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Overview 

• What is graph coloring? 

• Applications 

• Related work 

• Sequential First-Fit 

• Parallel First-Fit 

• Demo 

 

2 



Graph coloring 

• Assignment of "colors" to certain objects in a graph 

subject to certain constraints 

• Vertex coloring 

• Edge coloring 

• Face coloring (planar)  
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Vertex coloring 

• Coloring vertices of graph such that no two adjacent 

vertices share same color 

• Edge and Face coloring can be transformed into Vertex 

version 

• Edge coloring is vertex coloring of its line graph 
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Chromatic Number 

•  χ - least number of colors needed to color a graph 

• Chromatic number of a complete graph: 

χ(Kn) = n 

• χ(G) = 1 if and only if G is totally disconnected 

• χ(G) ≤ 4, for any planar graph 

• The “four-color theorem” 

• More later 
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Applications of Graph Coloring  

• Scheduling 

• Register Allocation 

• Sudoku 
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Scheduling (1) 

• Job scheduling 

• Schedule of interfering jobs 

• Conflict graph 

• Vertices for jobs 

• Edges, if jobs can’t be executed at the same time 

• Colors – time slots 

• Aircraft scheduling 

• k aircrafts, n flights (k<n) 

• 2 flights overlap, same aircraft can’t be used 

• Conflict graph 

• Vertices – flights 

• Edges, if flights overlap 

• Colors - aircrafts 
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Scheduling (2) 

• Bi-processor tasks 

• K processors, n tasks 

• Each task has to be executed on pre-assigned processors 

simultaneously 

• Processor can’t execute 2 jobs at same time 

• E.g. schedule file transfers between processors 

• E.g. mutual diagnostic testing of processors 

• Graph 

• Vertices – processors 

• Edge – task between two processors 

• Edge coloring – edge appears at most once at a vertex 
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Scheduling (3) 

• Frequency assignment 

• Radio stations at locations marked (x,y) 

• Frequency assigned to each station 

• Interference, must receive different frequencies those that are close 

• E.g. frequency assignment of base stations in cellular phone networks 

• Solved using a 3-approximation algorithm for coloring unit disk 

graphs 
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Scheduling (4) 

• Multi-coloring 

• Earlier example: jobs to have more than one time slots.  

• Pre-coloring extension problem 

• unassigned vertices using the minimum number of colors 

• List coloring problem 

• only in certain time slots or machines available 

• Colors are takes from a list of available colors 

• minimum sum coloring 

• sum of the colors assigned to the vertices is minimal 

• E.g. minimize sum of job completion times ->minimize average 

completion time 
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Register Allocation 

• Compiler optimization 

• Frequently used values are kept in fast processor 

registers 

• build interference graph (G) of program 

• if variables interfere, can’t be assigned to same register 

• Given k register, find k-coloring of G 

• Uncolored variables are “spilt” into memory 

• Recent findings 

• Heuristic approach better allocation than optimal (counter-intuitive) 

(Koes and Goldstein  2006) 

 

11 



Sudoku (1) 

• Fill a 9x9 grid with digits so that each column, each row, 

and each of the nine 3x3 sub-grids that compose the grid 

contains all of the digits from 1 to 9 
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Sudoku (2) 

• Can be viewed graph coloring, here is how: 

• Each one of 81 squares is vertex in graph 

• Edge connects every pair of vertices whose squares are buddies 

• Each vertex connects to 20 other vertices (81x20/2 = 810 edges) 

• Same as to find 9-coloring 

• Also pre-coloring extension problem 
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Related Work (1) 

• Four-Color Theorem 

• Dates back to 1852 to Francis Guthrie 

• Any given plane separated into regions may be colored using no 

more than 4 colors 

• Used for political boundaries, states, etc 

• Shares common segment (not a point) 

• Many failed proofs, until finally proved using a computer (Appel and 

Haken 1977) 

• Started in 1972 

• took 1200 hours of computer time 

• Finished 4 years later  
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Related Work (2) 

• Studied as algorithmic problem since early 1970s 

• Minimal vertex coloring algorithm using brute-force search 

• Christodes 1971 

• Wilf 1984 

• Finding minimum coloring: NP-hard 

• You can’t do it efficiently for large graphs 

• Approximations 

• guarantee performance at expense of quality 

• quality = # colors used 

• E.g. Brelaz 1979 

• Good but not minimal solution 

• Minimal for certain type of graphs 
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Related Work (3) 

• State of the art 

• Pushing tradeoff limits between performance and used number of 

colors 

• Schneider and Wattenhofer 2010 

• Algorithm for distributed symmetry breaking 
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Related Work (4) 

• Online coloring 

• Approximation 

• Heuristic algorithms used to produce proper graph coloring which is 

not necessarily minimal 

• Immediately colors vertices of G taken from list without looking 

ahead or changing colors already assigned 

• Any online algorithm lower bounds (Halldórsson and Szegedy 

1994): 
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Related Work (5) 

• First-Fit (FF) simplest of all online coloring algorithms 

• Assigns smallest possible integer as color to current 

vertex of G (Gyárfás and Lehel 1988) 

• Appears extensively with interval graphs 

• Interval graph captures intersection relation for some set of 

intervals on real line 

• E.g. resource requests arrive dynamically in unpredictable order 

• FF allocates lowest color to current interval that respects  constraints 

imposed by colored intervals 
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Related Work (6) 
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• How bad is FF compared to optimal coloring? 

• χ𝐹𝐹(𝐺) – maximum number of colors used for colorings of G 

produced by FF for all orderings of vertices of G 

• χ(𝐺) – chromatic number of G 

• Performance ratio of FF: 𝑅𝐹𝐹 = χ𝐹𝐹(𝐺)/χ(𝐺) 

• Recent findings: 5 ≤ χ𝐹𝐹(𝐺) ≤ 8 

• Wan et al. (2010) used FF for First-Fit scheduling as an 

approximation algorithm for minimum latency beaconing schedule 



Sequential FF (1) 

•
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Sequential FF (2) 
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Sequential FF E.g. Step 0 
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Sequential FF E.g. Step 1 
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𝐿1 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿4 = *𝑓, 𝑡, 𝑡, 𝑡+ 𝐿6 = *𝑓, 𝑡, 𝑡, 𝑡+ 𝐿6 = 𝑓, 𝑡, 𝑡, 𝑡  



Sequential FF E.g. Step 2 
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𝐿1 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿4 = *𝑓, 𝑡, 𝑡, 𝑡+ 𝐿6 = *𝑓, 𝑡, 𝑡, 𝑡+ 𝐿2 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿3 = *𝑓, 𝑡, 𝑡, 𝑡+ 𝐿5 = *𝑓, 𝑡, 𝑡, 𝑡+ 𝐿7 = *𝑓, 𝑡, 𝑡, 𝑡+ 

𝐿6 = 𝑓, 𝑡, 𝑡, 𝑡  



Sequential FF E.g. Step 3 
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𝐿1 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿4 = *𝑓, 𝑡, 𝑡, 𝑡+ 𝐿6 = 𝑓, 𝑓, 𝑡, 𝑡  𝐿2 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿3 = 𝑓, 𝑡, 𝑡, 𝑡 , 𝑘 = 1 𝐿5 = *𝑓, 𝑡, 𝑡, 𝑡+ 𝐿7 = *𝑓, 𝑡, 𝑡, 𝑡+ 

𝐿6 = 𝑓, 𝑓, 𝑡, 𝑡  



Sequential FF E.g. Step 4 
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𝐿1 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿4 = 𝑓, 𝑡, 𝑡, 𝑡 , k = 1 𝐿6 = 𝑓, 𝑓, 𝑡, 𝑡  𝐿2 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿3 = 𝑓, 𝑡, 𝑡, 𝑡 , 𝑘 =1 𝐿5 = 𝑓, 𝑓, 𝑡, 𝑡  𝐿7 = *𝑓, 𝑓, 𝑡, 𝑡+ 

𝐿6 = 𝑓, 𝑓, 𝑡, 𝑡  



Sequential FF E.g. Step 5 
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𝐿1 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿4 = 𝑓, 𝑡, 𝑡, 𝑡 , k = 1 𝐿6 = 𝑓, 𝑓, 𝑡, 𝑡  𝐿2 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿3 = 𝑓, 𝑡, 𝑡, 𝑡 , 𝑘 =1 𝐿5 = 𝑓, 𝑓, 𝑡, 𝑡 ,k=2 𝐿7 = *𝑓, 𝑓, 𝑡, 𝑡+ 

𝐿6 = 𝑓, 𝑓, 𝑓, 𝑡  



Sequential FF E.g. Step 6 
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𝐿1 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿4 = 𝑓, 𝑡, 𝑡, 𝑡 , k = 1 𝐿6 = 𝑓, 𝑓, 𝑡, 𝑡 ,k=2 𝐿2 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿3 = 𝑓, 𝑡, 𝑡, 𝑡 , 𝑘 =1 𝐿5 = 𝑓, 𝑓, 𝑡, 𝑡 ,k=2 𝐿7 = *𝑓, 𝑓, 𝑓, 𝑡+ 

𝐿6 = 𝑓, 𝑓, 𝑓, 𝑡  



Sequential FF E.g. Step 7 
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𝐿1 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿4 = 𝑓, 𝑡, 𝑡, 𝑡 , k = 1 𝐿6 = 𝑓, 𝑓, 𝑡, 𝑡 ,k=2 𝐿2 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿3 = 𝑓, 𝑡, 𝑡, 𝑡 , 𝑘 =1 𝐿5 = 𝑓, 𝑓, 𝑡, 𝑡 ,k=2 𝐿7 = 𝑓, 𝑓, 𝑓, 𝑡 , 𝑘 = 3 

𝐿6 = 𝑓, 𝑓, 𝑓, 𝑓  



Sequential FF E.g. Step 8 
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𝐿1 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿4 = 𝑓, 𝑡, 𝑡, 𝑡 , k = 1 𝐿6 = 𝑓, 𝑓, 𝑡, 𝑡 ,k=2 𝐿2 = *𝑡, 𝑡, 𝑡, 𝑡+,k=0 

𝐿3 = 𝑓, 𝑡, 𝑡, 𝑡 , 𝑘 =1 𝐿5 = 𝑓, 𝑓, 𝑡, 𝑡 ,k=2 𝐿7 = 𝑓, 𝑓, 𝑓, 𝑡 , 𝑘 = 3 

𝐿6 = 𝑓, 𝑓, 𝑓, 𝑓 ,k=4 



Parallel FF (1) 
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Parallel FF (2) 
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• Problem 

• Requires same number of cores as there are vertices in G 

• Generalized algorithm 

• Processors 𝑃1,…,𝑃𝑛(1 ≤ N ≤ n),n – vertices 

• Every processor colors whole subgraph with n/N instead of single 

vertex unlike 

• Possibility lists prepared on previous processors 

• 𝐵𝑢𝑖𝑙𝑑 𝐿𝑖 , 𝑉𝑗  excludes colors of all vertices 

 

• later by another processor 

 

 

 

 



Generalized Parallel FF (1) 
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Generalized FF (2) 

•
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Umland’s Results 
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Plan(1) 

• Umland ran algorithm on SPARC 40 MHz and 128 MB 

RAM in 1998 

• 2000 vertices, 999001 edges 

• 1001 colors 

• 30 seconds 

• Implement generalized parallel algorithm 

• Determine graph of comparable size for modern hardware 

• Run with different number of threads and observe speedup or  

improvements in total time 

• DEMO TIME!! 
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