
MODEL CHECKING

PARALLEL FIRST FIT

GRAPH COLORING IN

JAVA

1

CSE 6490A Winter 2011

Loutfouz Zaman

Vertex coloring

• Assignment of "colors" to vertices in a way so that no two

adjacent vertices share the same color

• First-Fit is the simplest algorithm

• works by assigning the smallest possible integer as color to the

current vertex of the graph

2

http://en.wikipedia.org/wiki/Vertex_(graph_theory)

Sequential FF

•

3

Sequential FF E.g. Step 0

4

Sequential FF E.g. Step 1

5

Sequential FF E.g. Step 2

6

Sequential FF E.g. Step 3

7

Sequential FF E.g. Step 4

8

Sequential FF E.g. Step 5

9

Sequential FF E.g. Step 6

10

Sequential FF E.g. Step 7

11

Sequential FF E.g. Step 8

12

Parallel FF (Subgraph Based)

13

Colored using
sequential algorithm

Bug in the Implementation

• JPF found java.lang.NullPointerException

• Previously believed to be fixed

14

• Before:

• Color = Get color from a hashtable

• Build color for vi

• After fixing:

• Color = -1

• While (Color == -1)

• Color = Get color from a hashtable

• Build color for vi

15

Other Data Races

• Using gov.nasa.jpf.listener.PreciseRaceDetector

• Were not detected

• Testing with JPF allowed removal of synchronized blocks which

were introduced to address the bug mentioned earlier

• Still not sure if the removal is safe, however, JPF did not detect any

issues

16

Correctness Test Re-visited

• Using JPF to verify proper coloring

• No assertion violations were detected

• Can’t use too large graphs

• 2000 nodes, 999001 edges => java.lang.StackOverflowError

17

for each node n in G
for each neighbour of n

assert color(n) != color (neighbour)

• 9 nodes 12 edges, 4 proccesses

• == statistics

• elapsed time: 0:00:03

• states: new=1442, visited=3, backtracked=10, end=8

• search: maxDepth=1434, constraints=0

• choice generators: thread=1435, data=0

• heap: gc=1334, new=1221, free=349

• instructions: 38592

• max memory: 91MB

• loaded code: classes=161, methods=2384

• ==

• 20 nodes 190 edges, 20 processes

• == statistics

• elapsed time: 0:00:47

• states: new=24802, visited=0, backtracked=7, end=8

• search: maxDepth=24794, constraints=0

• choice generators: thread=24795, data=0

• heap: gc=24247, new=2623, free=1191

• instructions: 327855

• max memory: 453MB

• loaded code: classes=161, methods=2406

• ==

• 40 nodes 400 edges, 20 processes

• == statistics

• elapsed time: 0:04:23

• states: new=98266, visited=30, backtracked=37, end=8

• search: maxDepth=98258, constraints=0

• choice generators: thread=98259, data=0

• heap: gc=95888, new=4313, free=2347

• instructions: 960172

• max memory: 1361MB

• loaded code: classes=162, methods=2408

• ==

18

Performance Test Re-visited

• 4 trials

• Same input as before

• New overhead of while

loop

• Removed overhead of

synched blocks

• Output slightly improved

overall, but it could be

due to chance as well

19

Bug in JCSP

• Found gov.nasa.jpf.jvm.NotDeadlockedProperty
• == snapshot #1

• thread

index=1,name=ParallelFirstFit$FFGeneralProcess@a998,status=WAITING,this=org.jcsp.lang.ParThread@667,waiti

ng on: java.lang.Object@679

• call stack:

• at org.jcsp.lang.Barrier.sync(Barrier.java:33)

• at org.jcsp.lang.ParThread.run(ParThread.java:41)

• …

• The same bug was observed for a simple single

One2One Channel, 2-thread reader and writer JCSP

application

20

Conclusion & Open Questions

• Conclusion

• JPF can be ful for finding issues in CSP

• But misleading when detecting deadlocks due to a bug

• Is it reasonable to keep increasing the size of input and

number of processes for this kind of algorithm?

• The bug was caught using only a 9 node and 12 edges graph

among 4 processes

• Limits on how large the input can get, particular the edges

• Will different search strategies help?

• Currently only the default strategy was tried

21

