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To devise a general formalization for identifying objects via image processing, we 
suggest a two-pronged approach of identifying principal parts and model fitting to encode 
spatial relationship.  We begin with a relatively simple object, the cube.  Additional 
motivation for this choice was the fact that much of the man made world is composed of 
cubic shaped structures, so cube recognition could serve as an input to later, more 
complex object recognition tasks.  Our recognition formalization begins with training 
SVMs to identify the principle parts of an object.  For our project we used an SVM to 
pick out cube corners like those appearing in man-made objects.  In the second stage of 
our formalism, information from the detected locations of the principle object 
components is used to fit a pre-defined model to the location data.  We then used the 
minimal least-squares affine transformation to fit an arrangement of seven corners—our 
“cube-model”—to various permutations of the detected corners.  This model contains 
information about the spatial relationships between the constituent corners and 
successfully distinguishes between possible cubes and impossible cubes. 

 

Introduction 
Current object recognition algorithms face the 
challenge of generalization. It is possible for a 
machine to identify a teacup if the teacup is 
presented to the machine in the same size and 
orientation; otherwise, the machine falters in 
its recognition.  In an attempt to model human 
vision and human spatial cognition, the 
purpose of this project is to take a step 
towards making object detection and 
recognition rotationally invariant, scale 
invariant, and partially occlusion invariant.  
By constructing object models and 
discovering a least-squares mapping from a 
suspect object to its model, we hope to 
achieve that end. 

The Overview 
After a cursory observation of the human 
visual system, we generated a list of three 
major elements that contribute to the 
flexibility of human object recognition: 

1. Using parts and their relationships to 
identify the whole 

2. Using context to identify the object 
3. Being able to mentally manipulate / 

rotate the object 
 

We have successfully implemented very basic 
elements of each of these three components in 
our attempt to construct a better object 
recognition algorithm. Figure 1 diagrams the 
general flow chart devised for this particular 
scheme. 
 

 
Figure 1 Flow chart of algorithm. 
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The SVM step performs the operation of 
decoding contextual information as well as 
identifying fundamental parts of an object. 
The Model Fitting step provides the computer 
with a mathematical framework with which to 
rotate, scale, translate, and skew the object.  It 
also encodes the spatial relationships between 
the fundamental parts of an object. Using 
these steps in conjunction with each other, we 
are able to identify very basic cubes. 
 
From now on, we shall discuss how the 
algorithm applies to identifying cube-like 
objects and conclude by elaborating on how it 
can be generalized to a broader framework. 
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The SVM 
Since the simple building blocks of a cube are 
its corners, the main purpose of the SVM / 
machine learning algorithm is to reinforce or 
discourage certain classifications of pixels as 
“cube-corners”. These corners will be used 
later in object mappings. 
 
In early incarnations of this project, we 
attempted to use the Harris corner detector to 
detect “cube-corner” candidates.  This 
approach was unsuccessful because it only 
used local pixel data and did not use 
contextual clues to make predictions.  We had 
much more success with the SVM classifier 
by using large image patches and geometrical 
information to encode contextual knowledge 
into our classifier. 
 
We first converted our color image to an 
intensity image, and then took the gradient of 
that image.  To recognize “cube-corners” in 
this image we extracted 51x51 pixel image 
patches to make sure that some amount of 
context was observed.  Experimentation with 
training an SVM to directly classify image 
patches of this kind showed little promise for 
many reasons.  Therefore, to both endow the 
SVM with a sense of the spatial ties between 
the various pixels in this patch, and to 
substantially reduce the dimension of the 
space, we found the projection of this 2601-
vector (51x51 = 2601) into a 277 dimensional 
space.  The projection “basis” chosen was a 
collection of geometric masks that were 
blurred significantly.  Below (figure 2) are 
artistic renditions of 3 such spaces. 
 

 
Figure 2 Artistic renditions of our basis masks 

applied on to 51x51 image patches. 
 

These subspaces found trends in various 
dimensions, while remaining invariant to a 
good deal of noise.  Furthermore, they allowed 
us to highlight significant characteristics of a 
corner in a 51x51 patch (such as an edge 
emanating from the center pixel). Using this 
technique gave superior results to using PCA 
to create a basis of “eigen-corners”, and far 
superior results to using the direct 51x51 
cutout.   
 
In the final step, the 277 vector given by 
projecting into this subspace is scaled to unit 
length to eliminate the variation caused by 
differences in lighting.  This 277 element 
vector was used as training and test vectors in 
an SVM. Using a Gaussian kernel in our SVM 
with a γ of 5, we were able to obtain less than 
13% error on a leave-one-out cross-validation 
test.  
 
As another form of validation we ran the SVM 
on every single 51x51 image patch in an 
image not used in our training set.  Every 
pixel is labeled with its margin from the 
support vectors.  More “confident” points are 
highlighted in red. The results are shown 
below. These results were even more 
encouraging than the LOOCV test error.  Not 
only did the SVM find most cube-corners in 
the image, but the confidence of the prediction 
seems to be well correlated with how well 
centered the corner is in the cut-out.  We 
described this image as a “corner-heatmap”. 
(Note: our SVM was further improved after 
using it to create this image, but as the image 
took 30 minutes to generate we decided not to 
update this image.) 
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Note that x is in homogenous coordinates (so 
that A contains translation information). This 
model allows us to find the Likelihood of this 
arrangement of the corners given the 
parameters of the affine transformation.  We 
even briefly toyed with the idea of viewing 
this problem in a Bayesian framework where 
there was some prior distribution on the 
transformation A, although we didn’t have 
time to explore this idea in depth.  We found 
the maximum likelihood estimate of the affine 
transformation to be as follows. 

Figure 3 Original photo (left)—the Cornell Box—
and corner-heatmap (right). 

 
Cube Regression
 
We developed mathematical machinery to 
grapple with the task of identifying cubes 
from our detected corner data. The general 
idea is laid out in figure 4. We modeled a 
perspective of a cube (or even more generally, 
any object with highly distinguishable 
“principle” image components such as corners) 
as a set of 3-D homogeneous points X = {x(1), 
x(2), … , x(m)}. When appearing in an image, 
this set of points may be rotated, scaled, and 
translated.  On top of this there may be 
random noise, or perhaps distortion due to the 
fact that the cube is being viewed from a 
slightly different perspective.   
 

 
Figure 4. Diagram of cube regression in action. 

 
Thus, we will model the positions of all of the 
corners of the cube in the image as an affine 
transformation of the x(j), added to a 2-D 
Gaussian error term, as in equation 1. 
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In equation (2), Z(i) is a 3 x m matrix of the 
observed corner locations (of image i) in 
homogenous coordinates, (see figure 5), X is 
also a 3 x m matrix but this time of the model 
points, and S is a diagonal matrix of 
weightings used to weight the error of each 
point relative to one another. (It is the inverse 
covariance matrix when the distribution of 
noise around each point is assumed to be a 
circular Gaussian).  

Cube Model 

Observed 
corners with 
wireframe 
maximum 
likelihood 
estimate cube. 
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Figure 5. (Top) An example training image. (Bottom) 
The Z(i)-matrix used in equation 3. Note that the 2nd 

point is missing (and hence all zeros). 
 
We were pleased with the resemblance of this 
weighted regression formula to the normal 
equations.  In our tests we found that this 
worked quite well.  This formula allowed us to 
quickly find the likelihood that a set of points 
was generated by a given model.  As desired it 
is completely invariant to translation, rotation 
in the plane, scaling, and is mildly robust to 
minor distortion.  We even found a method of 
fitting less than the full m points by setting 
ones to zeros in the homogenous coordinate.  
If the SVM did not observe a corner (either it 
was not in the image, or the SVM simply 
made an error), A was still calculated, using 
the remaining data from the other points (with 
the zero-ed column).  This allowed us to 
realize the dream of making a model robust to 
partial occlusion.   
 
To generate the “cube-model” we derived a 
form of the EM algorithm.  By finding the 
ordered locations of all visible corners in 
hundreds of observed cubes {Z_1, Z_2, …, 
Z_n}, we generated a training set.  By 
assuming each training example was 

generated by the same model under an affine 
transformation A_i, for i = 1 to n, and treating 
the A_i as the latent variables, we were able to 
find the best “cube-model”.  We were also 
able to find the variance of error for each 
individual point to create the weighting matrix 
S.  Experimentation showed that using this S 
gave superior results to the non-weighted case 
of simply using the identity matrix for S.  The 
EM algorithm was extremely efficient and 
converged in around 10 steps. Figure 6 shows 
the results of this algorithm after convergence. 
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Figure 6. Note the seven major clusters 

corresponding to the seven prominent corners of a 
cube. Also, note that the “center” corner has the 

most variance. 
 
This mathematical side of our project was far 
more satisfying than the image processing 
portion.  We were able to apply the techniques 
taught in class (Linear regression, EM 
algorithm, multivariate gaussians, maximum 
likelihood estimation), to achieve the goal of 
storing the spatial relationships of parts of an 
object in a mathematical model, and to create 
an affine transformation invariant object 
detection framework.  We encountered one 
truly difficult challenge however when it came 
time to implement this methodology: factorial 
blowup. Unfortunately, the order of the corner 
points is important, and so there was a 
factorial blow up. When 150 cube corners 
were detected in an image, say, we had to try 
all  
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[(7C0)* (150P7)] + [(7C1)* (150P6)] + [(7C2)* 
(150P5)] + [(7C3)* (150P4)]  
possible permutations (each bracketed term 
corresponds to a certain number of un-
observed corners).   
 
There is still hope that one might solve this 
problem.  It makes sense to use the confidence 
of the SVM prediction to try the “most 
confident” corners first.  There are other 
optimizations and heuristics to try here for 
ordering that search, but we didn’t have time 
to implement any of these methods. 
 
It may also be possible that this algorithm is 
useful just not in this particular context.  It 
might be more suited to eliminating options 
rather than to find the optimal one. 
 
Using the simple heuristic (ordering by SVM 
confidence), we were able to identify a cube in 
simple cube images (see figure 7). 

 

 
Figure 7. (Top row) Shows the result of running 
simple heuristics on the given cube before finally 

choosing the top 7. (Bottom row). Shows the results 
of model fitting to the top 6 or 7 points. 

 

The Future 
One idea we had and experimented with was 
to train multiple SVMs to identify the 

different corners of a cube.  This would have 
to be done in the general object case.  (For 
example, using this framework to detect 
human faces, one would train a nose SVM, a 
right eye SVM, a mouth SVM, etc…).  This 
drastically reduces the number of 
permutations of image locations to try in the 
model fitting step of the paradigm.  We lacked 
enough training data to create robust SVMs 
for each type of corner, we would have needed 
several hundred more images of cubes.  The 
other problem, (particular to the cube) is that 
every “principle-part” is the same as every 
other one, just rotated in 3 dimensions.   
 
“Tiering” is another idea to for future research 
to pursue.  Once the method in this paper is 
perfected to recognize small objects, we treat 
collections of objects in the same fashion to 
recognize more complex, compound objects, 
such as cities, freeways, or airplane 
formations. By constructing, say, a model of a 
collection of cubes to represent a city. 
 
Finally, the weakness of the SVM is that it is a 
binary classifier.  Ultimately, to create a 
machine capable of identifying all objects, one 
would like to not enter image patches into 
thousands of various SVMs.  Ideally one 
could create an n-object-classifier, whose 
running time did not vary with n.  This might 
improve detection of every kind of object, 
cube corners would be better defined in 
contrast to all other objects than with simply 
“cube-corners” and “non-cube-corners”. 
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