

Concurrent Algorithm to Globally
Balance a Binary Search Tree

Mohammed-Ali Khan

Department of Computer Science and Engineering, York University,
4700 Keele Street, Toronto, M3J 1P3

Ontario, Canada

m23khan@cse.yorku.ca

Presented on: February 09, 2011

mailto:m23khan@cse.yorku.ca

Agenda
● Brief Introduction to Binary Search tree.
● Introduction to article chosen.
● Motivation behind choosing the article.
● Presenting the Algorithms S and P1.
● Sample trace for algorithms.
● Related Work.
● References.
● Questions Period.

Binary Search Tree 101
. What are search trees?
Search trees are data structures which support operations such as
SEARCH, MIN, MAX, PREDECESSOR, SUCCESSOR, INSERT,
DELETE. It can be used as a priority queue and as a dictionary. [1]

. What is a binary search tree?
A search tree organized in a binary tree. In this tree, each node is an
object [1]. For our case, each node will consist of: pointer ROOT
(pointing to ROOT), KEY (the key value of the node), pointer LSON
(pointing to the left subtree), and pointer RSON (pointing to right
subtree) [2].

. Why use binary search tree?
Operations on binary search tree have a worst case running time of
O(n), in other words, linear search time [1]. This is a desirable property
especially as the search tree grows large.

A Binary Search Tree

Article Chosen
For this Assignment, I chose the following article by Dr. Sitharama
Iyengar and Hsi Chang:

S. Sitharama Iyengar and Hsi Chang. Efficient algorithms to globally
balance a binary search tree.
Communications of the ACM, 27(7):695–702, July 1984.

SOURCE: http://www.csc.lsu.edu/~iyengar/

Highlights of Article chosen
. The article starts off with the authors stating a known fact that
“by [...] maintaining a perfectly balanced tree [...] we could [...]
expect an average improvement of approx. 27.85% in search
path length” [2].

. In the article, 3 algorithms are presented (S,P1,P2) to balance
an unbalanced binary search tree. Algorithm S is sequential while
P1 & P2 are parallel. I am focusing on S and P1.

. All algorithms presented - S,P1,P2 have a worst case run time
of O(n) - they run in linear time.

Why this article?
There are several reasons as to why I chose this article:

. Binary search is among the most popular and well known
algorithms - thus it is easy to picture real-world applications.

. Binary search is used throughout different Computer
Science disciplines - operating systems (file system
organization), web engineering, theory of parsing, etc.

. I am a web programmer and I have implemented binary
search routines utilizing hash-maps to implement solutions.

Algorithm SAlgorithm S

COMMENT: globally balance a binary search tree through folding
PROCEDURE BALANCE(ROOT, LSON, RSON, n)
 integer ROOT, n, N, M, ANSL, ANSR;
 integer array LSON, RSON, LINK(1:n);

 COMMENT: The following procedure traverses the original tree and sets up LINK
 PROCEDURE TRAVBIND(T)
 COMMENT: The pointer T points to the next node to be visited.
 integer T;

 IF T = null THEN RETURN;

 TRAVBIND(LSON(T));
 COMMENT: count the sequence of visit
 N = N + 1;
 COMMENT: store the pointer to the Nth node in the Nth element of LINK
 LINK(N) = T;
 TRAVBIND(RSON(T));
 END PROCEDURE

 COMMENT: The following procedure reorganizes a tree by partitioning and folding
 PROCEDURE GROW(LOW, HIGH)
 integer LOW, HIGH;

 COMMENT: MID is the median of a subset bound by LOW and HIGH
 TL is the subtree root in the balanced left half tree,
 TR is the counterpart of TL in the right half tree.
 TL, TR are returned via ANSL, ANSR, respectively.

 integer MID, TL, TR;
 IF LOW > HIGH COMMENT: If null branch THEN
 ANSL, ANSR = null;
 ELSEIF LOW = HIGH COMMENT: Leaf THEN
 ANSL = LINK(LOW), ANSR = LINK(LOW + M);
 LSON(ANSL), RSON(ANSL) = null;
 LSON(ANSR), RSON(ANSR) = null;
 ELSEIF LOW < HIGH COMMENT: Divisible subset THEN
 MID = (⌊ LOW+HIGH)/2 ⌋;
 TL = LINK(MID), TR = LINK(MID+M);
 COMMENT: Form left subtree
 GROW(LOW, MID-1);
 LSON(TL) = ANSL, LSON(TR) = ANSR;
 COMMENT: Form right subtree
 GROW(MID+1, HIGH);
 RSON(TL) = ANSL, RSON(TR) = ANSR;
 ANSL = TL, ANSR = TR;
 END PROCEDURE

 IF n ≤ 2 THEN RETURN;
 COMMENT: Initialize counter
 N = 0;
 TRAVBIND(ROOT);
 COMMENT: Folding value
 M = (⌊ N+1)/2 ⌋;

 COMMENT: new root
 ROOT = LINK(M);

 IF N=2*M THEN COMMENT: N is even
 COMMENT: adjust folding value
 M = M + 1;
 GROW(1, M-2);

 COMMENT: put the node associated with M as a terminal node
 left to its immediate successor
 LSON(LINK(M)), RSON(LINK(M)) = null;
 LSON(LINK(M+1)) = LINK(M);
 ELSE COMMENT: N is odd GROW(1, M-1);

 LSON(ROOT) = ANSL;
 LSON(ROOT) = ANSR;
END PROCEDURE

Algorithm P1

Algorithm P1

COMMENT: build balanced left half- and right half-tree in parallel.
PROCEDURE BALANCE(ROOT,LSON,RSON,n)
{
 integer ROOT, n, N;
 integer array LSON, RSON, LINK[1:n];

 COMMENT: TRAVBIND(T) identical to TRAVBIND(T) in Algorithm S.
 Therefore it is not reproduced here.
 PROCEDURE TRAVBIND(T)
 {...}

 COMMENT: Reorganize a tree by partitioning.
 PROCEDURE GROW(LOW,HIGH){
 integer LOW, HIGH;
 COMMENT: MID is the median of a subset bound by LOW and HIGH,
 T is the root of the balanced subtree reflected by the subset.
 integer MID, T;
 COMMENT: If null branch
 if (LOW > HIGH) {RETURN(null);}
 else if (LOW = HIGH){
 COMMENT: If Leaf.
 T = LINK[LOW];
 LSON[T], RSON[T] = null;
 RETURN(T);}
 else if (LOW < HIGH){
 COMMENT: Divisible set.
 MID = (⌊ LOW+HIGH)/2 ⌋;
 T = LINK[MID];
 COMMENT: Form left and right subtrees in parallel.
 COBEGIN
 LSON[T] = GROW(LOW,MID-1);
 RSON[T] = GROW(MID+1,HIGH);
 COEND;
 RETURN(T);}
 }

 if (n ≤ 2) then return;

 COMMENT: initialize counter.
 N = 0;

 TRAVBIND(ROOT);

 M = (⌊ N+1)/2 ⌋;

 COMMENT: New Root.
 ROOT = LINK[M];

 COMMENT: Balance the left and right halt-trees in parallel.
 COBEGIN
 LSON[ROOT] = GROW(1,M-1);
 RSON[ROOT] = GROW(M+1,N);
 COEND;
}

Related Work
. A quick search on ACM Digital Library website reveals that balancing binary
search trees were a popular area of research starting in 1970’s.

. Even before the publication of Dr. Iyengar and Hsi Chang’s article [2], ACM
had already published a few articles which dealt with balancing
random/unbalanced binary search trees to gain better search performance.

. Before the publication of their article [2], Dr. Iyengar and Hsi Chang had
already published another article regarding algorithms to create and maintain
balanced and threaded binary search trees [3] (published in 1982 but appears
as 1985 on Wiley Online Library website).

. Since the publication of their article regarding balancing binary search trees
in 1984 [2], various articles have been published dealing with the issue of
balancing binary search trees.

References
[1] Cormen et al. Introduction To Algorithms. Cambridge: McGraw-Hill Book
Company, 2004, pp. 253-254.

[2] S. Sitharama Iyengar and Hsi Chang. Efficient algorithms to globally
balance a binary search tree. Communications of the ACM, 27(7):695–702,
July 1984.

[3] S. Sitharama Iyengar and Hsi Chang. Efficient algorithms to create and
maintain balanced and threaded binary search trees. Software: Practice and
Experience, 15(10):925–941, 1985.

QUESTIONS?

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

