the attribute histogram and cre-
ates a specified number of intervals in such a manner that the number of objects
that fall into each interval is approximately the same.

Only one condition attribute is considered at a time, but is done so in conjunction with
the decision attribute: An example of this is the algorithm by Dougherty et al. [47],
which recursively partitions the set of attribute values so that a local measure of
entropy is optimized, until a stopping criterion based on the minimum descrip-
tion length principle is met. Naive approaches also sort into this category.

All condition attributes are considered simultaneously, and are done so in conjunction
with the decision attribute: An example of this is the algorithm by Nguyen and
Skowron [133], in which combinations of all naively generated cuts of all at-
tributes are considered together, and the discretization problem is reframed as a
Boolean reasoning problem such that the discernibility in the original decision
system is preserved using a minimum number of cuts.
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Unsupervised multidimensional clustering algorithms would form a fourth category,
but none such are currently implemented in ROSETTA.

A Boolean Reasoning Approach

Methods for discretization based on discernibility are intuitively appealing if used
together with discernibility-based data mining methods. Nguyen and Skowron [133]
propose such an algorithm.

Let denote a decision system. For the sake of simplifying the exposition, we will
assume that all condition attributes A are numerical. For each attribute a A we can
sort its value set Va to obtain the following ordering:

v1a . . . via . . . v Vaa (D.2)

Let Ca denote the set of all naively generated cuts for attribute a, defined as shown
below. The set Ca simply consists of all cuts midway between two observed attribute
values, except for the cuts that are clearly not needed if we do not bother to discern
between objects with the same decision values.

Xia x U a x via (D.3)

i
a v Va x Xia such that d x v (D.4)

Ca
via vi 1a

2
i
a 1 or i 1

a 1 or i
a

i 1
a (D.5)

If we employ all naively generated cuts, the original discernibility in with respect to
the decision attribute is preserved. However, we can probably reduce the number of
cuts drastically if we consider how they as an ensemble partition the condition space.
To find such minimal subsets of cuts, we construct a Boolean POS function h as shown
below, where each cut corresponds to a Boolean variable:

h
x,y a

c c Ca and a x c a y and A x A y (D.6)

Each factor in h is a sum that stems from a pair of objects x and y that we want to
discern between, and each if these are in turn composed of several sums of cuts from
each attribute a. Only those cuts in Ca that separate x from y are considered in the
sum.

The set of solutions to the problem of finding minimal subsets of cuts that preserve the
original discernibility in with respect to the decision attribute, are defined through
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the prime implicants of h. Since we presumably are interested in employing as few
cuts as possible, the set covering heuristic of Johnson [95] is typically used to arrive
at a single solution. Approximate solutions that introduce minor inconsistencies in
can also be envisioned as a means of handling noisy data.

Note that a straightforward implementation of this algorithm will have a worst-case
complexity of order O A U 3 , which may be prohibitively high for large decision
systems. The dominating step of the outlined algorithm is the construction of h, and
functions as the main bottleneck. However, as noted by Nguyen and Nguyen [130]
and Nguyen [129], special techniques can be used to find a single prime implicant
of h without having to actually construct h, resulting in an algorithm running in
O A U log U time.

In the literature, the outlined discernibility-based approach to discretization of a de-
cision system is usually formulated in terms of computing reducts of a new and
carefully constructed decision system . As demonstrated in Section 5.2.4, such an
exposition is equivalent to the present one.
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