
Concurrent Access of Priority
Queues

Andrew Milner
February 7 2011

Overview

• Review of terms

• Issues with concurrent access

• Paper/Solutions

• Future work and discussion

What is a Priority Queue?

• A data structure for maintaining a set S of nodes,
each with an associated value called a key.
(Cormen et al)

• Priority queue operations include:
– Enqueue: Add an node to the queue
– Dequeue: Remove the top node from the queue
– SetPriority: Set the priority of an node
– Top: Look at the top node of the queue

What is a Binary Heap?

• A heap is a complete binary tree of depth d, with the
property that the value of the key at any node is less
than the value of the keys at its children (if they
exist). (Nageshwara and Kumar)

• The heap is an important data structure used as a
priority queue in a wide variety of parallel
algorithms.

Inserting into a Heap

1

4 2

6 8 5 10

12 16 14 17 13

• Insertions into a binary heap are preformed
from the bottom up.

Inserting into a Heap

• The newest node is inserted at the next
available node in the heap.

1

4 2

6 8 5 10

12 16 14 17 13 3

Inserting into a Heap

• If the newly inserted node does not satisfy the
heap property, it is moved up through the heap
until it does.

1

4 2

6 8

5

10

12 16 14 17 13

3

Deleting from a Heap

• Deletions from a heap occur from the top
down.

1

4 2

6 8

5

10

12 16 14 17 13

3

Deleting from a Heap

4 2

6 8

5

10

12 16 14 17 13

3

• The top node is removed from the heap and the
most recently inserted node is moved to the top.

Deleting from a Heap

5

4 2

6 8 10

12 16 14 17 13

3

• The top node is removed from the heap and the
most recently inserted node is moved to the top.

Deleting from a Heap

5

4 2

6 8 10

12 16 14 17 13

3

• If the new top node satisfies the heap property then the
deletion call has finished. Otherwise the node is moved
down through the heap to maintain the heap property.

Deleting from a Heap

2

4 5

6 8 10

12 16 14 17 13

3

• If the new top node satisfies the heap property then the
deletion call has finished. Otherwise the node is moved
down through the heap to maintain the heap property.

Deleting from a Heap

2

4 5

6 8 10

12 16 14 17 13

3

• If the new top node satisfies the heap property then the
deletion call has finished. Otherwise the node is moved
down through the heap to maintain the heap property.

Deleting from a Heap

2

4 3

6 8 10

12 16 14 17 13

5

• If the new top node satisfies the heap property then the
deletion call has finished. Otherwise the node is moved
down through the heap to maintain the heap property.

Inserting and Deleting

• Processes access the heap through mutual exclusion.

• Multiple insertions or deletions can be performed at
the same time.

• An issue arises when attempting to perform an
insertion and deletion at the same time.

• This is due to insertions and deletions operations being
performed in opposite directions.

Inserting and Deleting

1

4 2

6 8 5 10

12 16 14 17 13

Inserting and Deleting

1

4 3

6 8 5 10

12 16 14 17 13 2

• The algorithm attempts to perform and
insertion and deletion at the same time.

Inserting and Deleting

4 3

6 8 2 10

12 16 14 17 13 5

• The top node is deleted but cannot get the
last node until it is unlocked.

Inserting and Deleting

5

4 2

6 8 3 10

12 16 14 17 13

• The last node is unlocked and moved to the top.
The newly inserted node continues to move up
through the heap.

Inserting and Deleting

5

4 2

6 8 3 10

16 14 17 1312

• The two nodes are now deadlocked! Both nodes are
waiting for the other to unlock and the algorithm is now
stuck.

My Paper

R.V. Nageshwara, V. Kumar, Concurrent Access of
Priority Queues. IEEE Transactions on Computers,
37(12):1657-1665, Dec. 1988.

Solution

• Nageshwara and Kumar suggest insertions
should be completed from the top down.

• Both procedures now perform actions from
the top down and eliminate the potential for a
deadlock to occur.

Top Down Insertions

• Top down insertions can be performed by predicating
the final location of the node to be inserted.

• Two values are required in order to predicate the path
the node takes through the heap.
– LastElem: The node location of the last element + 1.
– FullLevel: The node location of the first element at the

deepest level of the heap.

• The different between the two values gives the path.
– This is possible because the heap is a binary tree.

Top Down Insertions

• The value obtained by finding the difference
between LastElem and FullLevel is represented as
a binary value.

• Each digit in the binary value tells the algorithm
which direction to travel through the heap.

• 1 indicates a right movement and 0 indicates a
left movement.

Top Down Insertions

1

4 2

6 8 5 10

12 16 14 17 13

FullLevel = 8 LastElem = 12

NodeLoc = (LastElem + 1) – FullLevel = 5
NodeLoc = 101
The path of the node through the heap is right, left, right.

Top Down Insertions

1

4 2

6 8 5 10

12 16 14 17 13

FullLevel = 8 LastElem = 12

3

NodeLoc = (LastElem + 1) – FullLevel = 3
NodeLoc = 101
The path of the node through the heap is right, left, right.

Top Down Insertions

4 2

6 8 5 10

12 16 14 17 13

FullLevel = 8 LastElem = 12

3

1

NodeLoc = (LastElem + 1) – FullLevel = 3
NodeLoc = 101
The path of the node through the heap is right, left, right.

Top Down Insertions

4 2

6 8 5 10

12 16 14 17 13

FullLevel = 8 LastElem = 12

3

1

NodeLoc = (LastElem + 1) – FullLevel = 3
NodeLoc = 101
The path of the node through the heap is right, left, right.

Top Down Insertions

4 2

6 8 3 10

12 16 14 17 13

FullLevel = 8 LastElem = 12

5

1

NodeLoc = (LastElem + 1) – FullLevel = 3
NodeLoc = 101
The path of the node through the heap is right, left, right.

Top Down Insertions

4 2

6 8 3 10

12 16 14 17 13

FullLevel = 8 LastElem = 13

5

1

NodeLoc = (LastElem + 1) – FullLevel = 3
NodeLoc = 101
The path of the node through the heap is right, left, right.

Deleting/Inserting
• Instead of locking the entire heap, only a small portion of the heap

is locked.

• This locking window consists of three nodes for deletion (the parent
and child nodes) and one node for insertions.

• In order to allow for window locking we associate a lock with each
node.

• Anytime a node is accessed it is locked in order to maintain mutual
exclusion.

• FullLevel and LastElem are modified only during the initialization
part of an insertion or deletion call.

Deleting/Inserting
• Although insertion and deletion operation are performed

on the heap from top to bottom, one issue still exists which
prevents them from working together.

• This occurs when the delete operation requires a node that
the insertion operation has not finished placing yet.
– If an insertion operation is in progress, then this last node does

not have a value.
– If delete picks up the key of any other leaf node, then the

resulting heap may become unbalanced.
– If the delete operation waits for the insertion to complete then

concurrency is lost.

Deleting/Inserting

• The problem is solved by associating a status
field with each of the nodes.

Status Code Meaning

PRESENT A key exists at the node.

PENDING An insertion is in progress which will ultimately
insert a key at the node.

WANTED A deleter is waiting for the key.

ABSENT No key is present at the node.

Deleting/Inserting
• When an insertion operation begins the target status is

set to PENDING.

• If the deletion operation is invoked while an insertion
operation is still in progress, the status of the target is
changed to WANTED.

• During each reheapification loop, the insertion
operation checks to see if the target node has changed
its status to WANTED. If this is the case, the node is
moved to the root of the heap and the insertion
operation exits.

Deleting/Inserting

• Example of concurrent deletion and insertion
operations.

4 2

6 8 3 10

12 16 14 17 13 5

1

Deleting/Inserting

• The root node and child nodes are locked.

4 2

6 8 3 10

12 16 14 17 13 5

1

Deletion Lock

Deleting/Inserting

• The top node is removed and the last element
is put at the root of the heap.

4 2

6 8 3 10

12 16 14 17 13

5

Deletion Lock

Deleting/Inserting

• Reheapification is performed in order to
maintain the heap property.

4 5

6 8 3 10

12 16 14 17 13

2

Deletion Lock

Deleting/Inserting

• An insertion operation has started.

4 5

6 8 3 10

12 16 14 17 13

2 7

Deleting/Inserting

• The insertion operation cannot proceed until the
deletion operation unlocks the required nodes.

4 3

6 8 5 10

12 16 14 17 13

2 7

Deleting/Inserting

• The deletion operation has completed and the
insertion operation can continue.

4 3

6 8 5 10

12 16 14 17 13

2

7

Deleting/Inserting

4 3

6 8 5 10

12 16 14 17 13

2

7

• The deletion operation has completed and the
insertion operation can continue.

Deleting and Inserting

4 3

6 8 5 10

12 16 14 17 13

2

7

• The deletion operation has completed and the
insertion operation can continue.

Future Work

• Implement the concurrent priority queue.

• Test the implementation using a range of
insertion and deletion operations.

• Compare performance with a serial priority
queue.

Sources

R.V. Nageshwara, V. Kumar. Concurrent Access of Priority Queues.
IEEE Transactions on Computers, 37(12): 1657-1665,
December 1988.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Second Edition. MIT
Press and McGraw-Hill, 2001.

Questions?

	Concurrent Access of Priority Queues
	Overview
	What is a Priority Queue?
	What is a Binary Heap?
	Inserting into a Heap
	Inserting into a Heap
	Inserting into a Heap
	Deleting from a Heap
	Deleting from a Heap
	Deleting from a Heap
	Deleting from a Heap
	Deleting from a Heap
	Deleting from a Heap
	Deleting from a Heap
	Inserting and Deleting
	Inserting and Deleting
	Inserting and Deleting
	Inserting and Deleting
	Inserting and Deleting
	Inserting and Deleting
	My Paper
	Solution
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Top Down Insertions
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting/Inserting
	Deleting and Inserting
	Future Work
	Sources
	Slide Number 46

