PARALLEL FIRST FIT COLORING

CSE 6490A Winter 2011

C $\stackrel{\mathrm{D} \Vdash}{\mathrm{C} \Vdash}$

			2	6		7		1
6	8			7			9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

Overview

- What is graph coloring?
- Applications
- Related work
- Sequential First-Fit
- Parallel First-Fit
- Demo

Graph coloring

- Assignment of "colors" to certain objects in a graph subject to certain constraints
- Vertex coloring
- Edge coloring
- Face coloring (planar)

Vertex coloring

- Coloring vertices of graph such that no two adjacent vertices share same color
- Edge and Face coloring can be transformed into Vertex version
- Edge coloring is vertex coloring of its line graph

Chromatic Number

- X-least number of colors needed to color a graph
- Chromatic number of a complete graph:

$$
x\left(K_{n}\right)=n
$$

- $X(G)=1$ if and only if G is totally disconnected
- $X(G) \leq 4$, for any planar graph France
- The "four-color theorem"
- More later

Applications of Graph Coloring

- Scheduling
- Register Allocation
- Sudoku

Scheduling (1)

- Job scheduling

- Schedule of interfering jobs
- Conflict graph
- Vertices for jobs

- Edges, if jobs can't be executed at the same time
- Colors - time slots

- Aircraft scheduling

- k aircrafts, n flights (k<n)
- 2 flights overlap, same aircraft can't be used
- Conflict graph
- Vertices - flights
- Edges, if flights overlap

- Colors - aircrafts

Scheduling (2)

- Bi-processor tasks

- K processors, n tasks
- Each task has to be executed on pre-assigned processors simultaneously
- Processor can't execute 2 jobs at same time
- E.g. schedule file transfers between processors
- E.g. mutual diagnostic testing of processors
- Graph
- Vertices - processors
- Edge - task between two processors
- Edge coloring - edge appears at most once at a vertex

Scheduling (3)

- Frequency assignment

- Radio stations at locations marked (x, y)
- Frequency assigned to each station
- Interference, must receive different frequencies those that are close
- E.g. frequency assignment of base stations in cellular phone networks
- Solved using a 3-approximation algorithm for coloring unit disk graphs

Scheduling (4)

- Multi-coloring
- Earlier example: jobs to have more than one time slots.
- Pre-coloring extension problem
- unassigned vertices using the minimum number of colors
- List coloring problem
- only in certain time slots or machines available
- Colors are takes from a list of available colors
- minimum sum coloring
- sum of the colors assigned to the vertices is minimal
- E.g. minimize sum of job completion times ->minimize average completion time

Register Allocation

- Compiler optimization
- Frequently used values are kept in fast processor registers
- build interference graph (G) of program
- if variables interfere, can't be assigned to same register
- Given k register, find k-coloring of G
- Uncolored variables are "spilt" into memory
- Recent findings
- Heuristic approach better allocation than optimal (counter-intuitive) (Koes and Goldstein 2006)

Sudoku (1)

- Fill a 9×9 grid with digits so that each column, each row, and each of the nine 3×3 sub-grids that compose the grid contains all of the digits from 1 to 9

| | | | 2 | 6 | | 7 | | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 8 | | | 7 | | | 9 | |
| 1 | 9 | | | | 4 | 5 | | |
| 8 | 2 | | 1 | | | | 4 | |
| | | 4 | 6 | | 2 | 9 | | |
| | 5 | | | | 3 | | 2 | 8 |
| | | 9 | 3 | | | | 7 | 4 |
| | 4 | | | 5 | | | 3 | 6 |
| 7 | | 3 | | 1 | 8 | | | |

4	3	5	2	6	9	7	8	1
6	8	2	5	7	1	4	9	3
1	9	7	8	3	4	5	6	2
8	2	6	1	9	5	3	4	7
3	7	4	6	8	2	9	1	5
9	5	1	7	4	3	6	2	8
5	1	9	3	2	6	8	7	4
2	4	8	9	5	7	1	3	6
7	6	3	4	1	8	2	5	9

Sudoku (2)

- Can be viewed graph coloring, here is how:
- Each one of 81 squares is vertex in graph
- Edge connects every pair of vertices whose squares are buddies
- Each vertex connects to 20 other vertices ($81 \times 20 / 2=810$ edges)
- Same as to find 9-coloring
- Also pre-coloring extension problem

			2	6		7		1
6	8			7			9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

4	3	5	2	6	9	7	8	1
6	8	2	5	7	1	4	9	3
1	9	7	8	3	4	5	6	2
8	2	6	1	9	5	3	4	7
3	7	4	6	8	2	9	1	5
9	5	1	7	4	3	6	2	8
5	1	9	3	2	6	8	7	4
2	4	8	9	5	7	1	3	6
7	6	3	4	1	8	2	5	9

Related Work (1)

- Four-Color Theorem
- Dates back to 1852 to Francis Guthrie

- Any given plane separated into regions may be colored using no more than 4 colors
- Used for political boundaries, states, etc
- Shares common segment (not a point)
- Many failed proofs, until finally proved using a computer (Appel and Haken 1977)
- Started in 1972
- took 1200 hours of computer time
- Finished 4 years later ©

Related Work (2)

- Studied as algorithmic problem since early 1970s
- Minimal vertex coloring algorithm using brute-force search
- Christodes 1971
- Wilf 1984
- Finding minimum coloring: NP-hard
- You can't do it efficiently for large graphs
- Approximations
- guarantee performance at expense of quality
- quality = \# colors used
- E.g. Brelaz 1979
- Good but not minimal solution
- Minimal for certain type of graphs

Related Work (3)

- State of the art
- Pushing tradeoff limits between performance and used number of colors
- Schneider and Wattenhofer 2010
- Algorithm for distributed symmetry breaking

Colors	Time
$\Delta+1$	$O(\log \Delta+\sqrt{\log n})$
$O(\Delta+\log n)$	$O(\log \log n)$
$O\left(\Delta+\log ^{1+1 / \log ^{*} n} n\right)$	$O\left(\log ^{*} n\right)$
$O\left(\Delta \log ^{(c)} n+\log ^{1+1 / c} n\right)$	$O(1)$

Related Work (4)

- Online coloring
- Approximation
- Heuristic algorithms used to produce proper graph coloring which is not necessarily minimal
- Immediately colors vertices of G taken from list without looking ahead or changing colors already assigned
- Any online algorithm lower bounds (Halldórsson and Szegedy 1994):

Related Work (5)

- First-Fit (FF) simplest of all online coloring algorithms
- Assigns smallest possible integer as color to current vertex of G (Gyárfás and Lehel 1988)
- Appears extensively with interval graphs
- Interval graph captures intersection relation for some set of intervals on real line
- E.g. resource requests arrive dynamically in unpredictable order
- FF allocates lowest color to current interval that respects constraints imposed by colored intervals

Related Work (6)

- How bad is FF compared to optimal coloring?
- $\chi_{F F}(G)$ - maximum number of colors used for colorings of G produced by FF for all orderings of vertices of G
- $\chi(G)$ - chromatic number of G
- Performance ratio of FF: $R_{F F}=\chi_{F F}(G) / \chi(G)$
- Recent findings: $5 \leq \chi_{F F}(G) \leq 8$
- Wan et al. (2010) used FF for First-Fit scheduling as an approximation algorithm for minimum latency beaconing schedule

Sequential FF (1)

- Umland (1998) demonstrates a 2-step sequential FF algorithm:
- (1) Build $\left(\boldsymbol{L}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{j}}\right)$: Determine a list L_{i} of all possible colors for v_{i}, i.e. exclude colors already used by vertices $v_{j}, j<i$ adjacent to v_{i}
- L_{i}-- a boolean array (possibility list of v_{i}) with property:
- $L_{i}[k]=$ false $\leftrightarrow \exists v_{j}$ such that $j<i,\left(v_{i}, v_{j}\right) \in E$ and $f\left(v_{j}\right)=k$
- (2) $\boldsymbol{\operatorname { C o l o r }}\left(\boldsymbol{L}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{i}}\right)$: Determine the smallest of all possible colors for v_{i}, i.e. look for the smallest entry in L_{i} where $L_{i}[k]=$ true and assign color k to v_{i}

Sequential FF (2)

```
Algorithm 1 Build \(\left(L_{i}, v_{j}\right)\)
Require: must be executed before \(\operatorname{Color}\left(L_{i}, v_{j}\right), \forall j<i\) and requires \(L_{i}\) initialized
Ensure: \(L_{i}[k]=\) false \(\Leftrightarrow \exists v_{j}\) such that \(j<i,\left(v_{i}, v_{j}\right) \in E, f\left(v_{j}\right)=k\)
    : for all \(n\) in \(v_{i}\).neighbours do
    if n.index \(>v_{i}\).index then
        \(L_{\text {n.index }}\left[v_{i}\right.\). color \(] \leftarrow\) false
    end if
    end for
```

```
Algorithm 2 Color \(\left(L_{i}, v_{i}\right)\)
Require: must be executed before Build \(\left(L_{j}, v_{i}\right), \forall j>i\)
Ensure: \(v_{i}\) has the first color unused by neighbours
    for \(k=0\) to \(L_{i}\).length do
    if \(L_{i}[k]=\) true then
            \(v_{i}\).color \(\leftarrow k\)
            break
        end if
    end for
```


Sequential FF E.g. Step 0

Sequential FF E.g. Step 1

$$
L_{1}=\{t, t, t, t\}, \mathrm{k}=0
$$

Sequential FF E.g. Step 2

$L_{2}=\{t, t, t, t\}, \mathrm{k}=0 \quad L_{4}=\{f, t, t, t\}$
$L_{6}=\{f, t, t, t\}$
$L_{6}=\{f, t, t, t\}$

Sequential FF E.g. Step 3

Sequential FF E.g. Step 4

Sequential FF E.g. Step 5

Sequential FF E.g. Step 6

Sequential FF E.g. Step 7

$L_{2}=\{t, t, t, t\}, \mathrm{k}=0$
$L_{4}=\{f, t, t, t\}, \mathrm{k}=1$

$$
L_{6}=\{f, f, t, t\}, k=2 \quad L_{6}=\{f, f, f, f\}
$$

Sequential FF E.g. Step 8

$L_{2}=\{t, t, t, t\}, \mathrm{k}=0$

$$
L_{4}=\{f, t, t, t\}, \mathrm{k}=1
$$

$$
L_{6}=\{f, f, t, t\}, \mathrm{k}=2
$$

$L_{6}=\{f, f, f, f\}, k=4$

Parallel FF (1)

Step Processor $_{1}$ Processor $_{2}$ Processor $_{3}$ Processor $_{4}$ Processor $_{5}$

1. $\operatorname{Color}\left(L_{1}, v_{1}\right)$

Figure 2: Parallel first fit with 5 vertices and 5 processors.

Parallel FF (2)

- Problem
- Requires same number of cores as there are vertices in G
- Generalized algorithm
- Processors $P_{1}, \ldots, P_{n}(1 \leq \mathrm{N} \leq \mathrm{n}), n$ - vertices
- Every processor colors whole subgraph with n / N instead of single vertex unlike
- Possibility lists prepared on previous processors
- Build $\left(L_{i}, V_{j}\right)$ excludes colors of all vertices
$V_{j}=\left\{v_{1+(j-1) n / N}, \ldots, v_{j n / N}\right\}$ in $\mathrm{j}^{\text {th }}$ subgraph from L_{i} which will be
- Iater by another processor

Generalized Parallel FF (1)

Processor $_{2}$
Processor $_{3}$
Processor $_{4}$

$\operatorname{Color}\left(L_{1}, v_{1}\right)$
$\operatorname{Color}\left(L_{2}, v_{2}\right)$
$\operatorname{Color}\left(L_{3}, v_{3}\right)$
$\operatorname{Color}\left(L_{4}, v_{4}\right)$

Figure 3: Generalized parallel first fit (16 vertices, 4 processors).

Generalized FF (2)

- Rougly 50% of resources not used
- Speedup is not expected to exceed half the number of cores
- Still good for this type of algorithm
- Implementation
- Share graph among cores
- Flow of control over L_{i} (illustrated by arrows) can be implemented by passing tokens from thread to thread
- CSP
- No need to transfer entire list

Umland's Results

Plan(1)

- Umland ran algorithm on SPARC 40 MHz and 128 MB RAM in 1998
- 2000 vertices, 999001 edges
- 1001 colors
- 30 seconds
- Implement generalized parallel algorithm
- Determine graph of comparable size for modern hardware
- Run with different number of threads and observe speedup or improvements in total time
- DEMO TIME!!

Questions?

- [1] Daniel Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22:251-256, April 1979.
- [2] N. Christodes. An algorithm for the chromatic number of a graph. 14(1):38-39, 1971.
- [3] Tom Davis. The mathematics of sudoku. http://geometer.org/mathcircles/sudoku.pdf, 2008. [Online; accessed January 30, 2011].
- [4] Keith Devlin. Last doubts removed about the proof of the four color theorem. http://www.maa.org/devlin/devlin_01_05.html, January 2005. [Online; accessed January 30, 2011].
[5] A. Gyárfás and J. Lehel. On-line and rst t colorings of graphs. Journal of Graph Theory, 12(6):217-227, 1988.
- [6] Magnús M. Halldórsson and Mario Szegedy. Lower bounds for on-line graph coloring. Theoretical Computer Science, 130:163-174, 1994.
- [7] David Koes and Seth Copen Goldstein. An analysis of graph coloring register allocation. Technical Report CMU-CS-06-111, Carnegie Mellon University, March 2006.
- [8] Dániel Marx. Graph coloring problems and their applications in scheduling. Periodica Polytechnica Ser.El. Eng., 48(1-2):5-10, 2004.
- [9] N. Narayanaswamy and R. Babu. A note on rst-t coloring of interval graphs. Order, 25:4-53, 2008.10.1007/s11083-008-9076-6.
- [10] Sriram V. Pemmaraju, Rajiv Raman, and Kasturi Varadarajan. Buer minimization using max-coloring. In Proceedings of the 15th annual ACM-SIAM symposium on Discrete algorithms, SODA '04, pages 562-571, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.
- [11] Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry breaking. In Proceeding of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, PODC '10, pages 257266, New York, NY, USA, 2010. ACM.
- [12] David A. Smith. The First-Fit Algorithm Uses Many Colors on Some Interval Graphs. PhD thesis, Arizona State University, United States, 2010.
- [13] Thomas Umland. Parallel graph coloring using JAVA. In Architectures, Languages and Patterns for Parallel and Distributed Applications, pages 211-218. IOS Press, 1998.
- [14] Peng-Jun Wan, Zhu Wang, Hongwei Du, Scott C.-H. Huang, and Zhiyuan Wan. First-t scheduling for beaconing in multihop wireless networks. In Proceedings of the 29th conference on Information communications, INFOCOM'10, pages 2205-2212, Piscataway, NJ, USA, 2010. IEEE Press.
- [15] Eric W. Weisstein. Four-color theorem. http://mathworld.wolfram.com/Four-ColorTheorem.html. [Online; accessed January 30, 2011].
- [16] Eric W. Weisstein. Interval graph. http://mathworld.wolfram.com/IntervalGraph.html. [Online; accessed January 30, 2011].
- [17] Herbert S. Wilf. Backtrack: An o(1) expected time algorithm for the graph coloring problem. Information Processing Letters, 18(3):119121, 1984.
- [18] Hamid Zarrabi-Zadeh. Online coloring co-interval graphs. Scientia Iranica, 12(6):17, 2009.

