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Inserting and Deleting

• Issues arise when performing insertions and 
deletions at the same time.

• Deadlocks will occur as a result.



Solution 

• Nageshwara and Kumar suggest insertions 
should be completed from the top down.

• Both procedures now perform actions from 
the top down and eliminate the potential for a 
deadlock to occur.



Top Down Insertions

• Two values are required in order to predicate the 
path the node takes through the heap.
– LastElem: The node location of the last element + 1.
– FullLevel: The node location of the first element at the 

deepest level of the heap.

• The different between the two values gives the 
path.
– This is possible because the heap is a binary tree.



Top Down Insertions

• The difference between LastElem and 
FullLevel is represented as a binary value.

• Each digit in the binary value represents a 
direction of travel through the heap.

• 1 indicates a right movement and 0 indicates a 
left movement.
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Deleting/Inserting
• Only a small portion of the heap is locked.

• This locking window consists of three nodes for 
deletion (the parent and child nodes) and one node for 
insertions.

• Anytime a node is accessed it is locked in order to 
maintain mutual exclusion.

• FullLevel and LastElem are modified only during the 
initialization, after the root has been locked.



Deleting/Inserting

• One issue still exists which prevents insertions 
and deletions from working together.

• The deletion operation is forced to wait for an 
insertion operation to complete before it can 
begin.



Deleting/Inserting

• The problem is solved by associating a status 
field with each of the nodes.

Status Code Meaning

PRESENT A key exists at the node.

PENDING An insertion is in progress which will ultimately
insert a key at the node.

WANTED A deleter is waiting for the key.

ABSENT No key is present at the node.



Deleting/Inserting

• When an insertion operation begins the target 
status is set to PENDING.

• If the deletion operation is invoked while an 
insertion operation is still in progress, the status 
of the target is changed to WANTED.

• During each loop, the insertion operation checks 
to see if the target node’s status is WANTED.  



Implementation 

• The implementation of the concurrent heap 
was taken from Nageshwara and Kumar.

• Pseudo code was provided in the original 
paper.



Design Choices 

• Pseudo code presented by Nageshwara and 
Kumar uses an integer based implementation.

• Array based heap data structure.
– Parent location is represented by i.
– The children are located at positions i x 2 and         

i x 2 + 1



Testing

• The correctness of the algorithm was tested 
using a single thread.

• A series of insertion and deletion operation 
were performed. 

• The heap sizes ranged from 10 to 10,000.



Testing

• Check that the heap property was always 
maintained.

• Check for the occurrence of deadlock during 
insertion/deletion operations.

• Check if the node status was updated correctly.



Testing

• Initial insertion and random test heap size 5,000.

• Initial deletion test heap size 15,000.

• Values were randomly determined between 1 
and the max value.

• Work was split up evenly between threads.

• Each thread test was run 100 times.



Semaphore Insertion Results 
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Semaphore Random Results
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Results

• Results did not support the predicated 
performance by Nageshwara and Kumar. 

• Performed only 1000 operations.

• Results did predict a fall off in performance as 
the number of threads increased.



Java Pathfinder

• Testing was completed to verify:
– Deadlock freedom
– Race conditions
– Removal of locks
– Correctness of behaviour

• Execution time was much longer than expected.
– Even for small heaps verification took a very long 

time.



Deadlock Free

• Checks were performed for the occurrence of 
deadlocks.

• No deadlocks reported!

• The risk of deadlock was unlikely as the code 
implementation prevents this.



Inserting and Deleting
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• The algorithm attempts to perform and 
insertion and deletion at the same time.



Inserting and Deleting
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• The top node is deleted but cannot get the 
last node until it is unlocked.



Inserting and Deleting
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• The last node is unlocked and moved to the top. 
The newly inserted node continues to move up 
through the heap.



Inserting and Deleting

5

4 2

6 8 3 10

16 14 17 1312

• The two nodes are now deadlocked!  Both nodes are 
waiting for the other to unlock and the algorithm is now 
stuck.



Race Conditions

• Likely the only problem to exist.
– Nodes are not protected correctly.

• Node status codes could be cause a problem.

• Both the deletion and insertion operation 
have access to the status.
– Status code is updated when a node is wanted.



Race Conditions

• Race conditions probably will not occur.
– The root and target are locked when a status 

update occurs.

• No exceptions were raised by the race 
condition listener.



Removal of Locks

• Does the data structure already utilize the 
minimum number of locks?

• One lock is associated with each node.
– Global variables are only accessed when the root 

is locked.

• Data races were present in the execution.



Removal of Locks

• The test showed that the heap uses the 
minimum number of locks.

• The heap cannot function properly without 
one lock per node.



Behaviour Correctness

• Several assertion tests were created to check 
the data structure.
– Insertion operation
– Deletion operation
– Heap property



Behaviour Correctness

• Insertion tests
– Heap size increased
– Node status updates
– Target location is filled
– Heap property maintained

• No exceptions were raised during execution.



Behaviour Correctness

• Deletion tests
– Heap size decreased
– Root node is removed
– Node status updates
– Heap property maintained

• Again no exceptions were raised.



Behaviour Correctness

• Was the heap property maintained?

• A heap property test was run during the 
insertion and deletion loops.
– Also run after the operation was completed.

• No exceptions were raised.



Conclusions

• Execution time was very very very long.

• The data structure functioned as expected.
– Still not as effective as a serial implementation.



Sources
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Questions?
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