-
MODEL CHECKING

PARALLEL FIRST FIT
GRAPH COLORING IN
JAVA

CSE 6490A Winter 2011

A D
| outfouz Zaman ;
B G
C E

..

Vertex coloring

- Assignment of "colors" to vertices in a way so that no two
adjacent vertices share the same color

- First-Fit is the simplest algorithm

- works by assigning the smallest possible integer as color to the
current vertex of the graph

http://en.wikipedia.org/wiki/Vertex_(graph_theory)

N
Sequential FF

- Umland (1998) demonstrates a 2-step sequential FF
algorithm:
* (1) Build(L;,v;): Determine a list L; of all possible colors for v;, i.e.
exclude colors already used by vertices v;,j < i adjacent to v;
- L; -- a boolean array (possibility list of v;) with property:
* Lilk] = false & 3v; such that j < i,(vi,vj) € E and f(vj) =k

- (2) Color(L;,v;): Determine the smallest of all possible colors for
v;, i.e. look for the smallest entry in L; where L;[k] = true and
assign color k to v;

Sequential FF E.g. Step O

"0

4

Sequential FF E.g. Step 1

L, ={tt,t,t},k=0

Sequential FF E.g. Step 2

L, = {t,t t,t},k=0 Ly ={f, t,tt} Ls = {f,t,t,t} L, ={f, t,tt}

Pl

‘.{'
(.

LKA

4

L, = {t,t,t,t},k=0 L, = {f,t,t,t} Le = {f, t,t,t} Ls = {f,t,t, t}

Sequential FF E.g. Step 3

P

4 6 '

7

4

L2={t,t,t,t},k=0 L4={f!t!tvt} L6={f!f:t!t} L6={f:f1t:t}

Sequential FF E.g. Step 4

L, ={t,t,t,t},k=0 Ly ={f,ttthk=1 Ls ={f.f,t,t} L, ={f,f.t t}
. .)"

7

4

=5

A

r

Y

A ,

L, = {t,t, ¢t t},k=0 Ly ={f,t,t,t} k=1 Le ={f,f, t t} Le ={f,f, t t}

Sequential FF E.g. Step 5

P
L Z Y\

r

7

4

-,
o

L, = {t,t, ¢t t},k=0 Ly ={f,t,t,t} k=1 Le ={f,f, t t} Le=1{f.f.f t}

Sequential FF E.qg. Step 6

L, ={t,t,t,t},k=0 Ly ={f,ttthk=1 Ls ={f,f, t t},k=2 L,={f.f.f, t}

Sy

7

4

3

e\

. b

-,
o

L, = {t,t, ¢t t},k=0 Ly ={f,t,t,t} k=1 Lo ={f,f, t t},k=2 Le=1{f.f.f t}

.1
Sequential FF E.g. Step 7

L, = {tt,t, t},k=0 Ly ={f,ttt}k=1 Ls={f.f.t,t},k=2 L, ={f,f, f, thk =3

L2={t,t,t,t},k=0 L4={f’t:t:t}:k= 1 L6={f»th:t}lk=2 L6={f1f'f'f}

. - S
Sequential FF E.g. Step 8

L, = {tt,t, t},k=0 Ly ={f,ttt}k=1 Ls={f.f.t,t},k=2 L, ={f,f, f, thk =3

L, = {t,t,¢, t}!k=0 Ly={f,t,t,t} k=1 Le ={f.f.t, t} k=2 Le =1{f.f, flf}!k=4

B
Parallel FF (Subgraph Based)

Processorl Processor2 Processor3 Processor4
Color(L.v 1
""“”‘"E(L;”’:%) < Colored using
Color(Ly, 14 . .
Color(Ly,) Seq Uent|a| algonthm
Build(L5.V7)
g"}igﬁﬁﬂ’ %1% S Color(Ls., v5)
u 7 ¥l . Color(Lg. vg
Build(Ls. V1) x| Color L7, v7
Color(Lg. vg
Build(Lg, V1)
Blllld%Lm,hg a Build(Lg. V5)
g"}igé“’%}) : B1111d L. Vs e Color(Lg, vg)
‘ ' Build(L12.13) x| Color Lii.v11
Bll}ld$L13,V} Color(Lyy.vy9
Build(Ly4, Vi) 15 [Build (L 14, Vo
g::ﬂgﬁ%“{l% : B1111d£L1r131’§g | Build(Ly 5. Vy
— o~ gmiﬂﬁh?\% : Build&Ll:l;v;% “a | Color(Lys. vy
ML V2) IS Build (Lo, Vs : (’10101} L”’;,”%
Build(Lyg, Vs : e

N Culnrng,vm%

Color(Lyg. v1g

Figure 3: Generalized parallel first fit (16 vertices, 4 processors).

Bug in the Implementation

- JPF found java.lang.NullPointerException
- Previously believed to be fixed

(a) Minimal graph producing the bug . (b) The produced proper coloring.

- Before:
- Color = Get color from a hashtable
- Build color for v,
- After fixing:
- Color=-1
- While (Color ==-1)
- Color = Get color from a hashtable
+ Build color for v;

Other Data Races

- Using gov.nasa.jpf.listener.PreciseRaceDetector

- Were not detected

- Testing with JPF allowed removal of synchronized blocks which
were introduced to address the bug mentioned earlier

- Still not sure if the removal is safe, however, JPF did not detect any
ISsues

Correctness Test Re-visited

- Using JPF to verify proper coloring

for each node nin G
for each neighbour of n
assert color(n) !'= color (neighbour)

- No assertion violations were detected

- Can'’t use too large graphs
- 2000 nodes, 999001 edges => java.lang.StackOverflowError

9 nodes 12 edges, 4 proccesses

statistics
elapsed time: 0:00:03
states: new=1442, visited=3, backtracked=10, end=8
search: maxDepth=1434, constraints=0
choice generators: thread=1435, data=0
heap: gc=1334, new=1221, free=349
instructions: 38592
max memory: 91MB
loaded code: classes=161, methods=2384
20 nodes 190 edges, 20 processes
statistics
elapsed time: 0:00:47
states: new=24802, visited=0, backtracked=7, end=8
search: maxDepth=24794, constraints=0
choice generators: thread=24795, data=0
heap: gc=24247, new=2623, free=1191
instructions: 327855
max memory: 453MB
loaded code: classes=161, methods=2406
40 nodes 400 edges, 20 processes
statistics
elapsed time: 0:04:23
states: new=98266, visited=30, backtracked=37, end=8
search: maxDepth=98258, constraints=0
choice generators: thread=98259, data=0
heap: gc=95888, new=4313, free=2347
instructions: 960172
max memory: 1361MB

loaded code: classes=162, methods=2408

Performance Test Re-visited

Runtime (seconds)

Corrected Parallel FF Runtime on Laptop

4 B 12 16 20 24 28 32 64 128 256 512102415362048

Number of parallel CSP processes

Breakdown

Mrarallel
= Sequentia

4 trials
- Same input as before
- New overhead of while

loop

- Removed overhead of

synched blocks

- Output slightly improved

overall, but it could be
due to chance as well

. R
Bug in JCSP

- Found gov.nasa.jpf.jvm.NotDeadlockedProperty

SEESESS S —————— =========== snapshot #1

- thread

index=1,name=ParallelFirstFit$FFGeneralProcess@a998,status=WAITING,this=org.jcsp.lang.ParThread @667, waiti
ng on: java.lang.Object@679

- call stack:
- atorg.jcsp.lang.Barrier.sync(Barrier.java:33)
- atorg.jcsp.lang.ParThread.run(ParThread.java:41)

- The same bug was observed for a simple single
One20ne Channel, 2-thread reader and writer JCSP
application

Conclusion & Open Questions

- Conclusion
- JPF can be ful for finding issues in CSP
- But misleading when detecting deadlocks due to a bug
- Is it reasonable to keep increasing the size of input and
number of processes for this kind of algorithm?

- The bug was caught using only a 9 node and 12 edges graph
among 4 processes

- Limits on how large the input can get, particular the edges

- Will different search strategies help?
- Currently only the default strategy was tried

