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Abstract--By replacing the sigmoid activation function often used in neural networks with an exponential 
function, a probabilistic neural network ( PNN) that can compute nonlinear decision boundaries which approach 
the Bayes optimal is formed. Alternate activation functions having similar properties are also discussed. A four- 
layer neural network of  the type proposed can map any input pattern to any number of  classifications. The 
decision boundaries can be modified in real-time using new data as they become available, and can be implemented 
using artificial hardware "'neurons" that operate entirely in parallel. Provision is also made for estimating the 
probability and reliability of  a classification as well as making the decision. The technique offers a tremendous 
speed advantage for problems in which the incremental adaptation time of  back propagation is a significant 
fraction of  the total computation time. For one application, the PNN paradigm was 200,000 times faster than 
back-propagation. 
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MOTIVATION 

Neural networks are frequently employed to classify 
patterns based on learning from examples. Different 
neural network paradigms employ different learning 
rules, but all in some way determine pattern statistics 
from a set of training samples and then classify new 
patterns on the basis of these statistics. 

Current methods such as back propagation (Ru- 
melhart, McClelland, & the PDP Research Group,  
1986, chap. 8) use heuristic approaches to discover 
the underlying class statistics. The heuristic ap- 
proaches usually involve many small modifications 
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to the system parameters that gradually improve sys- 
tem performance. Besides requiring long computa- 
tion times for training, the incremental adaptation 
approach of back-propagation can be shown to be 
susceptible to false minima. To improve upon this 
approach, a classification method based on estab- 
lished statistical principles was sought. 

It will be shown that the resulting network, while 
similar in structure to back-propagation and differing 
primarily in that the sigmoid activation function is 
replaced by a statistically derived one, has the unique 
feature that under certain easily met conditions the 
decision boundary implemented by the probabilistic 
neural network (PNN) asymptotically approaches 
the Bayes optimal decision surface. 

To understand the basis of the PNN paradigm, it 
is useful to begin with a discussion of the Bayes de- 
cision s t ra tegy and nonparamet r i c  es t imators  of 
probability density functions. It will then be shown 
how this statistical technique maps into a feed-for- 
ward neural network structure typified by many sim- 
ple processors ("neurons")  that can all function in 
parallel. 

THE BAYES STRATEGY FOR 
PATI'ERN CLASSIFICATION 

An accepted norm for decision rules or strategies 
used to classify patterns is that they do so in a way 
that minimizes the "expected risk." Such strategies 
are called "Bayes strategies" (Mood & Graybill, 
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1962) and can be applied to problems containing any 
number of categories. 

Consider the two-category situation in which the 
state of nature 0 is known to be either 0 A o r  0~. If 
it is desired to decide whether 0 = 0A or 0 = 0t~ 
based on a set of measurements represented by the 
p-dimensional vector X' = [X~ . . . X j . . .  Xp], the 
Bayes decision rule becomes 

d(X) = 0 z if hAlAfA(X ) > hslBfB(X) 

d(X) = 0B if hAIafA(X ) < hBlBfB(X) (1) 

where fA(X) and fB(X) are the probability density 
functions for categories A and B, respectively; Ia 
is the loss function associated with the decision 
d(X) = 0n when 0 = OA; 1B is the loss associated 
with the decision d(X) = Oa when 0 = 0B (the losses 
associated with correct decisions are taken to be 
equal to zero); hA is the a priori probability of oc- 
currence of patterns from category A; and hB = 
1 - h a  is the a priori probability that 0 = 0B. 

Thus the boundary between the region in which 
the Bayes decision d(X) = OA and the region in which 
d(X) = 0, is given by the equation 

f~(X) = K fn(X) (2) 

where 

K = hBIB/hAl a. (3) 

In general, the two-category decision surface de- 
fined by eqn (2) can be arbitrarily complex, since 
there is no restriction on the densities except those 
conditions that all probability density functions 
(PDF) must satisfy, namely, that they are every- 
where non-negative, that they are integrable, and 
that their integrals over all space equal unity. A sim- 
ilar decision rule can be stated for the many-category 
problem (Specht, 1967a). 

The key to using eqn (2) is the ability to estimate 
PDFs based on training patterns. Often the a priori 
probabilities are known or can be estimated accu- 
rately, and the loss functions require subjective eval- 
uation. However, if the probability densities of the 
patterns in the categories to be separated are un- 
known, and all that is given is a set of training pat- 
terns (training samples), then it is these samples 
which provide the only clue to the unknown under- 
lying probability densities. 

In his classic paper, Parzen (1962) showed that a 
class of PDF estimators asymptotically approaches 
the underlying parent density provided only that it 
is continuous. 

CONSISTENCY OF THE 
DEN SITY ESTIMATES 

The accuracy of the decision boundaries depends on 
the accuracy with which the underlying PDFs are 

estimated. Parzen (1962) showed how one may con- 
struct a family of estimates of f (X) ,  

.f°(x) n~ , , ,~° ,  , (4) 

which is consistent at all points X at which the PDF 
is continuous. Let XAt . . . .  , XA . . . . .  Xa,, be in- 
dependent random variables identically distributed 
as a random variable X whose distribution function 
F(X) = P[x <= X] is absolutely continuous, Parzen's 
conditions on the weighting function ~ ( y )  are 

sup ........ [O'~(y)i ":: ~ (5) 

where sup indicates the supremurn~ 

f +" dy ~ (6) [~o(y)[ < 

lim ]y~(y)[ = {L (7) 
. v - ~  z 

and 

f ~'~O(y) dy = 1. (8) 

In eqn (4), 2 = 2(n) is chosenas  a function of n 
such that 

and 

lira 2(n) = 0 (9) 
n -  *~ -  

lim n2(n) --- .2 (10) 

Parzen proved that the estimate f , ( X )  is consist- 
ent in quadratic mean in the sense that 

E If,(X) f (X)l  2 • 0 as n , ~¢. (11) 

This definition of consistency, which says that the 
expected error gets smaller as the estimate is-based 
on a larger data set, is particularly important since 
it means that the true distribution:will be appro~iched 
in a smooth manner. 

Murthy (1965, 1966) relaxed the assumption of 
absolute continuity of the distribution F(X) ,  and 
showed that the class of estimators f . ( X )  still con- 
sistently estimate the density at all points of conti- 
nuity of the distribution F ( X )  where the density f ( X )  
is also continuous. 

Cacoullos (1966) has also extended Parzen's re- 
suits to cover the multivariate case. Theorem 4.1 in 
Cacoullos (1966)indicates how the Parzen results can 
be extended to estimates in the special ease that the 
multivariate kernel is a product of univariate kernels. 
In the particular case of  the G a ~  kernel, the 
multivariate estimates can be expressed as 

1 1 m 
/a(X) (2nF;za p m 

× exp[ ( X -  Xa,)'(X-2a 2 Xa;)] (12) 
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where 

i = pattern number 
m = total number of training patterns 
XA, = ith training pattern from category OA 
a = "smoothing parameter" 
p = dimensionality of measurement space. 

Note that fA(X) is simply the sum of small mul- 
tivariate Gaussian distributions centered at each 
training sample. However, the sum is not limited to 
being Gaussian. It can, in fact, approximate any 
smooth density function. 

Figure 1 illustrates the effect of different values 

a. A small value of o. 

b. A larger value of o. 

c. An even larger value of o. 

FIGURE 1. The smoothing effect of different values of ~ on 
a PDF estimated from samples. From Computer-Oriented Ap- 
proaches to Pattern Recognition (pp. 100-101) by W. S. Mei- 
sel, 1972, Orlando, FL: Academic Press. Copyright 1972 by 
Academic Press. Reprinted by permission. 

for the smoothing parameter a on fa(X) for the case 
in which the independent variable X is two-dimen- 
sional. The density is plotted from eqn (12) for three 
values of a with the same training samples in each 
case. A small value of cr causes the estimated parent 
density function to have distinct modes correspond- 
ing to the locations of the training samples. A larger 
value of a, as indicated in Figure l b, produces a 
greater degree of interpolation between points. 
Here, values of X that are close to the training sam- 
ples are estimated to have about the same probability 
of occurrence as the given samples. An even larger 
value of a, as indicated in Figure lc, produces a 
greater degree of interpolation. A very large value 
of ~r would cause the estimated density to be Gaus- 
sian regardless of the true underlying distribution. 
Selection of the proper amount of smoothing will be 
discussed in the section "Limiting Conditions as 
a ~ 0 and as ~r ~ ~c" 

Equation (12) can be used directly with the de- 
cision rule expressed by eqn (1). Computer programs 
have been written to perform pattern-recognition 
tasks using these equations, and excellent results 
have been obtained on practical problems. However, 
two limitations are inherent in the use of eqn (12): 
(a) the entire training set must be stored and used 
during testing, and (b) the amount of computation 
necessary to classify an unknown point is propor- 
tional to the size of the training set. When this ap- 
proach was first proposed and used for pattern 
recognition (Meisel, 1972, chap. 6; Specht, 1967a 
1967b), both considerations severely limited the di- 
rect use of eqn (12) in real-time or dedicated appli- 
cations. Approximations had to be used instead. 
Computer memory has since become dense and in- 
expensive enough so that storing the training set is 
no longer an impediment, but computation time with 
a serial computer still is a constraint. With large-scale 
neural networks with massively parallel computing 
capability on the horizon, the second impediment to 
the direct use of eqn (12) will soon be lifted. 

THE PROBABILISTIC NEURAL NETWORK 

There is a striking similarity between parallel analog 
networks that classify patterns using nonparametric 
estimators of a PDF and feed-forward neural net- 
works used with other training algorithms (Specht, 
1988). Figure 2 shows a neural network organization 
for classification of input patterns X into two cate- 
gories. 

In Figure 2, the input units are merely distribution 
units that supply the same input values to all of the 
pattern units. Each pattern unit (shown in more de- 
tail in Figure 3) forms a dot product of the input 
pattern vector X with a weight vector Wi, Zi = X • 
Wi, and then performs a nonlinear operation on Zi 
before outputting its activation level to the summa- 
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tion unit. Instead of the sigmoid activation function 
commonly used for back-propagation (Rumelhart et 
al., 1986), the nonlinear operation used here is 
exp[(Z~ - 1)/a2]. Assuming that both X and W~ are 
normalized to unit length, this is equivalent to using 

exp[--(W/- X)'(Wi-- X}/2a 2] 

which is the same form as eqn (t2). Thus, the dot 
product, which is accomplished naturally in the in- 
terconnections, is followed by the neuron activation 
function (the exponentiation). 

The summation units simply sum the inputs from 
the pattern units that correspond to the category 
from which the training pattern was selected. 

The output, or decision, units are two-input neu- 
rons as shown in Figure 4. These units produce binary 
outputs. They have only a single variable weight, G .  

C~ = hH,1Bk n~ (13') 
h,~,l,~ n~ 

where 

hA, = number of training patterns from category A, 
nBk = number Of tr~ning patte~s from category B~ 

Note that Cg is the ratio of a priori probabilities, 
divided by the ratio of samples and multiplied by the 
ratio of losses. In any problem in which the numbers 
of training samples from categories A and B are ob- 

f x) f (x) 

/ 

BINARY OUTPU-( 
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tained in proportion to their a priori probabilities, 
C~ = -IB~/IA~. This final ratio cannot be determined 
from the statistics of the training samples, but only 
from the significance of the decision. If there is no 
particular reason for biasing the decision, Ck may 
simplify to - 1  (an inverter). 

The network is trained by setting the Wi weight 
vector in one of the pattern units equal to each of 
the X patterns in the training set and then connecting 
the pattern unit's output to the appropriate sum- 
mation unit. A separate neuron (pattern unit) is re- 
quired for every training pattern. As indicated in 
Figure 2, the same pattern units can be grouped by 
different summation units to provide additional pairs 
of categories and additional bits of information in 
the output vector. 

ALTERNATE ACTIVATION FUNCTIONS 

Although eqn (12) has been used in all the experi- 
mental work so far, it is not the only consistent es- 
timator that could be used. Alternate estimators 
suggested by Cacoullos (1966) and Parzen (1962) are 
given in Table 1, where 

f.,(X) n,;? Kp ~ h'~(y) (14) 
t = l  

q 
Y = ( x ,  - xA,,)2 (15/ 

and K, is a constant such that 

f Kp~,~(y) dy = 1. (16) 

Zi = X • Wi as before. 

When X and W~ are both normalized to unit 
length, Z~ ranges from - 1 to + 1, and the activation 
function is of the form shown in Table 1. Note that 
here all of the estimators can be expressed as a dot 
product feeding into an activation function because 
all involve y = 1/2 X/2 - 2X • XAi. Non-dot product 
forms will be discussed later. 

All the Parzen windows shown in Table 1, in con- 
junction with the Bayes decision rule of eqn (1), 
would result in decision surfaces that are asymptot- 
ically Bayes optimal. The only difference in the cor- 
responding neural networks would be the form of 
the nonlinear activation function in the pattern unit. 
This leads one to suspect that the exact form of the 
activation function is not critical to the usefulness of 
the network. The common elements in all the net- 
works are that: the activation function takes its max- 
imum value at Zs = 1 or maximum similarity between 
the input pattern X and the pattern stored in the 
pattern unit; the activation function decreases as the 
pattern becomes less similar; and the entire curve 

should be compressed towards the Zi = 1 line as the 
number of training patterns, n, is increased. 

LIMITING C O N D I T I O N S  AS ~---* 0 A N D  
AS a- -*  ~ 

It has been shown (Specht, 1967a) that the decision 
boundary defined by eqn (2) varies continuously 
from a hyperplane when a --, ~ to a very nonlinear 
boundary representing the nearest neighbor classifier 
when a --* 0. The nearest neighbor decision rule has 
been investigated in detail by Cover and Hart (1967). 

In general, neither limiting case provides optimal 
separation of the two distributions. A degree of av- 
eraging of nearest neighbors, dictated by the density 
of training samples, provides better generalization 
than basing the decision on a single nearest neighbor. 
The network proposed is similar in effect to the k- 
nearest neighbor classifier. 

Specht (1966) contains an involved discussion of 
how one should choose a value of the smoothing 
parameter, a, as a function of the dimension of the 
problem, p, and the number of training patterns, n. 
However, it has been found that in practical prob- 
lems it is not difficult to find a good value of a, and 
that the misclassification rate does not change dra- 
matically with small changes in a. 

Specht (1967b) describes an experiment in which 
electrocardiograms were classified as normal or ab- 
normal using the two-category classification of eqns 
(1) and (12). In that case, 249 patterns were available 
for training and 63 independent cases were available 
for testing. Each pattern was described by a 46-di- 
mensional pattern vector (but not normalized to unit 
length). Figure 5 shows the percentage of testing 
samples classified correctly versus the value of the 
smoothing parameter, a. Several important conclu- 
sions are obvious. Peak diagnostic accuracy can be 
obtained with any a between 4 and 6; the peak of 
the curve is sufficiently broad that finding a good 
value of a experimentally is not difficult. Further- 
more, any a in the range from 3 to 10 yields results 
only slightly poorer than those for the best value. It 
turned out that all values of a from 0 to ~ gave results 
that were significantly better than those of cardiol- 
ogists on the same testing set. 

The only parameter to be tweaked in the proposed 
system is the smoothing parameter, a. Because it 
controls the scale factor of the exponential activation 
function, its value should be the same for every pat- 
tern unit. 

A N  A S S O C I A T I V E  M E M O R Y  

In the human thinking process, knowledge accu- 
mulated for one purpose is often used in different 
ways for different purposes. Similarly, in this situa- 
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TABLE 1 
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1- -y ,  y _ _ l  
O, y > l  
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e-lyl 
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sin(y/2) ~2 
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-1 0 1 

Z~ 

1 

I -  

i I 
-1 0 1 

Z t 

Z~ 

1 i 

j 

J 
Z, lyj 

i t 
-1 0 1 

Z~ 

'! I 

-1 0 1 
Z~ 

I 

tion, if the decision category were known, but not 
all the input variables, then the known input vari- 
ables could be impressed on the network for the 
correct category and the unknown input variables 
could be varied to maximize the output of the net- 
work. These values represent those most likely to be 
associated with the known inputs. If only one pa- 
rameter were unknown, then the most probable 
value of that parameter could be found by ramping 

though all possible values of the parameter and 
choosing the one that maximiz~ the PDF. If several 
parameters are unknown, this method may be im- 
practical. In this case, one might be satisfied with 
finding the closest mode of the PDF. This goal could 
be achieved using the method of steepest ascent. 

A more general approach to forming an associa- 
tive memory is to avoid distinguishingbetween inputs 
and outputs. By concatenating the X vector and the 
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output vector into one longer measurement vector 
X', a single probabilistic network can be used to find 
the global PDF, f(X').  This PDF may have many 
modes clustered at various locations on the hyper- 
sphere. To use this network as an associative mem- 
ory, one impresses on the inputs of the network those 
parameters that are known, and allows the other 
parameters to relax to whatever combination maxi- 
mizes f(X') ,  which occurs at the nearest mode. 

SPEED ADVANTAGE RELATIVE 
TO BACK PROPAGATION 

One of the principle advantages of the PNN para- 
digm is that it is very much faster than the well-known 
back propagation paradigm (Rumelhart, 1986, chap. 
8) for problems in which the incremental adaptation 
time of back propagation is a significant fraction of 
the total computation time. In a hull-to-emitter cor- 
relation problem supplied by the Naval Ocean Sys- 
tems Center (NOSC), the PNN accurately identified 
hulls from difficult, nonlinear boundary, multire- 
gion, and overlapping emitter report parameter data 
sets. 

Marchette and Priebe (1987) provide a description 
of the problem and the results of classification using 
back-propagation and conventional techniques. Ma- 
loney (1988) describes the results of using PNN on 
the same data base. 

The data set consisted of 113 emitter reports of 
three continuous input parameters each. The output 

layer consisted of six binary outputs indicating six 
possible hull classifications. This data set was small, 
but as in many practical problems, more data were 
either not available or expensive to obtain. To make 
the most use of the data available, both groups de- 
cided to hold out one report, train a network on the 
other 112 reports, and use the trained network to 
classify the holdout pattern. This process was re- 
peated with each of the 113 reports in turn. Mar- 
chette and Priebe (1987) estimated that to perform 
the experiment as planned would take in excess of 3 
weeks of continuous running time on a Digital Equip- 
ment Corp. VAX 8650. Because they didn't have that 
much VAX time available, they reduced the number 
of hidden units until the computation could be per- 
formed over the weekend. Maloney (1988), on the 
other hand, used a version of PNN on an IBM PC/ 
AT (8 MHz) and ran all 113 networks in 9 seconds 
(most of which was spent writing results on the 
screen). Not taking into account the I/O overhead 
or the higher speed of the VAX, this amounts to a 
speed improvement of 200,000 to 1! 

Classification accuracy was roughly comparable. 
Back-propagation produced 82% accuracy whereas 
PNN produced 85% accuracy (the data distributions 
overlap such that 90% is the best accuracy that 
NOSC ever achieved using a carefully crafted special 
purpose classifier). It is assumed that back propa- 
gation would have achieved about the same accuracy 
as PNN if allowed to run 3 weeks. By breaking the 
problem into subproblems classified by separate 
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PNN networks, Maloney reported increasing the 
PNN classification accuracy to 89%. 

The author has since run PNN on the same da- 
tabase using a PC/AT 386 with a 20 MHz clock. By 
reducing the displayed output to a summary of the 
classification results of the 113 networks, the time 
required was 0.7 seconds to replicate the original 
85% accuracy. Compared with back-propagation 
running over the weekend which resulted in 82% 
accuracy, this result again represents a speed im- 
provement of 200,000 to 1 with slightly superior ac- 
curacy. 

PNN NOT LIMITED 
TO MAKING DECISIONS 

The outputs fA(X) and fB(X) can also be used to 
estimate a posteriori probabilities or for other pur- 
poses beyond the binary decisions of the output 
units. The most important use we have found is to 
estimate the a posteriori probability that X belongs 
to category A, e[AIX], If categories A and B are 
mutually exclusive and if ha + hB = 1, we have from 
the Bayes theorem 

haft(X) (17) 
P[AIX] = haft(X ) + hBft~(X) 

Also, the maximum of fa(X) and fn(X) is a mea- 
sure of the density of training samples in the vicinity 
of X, and can be used to indicate the reliability of 
the binary decision. 

PROBABILISTIC NEURAL NETWORKS 
USING ALTERNATE ESTIMATORS OF f(X) 

The earlier discussion dealt only with multivariate 
estimators that reduced to a dot product form. Fur- 
ther application of Cacoullos (1966), Theorem 4,1, 
to other univariate kernels suggested by Parzen (1962) 
yields the following multivariate estimators (which 
are products of univariate kernels): 

1 ~ 1 ,  when alllX~- XA,jI<--2 (18) 
f a ( X )  -- n(22)p ,=, 

f A ( X )  n ~  p = = ~ , 

when all IX~ - Xa0.[ -< 2 (19) 

1 ° (-I (x,  - x a , y  
i=1 I=1 

- (x , -  xa,) 2] 
_ 1 ~ e x p  '=~ (20) 

n(2zt) p/22p i=1 222 

- -  e .~, - X q .  
f a ( X )  n ( 2 2 )  ° i,~l i= l  

- n(22)p  exp - ~  

fA(X) -- n(~i) ' ,  , = i (22) 

Equation (20) is simply an alternate form of the dot 
product estimator of eqn (12). The forms that do not 
reduce to a dot product would require an alternate 
network structure. They all can be implemented 
computationally as is. 

It has not been proven that any of these estimators 
is the best and should always be used. Since all the 
estimators converge to the correct underlying distri- 
bution, the choice can be made on the basis of com- 
putational simplicity or similarity to computational 
models of biological neural networks. Of these, eqn 
(21) (in conjunction with eqns (1) through (3)) is 
particularly attractive from the point of view of com- 
putational simplicity. 

When the measurement vector X is restricted to 
binary measurements, eqn (21) reduces to finding 
the Hamming distance between the input vector and 
a stored vector followed by use of the exponential 
activation function. 

One final and very useful variation now suggests 
itself. If the input variables are expressed in binary 
(-~ 1 or - 1 )  form, all input vectors automatically 
have the same length, k/-fi, and do not have to be 
normalized. These patterns can again be used with 
the network of Figures 2 through 4. In this case, the 
range of Ze is -~p to - p .  This change can be accom- 
modated by a small change in theactivation function 
g(Z~) = exp[(Zi p)/p az]. 

The variations in the shape of the activation func- 
tion indicated in Table 1 still are allowed without 
relinquishing the basic attribute of the network of 
asymptotic Bayes optimality. 

Even when the input measurements are inherently 
continuous, it may be desirable to convert them to 
a binary representation because certain technologies 
that might be used for massively parallel hardware 
lend themselves to computation of Hamming dis- 
tances. Continuous measurements can be expressed 
in binary form by a coding scheme sometimes called 
the "thermometer code," in which each feature is 
represented by an n bit binary code that is a series 
of + l 's followed by a series of - l"s (Widrow et al.. 
1963). The value of the feature is represented by the 
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sum of the + l's. This seemingly inefficient code has 
the following advantages: 

1. The absolute value of the difference between the 
feature value of a stored training vector and the 
feature value of the pattern to be classified can 
be measured by the Hamming distance. 

2. The entire sum over p features as required in eqn 
(21) can be handled by one large Hamming dis- 
tance calculation over a feature vector that is n 
times p bits long. 

DISCUSSION 

Operationally, the most important advantage of the 
probabilistic neural network is that training is easy 
and instantaneous, it can be used in real-time be- 
cause as soon as one pattern representing each cat- 
egory has been observed, the network can begin to 
generalize to new patterns. As additional patterns 
are observed and stored into the network, the gen- 
eralization will improve and the decision boundary 
can become more complex. 

Other advantages of the PNN are: (a) The shape 
of the decision surfaces can be made as complex as 
necessary, or as simple as desired, by choosing the 
appropriate value of the smoothing parameter a; (b) 
The decision surfaces can approach Bayes optimal; 
(c) Erroneous samples are tolerated; (d) Sparse sam- 
ples are adequate for network performance; (e) a 
can be made smaller as n gets larger without retrain- 
ing; (f) For time-varying statistics, old patterns can 
be overwritten with new patterns. 

Another practical advantage of the proposed net- 
work is that, unlike many networks, it operates com- 
pletely in parallel without a need for feedback from 
the individual neurons to the inputs. For systems 
involving thousands of neurons (too many to fit into 
a single semiconductor chip), such feedback paths 
would quickly exceed the number of pins available 
on a chip. However, with the proposed network, any 
number of chips could be connected in parallel to 
the same inputs if only the partial sums from the 
summation units are run off-chip. There would be 
only two such partial sums per output bit. 

It has been shown that the exact form of the ac- 
tivation function is not critical to the effectiveness of 
the network. This fact will be important in the design 
of analog or hybrid neural networks in which the 
activation function is implemented with analog com- 
ponents. 

The probabilistic neural network proposed here 
can, with variations, be used for mapping, classifi- 
cation, associative memory, or to directly estimate a 
posteriori probabilities. 
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Ck 
d(X) 
f(X) 

fs(X) 

f~k(x) 

hu 

k 
K 

NOMENCLATURE 

weight of output unit for decision number k 
decision on pattern X 
probability density function (PDF) of the random vector 
X 
probability density function estimated from a set of sam- 
ples taken from category R, where R = A or B 
probability density function estimated from a set of sam- 
ples taken from category Rk, where R = A or B and 
k = decision number 
a priori probability of a sample belonging to category 
R 
decision number (used for multiple output bits) 
the ratio hRls/hA1 A 
loss associated with the decision d(X) ¢ 0R when Ok is 
the Rth state of nature 
loss associated with the decision d(X) ¢ 0~k when 0Rk 
is the Rkth state of nature 
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m 
RR 
~R k 
PIRIX] 
P 
R 
W 
X 
X, 
X'  

number of training patterns 
number of training patterns from category n 
number of training patterns irom category to, 
probability of R given X 
dimension of the pattern vectors 
category (A or B) 
weight vector (p-dimensional) 
pattern vector (p-dimensional) 
j th  component of X 
transpose of X ,  X '  = [X~ . . . X t . . . X v ]  

XR~ 
XR,j 
(~(Y) 
Z 
It 

ith training pattern vector from category R 
jth component of XR, 
weighting factor 
dot product of X with weighl vector W 
state of nature 
Rth state of nature: the Rth category (for the two-cat- 
egory case. R = A or B) 
a parameter of the weighting function ~(y)  
"smoothing parameter" of the probability density func- 
tion estimator 


