User Tools

Site Tools


lectures

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lectures [2011/02/27 22:57] nicklectures [2011/09/29 15:52] (current) nick
Line 9: Line 9:
      * {{:flcases.pdf|fuzzy logic cases}}      * {{:flcases.pdf|fuzzy logic cases}}
   * {{:lecture_4.ppt|Lecture 4 - more roughsets}}   * {{:lecture_4.ppt|Lecture 4 - more roughsets}}
-  * {{:lecture_5a.ppt|Lecture 5 - more roughsets-Various Reducts & Rough Sets Applications}}+  * {{:lecture_5x.ppt|Lecture 5 - more roughsets-Various Reducts & Rough Sets Applications}}
      * {{:umuai2007_aug31.pdf|application 1}}      * {{:umuai2007_aug31.pdf|application 1}}
      * {{:ohrn_thesis.pdf|application 2}}      * {{:ohrn_thesis.pdf|application 2}}
Line 24: Line 24:
   * {{:cse4403lec13.pdf|Lecture 13 - Discussion on Bayesian Networks}}   * {{:cse4403lec13.pdf|Lecture 13 - Discussion on Bayesian Networks}}
   * {{:lecture_14_copy.ppt|Lecture 14 - Recurrent Neural Networks}}   * {{:lecture_14_copy.ppt|Lecture 14 - Recurrent Neural Networks}}
-     * {{:lecture_14a.ppt|Lecture 14a - The Next Generation Neural Networks - G. Hinton}}+     * {{:lecture_14aa.ppt|Lecture 14a - The Next Generation Neural Networks - G. Hinton}}
      * {{:lecture_14b.ppt|Lecture 14b - Neural Networks - Single Layer}}      * {{:lecture_14b.ppt|Lecture 14b - Neural Networks - Single Layer}}
      * {{:lecture_14c.ppt|Lecture 14c - Neural Networks - Probabilistic}}      * {{:lecture_14c.ppt|Lecture 14c - Neural Networks - Probabilistic}}
      * {{:lecture_14d.ppt|Lecture 14d - Neural Networks - Learning}}      * {{:lecture_14d.ppt|Lecture 14d - Neural Networks - Learning}}
      * {{:lecture_14f.ppt|Lecture 14e - Neural Networks - Feed Forward}}      * {{:lecture_14f.ppt|Lecture 14e - Neural Networks - Feed Forward}}
-  * {{|Lecture 15 - Web Intelligence, Brain Informatics and Granular Computing}} +  * {{:lecture_15.ppt||Lecture 15 - Web Intelligence, Brain Informatics and Granular Computing}} 
-  * {{:wimbit.ppt|Lecture 15a - Web Intelligence meet Brain Informatics}} +     * {{:wimbit.ppt|Lecture 15a - Web Intelligence meet Brain Informatics}} 
-  * {{|Lecture 16 - Granular Computing}}+  * {{:lecture_16.ppt|Lecture 16 - Granular Computing}} 
 +     * {{:att00207.ppt|Lecture 16a - Zadeh's Granular Computing}} 
 +     * {{:conceptual_granularity_fuzzy_and_rough_sets.ppt|Lecture 16 - Erich's Granular Computing}} 
 +     * {{:granular_computing.pdf|Lecture 16c - Skrowon's Granular Computing}} 
 +  * {{:lecture_17.ppt|Lecture 17 - Introduction to Expert Systems}} 
 +  * {{:bayesian_network_modeling_for_evolutionary_genetic_structures.ppt|Lecture 18 - Bayesian Network Modeling for evolutionary genetic structures}} 
 +  * {{:cercone.ppt|Lecture 19 - A graph theory approach to characterize the relationship between protein functions and structure of biological networks}} 
 +  * {{:lecture_20.ppt|Lecture 20 & 21- Ontology and Representation}} 
 +  * {{:lecture_22.ppt|Lecture 22 - Course Review}} 
 + 
 + 
  
  
lectures.1298847476.txt.gz · Last modified: 2011/02/27 22:57 by nick

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki