
Concurrent Access of Priority
Queues

Andrew Milner

Overview

• Review

• New Results

• Java Pathfinder Results

Inserting and Deleting

• Issues arise when performing insertions and
deletions at the same time.

• Deadlocks will occur as a result.

Solution

• Nageshwara and Kumar suggest insertions
should be completed from the top down.

• Both procedures now perform actions from
the top down and eliminate the potential for a
deadlock to occur.

Top Down Insertions

• Two values are required in order to predicate the
path the node takes through the heap.
– LastElem: The node location of the last element + 1.
– FullLevel: The node location of the first element at the

deepest level of the heap.

• The different between the two values gives the
path.
– This is possible because the heap is a binary tree.

Top Down Insertions

• The difference between LastElem and
FullLevel is represented as a binary value.

• Each digit in the binary value represents a
direction of travel through the heap.

• 1 indicates a right movement and 0 indicates a
left movement.

Top Down Insertions

1

4 2

6 8 5 10

12 16 14 17 13

FullLevel = 8 LastElem = 12

NodeLoc = (LastElem + 1) – FullLevel = 5
NodeLoc = 101
The path of the node through the heap is right, left, right.

Top Down Insertions

1

4 2

6 8 5 10

12 16 14 17 13

FullLevel = 8 LastElem = 12

3

NodeLoc = (LastElem + 1) – FullLevel = 5
NodeLoc = 101
The path of the node through the heap is right, left, right.

Top Down Insertions

4 2

6 8 5 10

12 16 14 17 13

FullLevel = 8 LastElem = 12

3

1

NodeLoc = (LastElem + 1) – FullLevel = 5
NodeLoc = 101
The path of the node through the heap is right, left, right.

Top Down Insertions

4 2

6 8 5 10

12 16 14 17 13

FullLevel = 8 LastElem = 12

3

1

NodeLoc = (LastElem + 1) – FullLevel = 5
NodeLoc = 101
The path of the node through the heap is right, left, right.

Top Down Insertions

4 2

6 8 3 10

12 16 14 17 13

FullLevel = 8 LastElem = 12

5

1

NodeLoc = (LastElem + 1) – FullLevel = 5
NodeLoc = 101
The path of the node through the heap is right, left, right.

Top Down Insertions

4 2

6 8 3 10

12 16 14 17 13

FullLevel = 8 LastElem = 13

5

1

NodeLoc = (LastElem + 1) – FullLevel = 5
NodeLoc = 101
The path of the node through the heap is right, left, right.

Deleting/Inserting
• Only a small portion of the heap is locked.

• This locking window consists of three nodes for
deletion (the parent and child nodes) and one node for
insertions.

• Anytime a node is accessed it is locked in order to
maintain mutual exclusion.

• FullLevel and LastElem are modified only during the
initialization, after the root has been locked.

Deleting/Inserting

• One issue still exists which prevents insertions
and deletions from working together.

• The deletion operation is forced to wait for an
insertion operation to complete before it can
begin.

Deleting/Inserting

• The problem is solved by associating a status
field with each of the nodes.

Status Code Meaning

PRESENT A key exists at the node.

PENDING An insertion is in progress which will ultimately
insert a key at the node.

WANTED A deleter is waiting for the key.

ABSENT No key is present at the node.

Deleting/Inserting

• When an insertion operation begins the target
status is set to PENDING.

• If the deletion operation is invoked while an
insertion operation is still in progress, the status
of the target is changed to WANTED.

• During each loop, the insertion operation checks
to see if the target node’s status is WANTED.

Implementation

• The implementation of the concurrent heap
was taken from Nageshwara and Kumar.

• Pseudo code was provided in the original
paper.

Design Choices

• Pseudo code presented by Nageshwara and
Kumar uses an integer based implementation.

• Array based heap data structure.
– Parent location is represented by i.
– The children are located at positions i x 2 and

i x 2 + 1

Testing

• The correctness of the algorithm was tested
using a single thread.

• A series of insertion and deletion operation
were performed.

• The heap sizes ranged from 10 to 10,000.

Testing

• Check that the heap property was always
maintained.

• Check for the occurrence of deadlock during
insertion/deletion operations.

• Check if the node status was updated correctly.

Testing

• Initial insertion and random test heap size 5,000.

• Initial deletion test heap size 15,000.

• Values were randomly determined between 1
and the max value.

• Work was split up evenly between threads.

• Each thread test was run 100 times.

Semaphore Insertion Results

80

90

100

110

120

130

140

1 2 4 8 16 20 40 50

Lock Insertion Results

0

5

10

15

20

25

30

35

1 2 4 8 16 20 40 50

Semaphore Deletion Results

135

140

145

150

155

160

165

170

175

180

1 2 4 8 16 20 40 50

Lock Deletion Results

25

30

35

40

45

50

55

60

65

70

1 2 3 4 5 6 7 8

Semaphore Insert/Delete Results

220

230

240

250

260

270

280

290

300

310

1 2 4 8 16 20 40 50

Lock Insert/Delete Results

40

45

50

55

60

65

70

75

80

1 2 4 8 16 20 40 50

Semaphore Random Results

235

240

245

250

255

260

265

270

275

280

285

1 2 4 8 16 20 40 50

Lock Random Results

35

45

55

65

75

85

95

1 2 3 4 5 6 7 8

Comparison of Results

0

50

100

150

200

250

Insert/Delete Insert Delete Random
Serial No Locks Locks Semaphores

Results

• Results did not support the predicated
performance by Nageshwara and Kumar.

• Performed only 1000 operations.

• Results did predict a fall off in performance as
the number of threads increased.

Java Pathfinder

• Testing was completed to verify:
– Deadlock freedom
– Race conditions
– Removal of locks
– Correctness of behaviour

• Execution time was much longer than expected.
– Even for small heaps verification took a very long

time.

Deadlock Free

• Checks were performed for the occurrence of
deadlocks.

• No deadlocks reported!

• The risk of deadlock was unlikely as the code
implementation prevents this.

Inserting and Deleting

1

4 2

6 8 5 10

12 16 14 17 13

Inserting and Deleting

1

4 3

6 8 5 10

12 16 14 17 13 2

• The algorithm attempts to perform and
insertion and deletion at the same time.

Inserting and Deleting

4 3

6 8 2 10

12 16 14 17 13 5

• The top node is deleted but cannot get the
last node until it is unlocked.

Inserting and Deleting

5

4 2

6 8 3 10

12 16 14 17 13

• The last node is unlocked and moved to the top.
The newly inserted node continues to move up
through the heap.

Inserting and Deleting

5

4 2

6 8 3 10

16 14 17 1312

• The two nodes are now deadlocked! Both nodes are
waiting for the other to unlock and the algorithm is now
stuck.

Race Conditions

• Likely the only problem to exist.
– Nodes are not protected correctly.

• Node status codes could be cause a problem.

• Both the deletion and insertion operation
have access to the status.
– Status code is updated when a node is wanted.

Race Conditions

• Race conditions probably will not occur.
– The root and target are locked when a status

update occurs.

• No exceptions were raised by the race
condition listener.

Removal of Locks

• Does the data structure already utilize the
minimum number of locks?

• One lock is associated with each node.
– Global variables are only accessed when the root

is locked.

• Data races were present in the execution.

Removal of Locks

• The test showed that the heap uses the
minimum number of locks.

• The heap cannot function properly without
one lock per node.

Behaviour Correctness

• Several assertion tests were created to check
the data structure.
– Insertion operation
– Deletion operation
– Heap property

Behaviour Correctness

• Insertion tests
– Heap size increased
– Node status updates
– Target location is filled
– Heap property maintained

• No exceptions were raised during execution.

Behaviour Correctness

• Deletion tests
– Heap size decreased
– Root node is removed
– Node status updates
– Heap property maintained

• Again no exceptions were raised.

Behaviour Correctness

• Was the heap property maintained?

• A heap property test was run during the
insertion and deletion loops.
– Also run after the operation was completed.

• No exceptions were raised.

Conclusions

• Execution time was very very very long.

• The data structure functioned as expected.
– Still not as effective as a serial implementation.

Sources

R.V. Nageshwara, V. Kumar. Concurrent Access of Priority Queues.
IEEE Transactions on Computers, 37(12): 1657-1665,
December 1988.

Questions?

	Concurrent Access of Priority Queues
	Overview
	Inserting and Deleting
	Solution
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Implementation
	Design Choices
	Testing
	Testing
	Testing
	Semaphore Insertion Results
	Lock Insertion Results
	Semaphore Deletion Results
	Lock Deletion Results
	Semaphore Insert/Delete Results
	Lock Insert/Delete Results
	Semaphore Random Results
	Lock Random Results
	Comparison of Results
	Results
	Java Pathfinder
	Deadlock Free
	Inserting and Deleting
	Inserting and Deleting
	Inserting and Deleting
	Inserting and Deleting
	Inserting and Deleting
	Race Conditions
	Race Conditions
	Removal of Locks
	Removal of Locks
	Behaviour Correctness
	Behaviour Correctness
	Behaviour Correctness
	Behaviour Correctness
	Conclusions
	Sources
	Slide Number 49

