PARALLEL FIRST FIT
COLORING

CSE 6490A Winter 2011 5
Loutfouz Zaman

N O
~
=

O
wJ
Wi N
oA~ |00

..

Overview

- What is graph coloring?
- Applications

- Related work

- Sequential First-Fit

- Parallel First-Fit

- Demo

Graph coloring

- Assignment of "colors" to certain objects in a graph
subject to certain constraints
- Vertex coloring
- Edge coloring
- Face coloring (planar)

Vertex coloring

- Coloring vertices of graph such that no two adjacent
vertices share same color

- Edge and Face coloring can be transformed into Vertex
version

- Edge coloring is vertex coloring of its line graph

Chromatic Number

- X - least number of colors needed to color a graph
- Chromatic number of a complete graph:

X(Ky) =n
- X(G) = 1if and only if G is totally disconnected
- X(G) =4, for any planar graph France

- The “four-color theorem”
- More later

5
Applications of Graph Coloring

- Scheduling
- Register Allocation
- Sudoku

1103|1203 | 1.04 | 204 | 304 | 404 | 5.04 | 604

Preparation and Planning
Develop project proposal \ %

- Approve project proposal
[J J O b S C h ed u I I n q Recruit project team ‘
Development and Test
Specify detail requirements |

- Schedule of interfering jobs oo s

Develop beta version [

. Test beta version
Apply final corrections
- Conflict h
O n I C ra Apprave final version
Implementation
Train users

- Vertices for jobs
- Edges, if jobs can’t be executed at the same time
-+ Colors — time slots

- Aircraft scheduling
- k aircrafts, n flights (k<n)
- 2 flights overlap, same aircraft can’t be used |
- Conflict graph |
- Vertices — flights

- Edges, if flights overlap
- Colors - aircrafts

Scheduling (2)

- Bi-processor tasks

- K processors, n tasks
- Each task has to be executed on pre-assigned processors
simultaneously
- Processor can’t execute 2 jobs at same time
- E.g. schedule file transfers between processors
- E.g. mutual diagnostic testing of processors
- Graph
- Vertices — processors
- Edge — task between two processors
- Edge coloring — edge appears at most once at a vertex

2
Scheduling (3)

- Frequency assignment
- Radio stations at locations marked (x,y)

- Frequency assigned to each station
- Interference, must receive different frequencies those that are close
- E.g. frequency assignment of base stations in cellular phone networks

+ Solved using a 3- aDIOFOXImatlon algorlthm for coloring unit disk
graphs - /IV 3 l/aughan o & @ v ‘

Nildfield

N " I8 = 4 5 n_9_ el
i & i 2 :
e © AIIT BeII/AllantT © RogersT TelusT MlkeT [Mobxllcny : i

. R
Scheduling (4)

- Multi-coloring
- Earlier example: jobs to have more than one time slots.

- Pre-coloring extension problem
- unassigned vertices using the minimum number of colors

- List coloring problem
- only in certain time slots or machines available
- Colors are takes from a list of available colors

- minimum sum coloring

- sum of the colors assigned to the vertices is minimal

- E.g. minimize sum of job completion times ->minimize average
completion time

Register Allocation

- Compiler optimization
- Frequently used values are kept in fast processor
registers
- build interference graph (G) of program
- if variables interfere, can’t be assigned to same register
- Given k register, find k-coloring of G
- Uncolored variables are “spilt” into memory

- Recent findings

- Heuristic approach better allocation than optimal (counter-intuitive)
(Koes and Goldstein 2006)

.
Sudoku (1)

- Fill a 9x9 grid with digits so that each column, each row,
and each of the nine 3x3 sub-grids that compose the grid
contains all of the digits from 1to 9

26 [7 |1 41375[26/9]7]8 1

68 7 9 68 2[5/7 1493
19 45 197|183 4|56 2
82 |1 4 826|190 5|34 7
46 2|9 317/4l6/8 2|91 5

5 3| 28 9ls/1]7/4 3|62 8
93 7 4 5/19(3/2/6|8|7 4

4 5 36 2/48|9/57|136
7 3] 18 716/3|4/1/8[2]5/9

.
Sudoku (2)

- Can be viewed graph coloring, here is how:
- Each one of 81 squares is vertex in graph
- Edge connects every pair of vertices whose squares are buddies
- Each vertex connects to 20 other vertices (81x20/2 = 810 edges)
- Same as to find 9-coloring
- Also pre-coloring extension problem

276! 7] 1|[4]3]5]276/9]7]8 1

68 | 7 9 |[6/82(57 1493

19 | 4|5 1/9/7/8/3 4|5 6 2

82 |1 4 82/6(1 9 5(3|4 7

. | [416 2|9 317/4|6/8 2|19/15
\ 5 3 28] |9/5/1|74 3|62 8

N\ 93 74| [5/19/326(87 4

4 5 36/([2/48/957|136

7 13| 18 7634182509

Related Work (1)

- Four-Color Theorem
- Dates back to 1852 to Francis Guthrie
- Any given plane separated into regions may be colored using no
more than 4 colors
- Used for political boundaries, states, etc
- Shares common segment (not a point)

- Many failed proofs, until finally proved using a computer (Appel and
Haken 1977)
- Started in 1972
+ took 1200 hours of computer time
- Finished 4 years later ©

5
Related Work (2)

- Studied as algorithmic problem since early 1970s

- Minimal vertex coloring algorithm using brute-force search
- Christodes 1971
- Wilf 1984

- Finding minimum coloring: NP-hard
- You can’t do it efficiently for large graphs

- Approximations

- guarantee performance at expense of quality
- quality = # colors used

- E.g. Brelaz 1979
+ Good but not minimal solution
- Minimal for certain type of graphs

.15
Related Work (3)

- State of the art

- Pushing tradeoff limits between performance and used number of
colors

- Schneider and Wattenhofer 2010
- Algorithm for distributed symmetry breaking

Colors Time

A+1 0(logA + \/logn)
O(A +logn) O(loglogn)
O(A + log'*1/log'ny) 0(log*n)

0(Alog©n + log™™v/¢ n) 0(1)

Related Work (4)

- Online coloring
- Approximation

- Heuristic algorithms used to produce proper graph coloring which is
not necessarily minimal

- Immediately colors vertices of G taken from list without looking
ahead or changing colors already assigned

- Any online algorithm lower bounds (Halldorsson and Szegedy
1994).

2n n
>0 > >0 3
log™ 16log™

18
Related Work (5)

- First-Fit (FF) simplest of all online coloring algorithms

- Assigns smallest possible integer as color to current
vertex of G (Gyarfas and Lehel 1988)

- Appears extensively with interval graphs
- Interval graph captures intersection relation for some set of

intervals on real line

- E.g. resource requests arrive dynamically in unpredictable order

- FF allocates lowest color to current interval that respects _constraints
imposed by colored intervals i

..

. N
Related Work (6)

- How bad is FF compared to optimal coloring?

 xrr(G) — maximum number of colors used for colorings of G
produced by FF for all orderings of vertices of G

- x(G) — chromatic number of G
- Performance ratio of FF: Rgr = Xpr(G)/x(G)
- Recent findings: 5 < xzr(G) < 8

- Wan et al. (2010) used FF for First-Fit scheduling as an
approximation algorithm for minimum latency beaconing schedule

20
Sequential FF (1)

- Umland (1998) demonstrates a 2-step sequential FF
algorithm:
- (1) Build(L;,vj): Determine a list L; of all possible colors for v;, i.e.
exclude colors already used by vertices v;,j < i adjacent to v;
- L; -- a boolean array (possibility list of v;) with property:
* Li[k] = false & 3v; such that j < i,(v;,v;) €E and f(v;) =k

- (2) Color(L; v;): Determine the smallest of all possible colors for
v;, i.e. look for the smallest entry in L; where L;[k] = true and
assign color k to v;

. S
Sequential FF (2)

Algorithm 1 Build(L;,v;)

is Ug
Require: must be executed before Color(L;,v;),¥j < i and requires L; initialized
Ensure: L;[k]| = false & Jv; such that j <, (v;,v;) € E, f(v;) =k

1: for all n in v;.neighbours do

2 if n.index > v;.index then

3 L index|vi-color] « false

4 end if

5. end for

Algorithm 2 Color(L;, v;)

Require: must be executed before Build(Lj,v;i), V5 > 1
Ensure: v; has the first color unused by neighbours
1: for k=0 to L;.length do

2: if L;[k] = true then
3: v;.color — k

4 break

5 end if

6: end for

Sequential FF E.g. Step O

"0

4

Sequential FF E.g. Step 1

Sequential FF E.g. Step 2

L, = {t,t t,t},k=0 Ly = {f,t,t,t} Ls = {f,t,t,t} L, = {f,t,t,t}

SRS

4 6 '

L, ={t ¢t t},k=0 L, ={f,t ¢t t} Lo ={f,t t, t} Lo =1{f,t ¢t t}

Sequential FF E.g. Step 3

P

4 6 '

7

4

L2={t't't't}lk=0 L4={f't't't} L6={f;f;t;t} L6={f;f;t;t}

Sequential FF E.g. Step 4

L, ={t, t,t,t},k=0 Ly ={f,t,t,t}, k=1 Ls ={f,f,t, t} L, ={f,f,t t}

ST
/’/*&

4

NN

L, = {t,t, t,t},k=0 L, ={f,t t,tLk=1 Lo ={f.f, t, t} Le ={f.f, t, t}

LY

Sequential FF E.g. Step 5

L, ={t, t,t,t},k=0 Ly ={f,t,t,t}, k=1 Ls ={f,f, t t} k=2 L, ={f,f,t t}

ST
s NG\

r
G

4

-,
o

L2={t't't't}lk=0 L4={f,t,t,t},k=1 L6={f;f;t;t} L6={f'f'f't}

Sequential FF E.g. Step 6

L, ={t, t,t,t},k=0 Ly ={f,t,t,t}, k=1 Ls ={f,f, t t} k=2 L, ={f.f.f, t}

ST |
SEES

r

4

-,
o

L, = {t,t, t,t},k=0 L, ={f,t t,tLk=1 Le ={f.f, t, t},k=2 Lo ={f.f.f t}

. »®
Sequential FF E.g. Step 7

le{trtrt't}lk=0 L3={f,t,t,t},k=1 L5={f,f,t,t},k=2 L7={f,f;f;t},k=3

-,
o

L2={t't't't}lk=0 L4={f,t,t,t},k=1 L6={f,f,t,t},k=2 L6={fififif}

30
Sequential FF E.g. Step 8

le{trtrt't}lk=0 L3={f,t,t,t},k=1 L5={f,f,t,t},k=2 L7={f,f;f;t},k=3

LZ = {t, t' t' t}lk=0 L4- = {fl tr tr t},k =1 L6 = {f'f: t» t}lk=2 L6 = {f’f’f'f}lk=4

. S
Parallel FF (1)

Step Processorg Processorg Processorg Processory Processory
1. Color(Ly.vy)
2. Build(Ly. vy)
3. Build(Ls.vy) Color(Lo.vs)

4. Build(Ly,vy) Build(Lg, vs)

5. DBuild(L;.vy;) Build(L,.vy) Color(Ly. vy)

A v

6. Build(Ls,v2) Build(L4, v3)

N
N
N

7. Build(Ls,v3) Color(Ly,vq)
8. Build(Ls, v,)
9. Color(Ls. vs)

Figure 2: Parallel first fit with 5 vertices and 5 processors.

2
Parallel FF (2)

- Problem
- Requires same number of cores as there are vertices in G

- Generalized algorithm
- Processors Py,...,P,(1 <N < n),n — vertices

- Every processor colors whole subgraph with n/N instead of single
vertex unlike

- Possibility lists prepared on previous processors

- Build(L;,V;) excludes colors of all vertices

Vi = {v14(j=1)n/n - Vjn/n } I j subgraph from L; which will be
- later by another processor

.
Generalized Parallel FF (1)

Processorl Processor2 Processor3 Processor4

Color(Ly,vy)
C[Jl(}rELz, ing
Color(Ly. vy

Color(Ly,vy)

Blllld(Lg, V-l)

guiig%ﬁ, Elg “ Color(Lj,v3)
ui Tl > | Color(Lg. vg
Build(Lg. V1) “a | Color Lq,ve
Color(Lg. vg
Build(Lg. V1)
gm{ggmﬂj S| Build(Lg, Va)
Bu}ld(Lua ;1) © | Build(Lqp. Vo S Color(Lg, vg)
ui 12, V1 | Build L. W © [Color L.u:) T.‘m
- Build(Lo.V5) | Color(Lyy. v
Bll}ld$L13: "1; Color(Lyy, vy
Bu}ld Ly, ;1 | Build L3,
g:ﬂ}g%h }1; : Build&M ; S Build(Lys, Vs
16: V1 N gm%g%n e ; : Build&d:l; ’1% | Color(Ly, vy
ul Ly V2 | Build Ly5. V3 : 6(;1(}&1,15’@?”;
Build(Lyg, V3 ; o

N C()l(}rEL 15, V15

Color(Lig. v

Figure 3: Generalized parallel first fit (16 vertices, 4 processors).

. S
Generalized FF (2)

- Rougly 50% of resources not used
- Speedup is not expected to exceed half the number of cores
- Still good for this type of algorithm

- Implementation
- Share graph among cores

- Flow of control over L; (illustrated by arrows) can be implemented
by passing tokens from thread to thread
- CSP

- No need to transfer entire list

Umland’s Results

Parallel graph coloring (graph with 2000 vertices)

70000 FTT T T T T 171 | | | | | =
4 processors ,@_ &
3 Processors —— -
60000 = 9 DrOCessors A o = .
1 processor &— e
50000 AY=Ss = —
ol
i
40000 = @ _
Runtime [ms] A A
30000 4, A A\ A _
NSOAA AL _ = A
oo - Sgg o 5 eI R e
SR A S o v
10000 ~ _
L Y Y | | | | | |

123456 8910 12 15 20) 25 30 BT 40)
Number of concurrent threads

%
Plan(1)

- Umland ran algorithm on SPARC 40 MHz and 128 MB
RAM in 1998
- 2000 vertices, 999001 edges
- 1001 colors
- 30 seconds

- Implement generalized parallel algorithm

- Determine graph of comparable size for modern hardware

- Run with different number of threads and observe speedup or
Improvements in total time

- DEMO TIME!

Questions?

[1] Daniel Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22:251-256, April 1979.
[2] N. Christodes. An algorithm for the chromatic number of a graph. 14(1):38-39, 1971.
[3] Tom Davis. The mathematics of sudoku. http://geometer.org/mathcircles/sudoku.pdf, 2008. [Online; accessed January 30, 2011].

[4] Keith Devlin. Last doubts removed about the proof of the four color theorem. http://www.maa.org/devlin/devlin_01 05.html, January 2005.
[Online; accessed January 30, 2011].

[5] A. Gyarfas and J. Lehel. On-line and rst t colorings of graphs. Journal of Graph Theory, 12(6):217-227, 1988.
[6] Magnus M. Halldérsson and Mario Szegedy. Lower bounds for on-line graph coloring. Theoretical Computer Science, 130:163-174, 1994.

[7] David Koes and Seth Copen Goldstein. An analysis of graph coloring register allocation. Technical Report CMU-CS-06-111, Carnegie
Mellon University, March 2006.

[8] Daniel Marx. Graph coloring problems and their applications in scheduling. Periodica Polytechnica Ser.El. Eng., 48(1-2):5-10, 2004.
[9] N. Narayanaswamy and R. Babu. A note on rst-t coloring of interval graphs. Order, 25:4-53, 2008.10.1007/s11083-008-9076-6.

[10] Sriram V. Pemmaraju, Rajiv Raman, and Kasturi Varadarajan. Buer minimization using max-coloring. In Proceedings of the 15th annual
ACM-SIAM symposium on Discrete algorithms, SODA '04, pages 562-571, Philadelphia, PA, USA, 2004. Society for Industrial and Applied
Mathematics.

[11] Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry breaking. In Proceeding of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed computing , PODC '10, pages 257266, New York, NY, USA, 2010. ACM.

[12] David A. Smith. The First-Fit Algorithm Uses Many Colors on Some Interval Graphs. PhD thesis, Arizona State University, United
States, 2010.

[13] Thomas Umland. Parallel graph coloring using JAVA. In Architectures, Languages and Patterns for Parallel and Distributed Applications,
pages 211-218. 10S Press, 1998.

[14] Peng-Jun Wan, Zhu Wang, Hongwei Du, Scott C.-H. Huang, and Zhiyuan Wan. First-t scheduling for beaconing in multihop wireless
networks. In Proceedings of the 29th conference on Information communications, INFOCOM'10, pages 2205-2212, Piscataway, NJ, USA,
2010. IEEE Press.

[15] Eric W. Weisstein. Four-color theorem. http://mathworld.wolfram.com/Four-ColorTheorem.html. [Online; accessed January 30, 2011].
[16] Eric W. Weisstein. Interval graph. http://mathworld.wolfram.com/IntervalGraph.html. [Online; accessed January 30, 2011].

[17] Herbert S. Wilf. Backtrack: An o(1) expected time algorithm for the graph coloring problem. Information Processing Letters,
18(3):119121, 1984.

[18] Hamid Zarrabi-Zadeh. Online coloring co-interval graphs. Scientia Iranica, 12(6):17, 2009.

