PARALLEL FIRST FIT COLORING

1

Overview

- What is graph coloring?
- Applications
- Related work
- Sequential First-Fit
- Parallel First-Fit
- Demo

Graph coloring

- Assignment of "<u>colors</u>" to certain objects in a graph subject to certain constraints
 - Vertex coloring
 - Edge coloring
 - Face coloring (planar)

Vertex coloring

- Coloring vertices of graph such that no two adjacent vertices share same color
- Edge and Face coloring can be transformed into Vertex version
- Edge coloring is vertex coloring of its line graph

Chromatic Number

- χ least number of colors needed to color a graph
 - Chromatic number of a complete graph:

$$\chi(K_n)=n$$

- $\chi(G) = 1$ if and only if G is totally disconnected
- $\chi(G) \le 4$, for any planar graph
 - The "four-color theorem"
 - More later

Applications of Graph Coloring

- Scheduling
- Register Allocation
- Sudoku

Scheduling (1)

Job scheduling

- Schedule of interfering jobs
- Conflict graph
 - Vertices for jobs
 - Edges, if jobs can't be executed at the same time
 - Colors time slots

Aircraft scheduling

- k aircrafts, n flights (k<n)
- 2 flights overlap, same aircraft can't be used
- Conflict graph
 - Vertices flights
 - Edges, if flights overlap
 - Colors aircrafts

	11.03	12.03	1.04	2.04	3.04	4.04	5.04	6.04
Preparation and Planning								
Develop project proposal								
Approve project proposal		\bullet						
Recruit project team								
Development and Test								
Specify detail requirements								
Develop prototype								
Approve prototype								
Develop beta version								
Test beta version								
Apply final corrections								
Approve final version							\bullet	
Implementation								
Train users								
Roll-out final version								

Scheduling (2)

<u>Bi-processor tasks</u>

K processors, n tasks

- Each task has to be executed on pre-assigned processors simultaneously
- Processor can't execute 2 jobs at same time
 - E.g. schedule file transfers between processors
 - E.g. mutual diagnostic testing of processors
- Graph
 - Vertices processors
 - Edge task between two processors
 - Edge coloring edge appears at most once at a vertex

Scheduling (3)

Frequency assignment

- Radio stations at locations marked (x,y)
- Frequency assigned to each station
 - Interference, must receive different frequencies those that are close
 - E.g. frequency assignment of base stations in cellular phone networks
- Solved using a 3-approximation algorithm for coloring unit disk
 - graphs

Scheduling (4)

<u>Multi-coloring</u>

• Earlier example: jobs to have more than one time slots.

Pre-coloring extension problem

unassigned vertices using the minimum number of colors

List coloring problem

- only in certain time slots or machines available
- Colors are takes from a list of available colors

minimum sum coloring

- sum of the colors assigned to the vertices is minimal
- E.g. minimize sum of job completion times ->minimize average completion time

Register Allocation

Compiler optimization

- Frequently used values are kept in fast processor registers
 - build interference graph (G) of program
 - if variables interfere, can't be assigned to same register
 - Given k register, find k-coloring of G
 - Uncolored variables are "spilt" into memory
- Recent findings
 - Heuristic approach better allocation than optimal (counter-intuitive) (Koes and Goldstein 2006)

Sudoku (1)

 Fill a 9x9 grid with digits so that each column, each row, and each of the nine 3x3 sub-grids that compose the grid contains all of the digits from 1 to 9

			2	6		7		1
6	8			7			9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

4	3	5	2	6	9	7	8	1
6	8	2	5	7	1	4	9	3
1	9	7	8	3	4	5	6	2
8	2	6	1	9	5	3	4	7
3	7	4	6	8	2	9	1	5
9	5	1	7	4	3	6	2	8
5	1	9	3	2	6	8	7	4
2	4	8	9	5	7	1	3	6
7	6	3	4	1	8	2	5	9

Sudoku (2)

- Can be viewed graph coloring, here is how:
 - Each one of 81 squares is vertex in graph
 - Edge connects every pair of vertices whose squares are buddies
 - Each vertex connects to 20 other vertices (81x20/2 = 810 edges)
 - Same as to find 9-coloring
 - Also pre-coloring extension problem

									 	-
			2	6		7		1	4	
6	8			7			9		6	
1	9				4	5			1	
8	2		1				4		8	
		4	6		2	9			3	
	5				3		2	8	9	
		9	3				7	4	5	
	4			5			3	6	2	
7		3		1	8				7	

4	3	5	2	6	9	7	8	1
6	8	2	5	7	1	4	9	3
1	9	7	8	3	4	5	6	2
8	2	6	1	9	5	3	4	7
3	7	4	6	8	2	9	1	5
9	5	1	7	4	3	6	2	8
5	1	9	3	2	6	8	7	4
2	4	8	9	5	7	1	3	6
7	6	3	4	1	8	2	5	9

Related Work (1)

- Four-Color Theorem
 - Dates back to 1852 to Francis Guthrie
 - Any given plane separated into regions may be colored using no more than 4 colors
 - Used for political boundaries, states, etc
 - Shares common segment (not a point)
 - Many failed proofs, until finally proved using a computer (Appel and Haken 1977)
 - Started in 1972
 - took 1200 hours of computer time
 - Finished 4 years later ③

14

Related Work (2)

- Studied as algorithmic problem since early 1970s
- Minimal vertex coloring algorithm using brute-force search
 - Christodes 1971
 - Wilf 1984
- Finding minimum coloring: NP-hard
 - You can't do it efficiently for large graphs
- Approximations
 - guarantee performance at expense of quality
 - quality = # colors used
 - E.g. Brelaz 1979
 - Good but not minimal solution
 - Minimal for certain type of graphs

Related Work (3)

- State of the art
 - Pushing tradeoff limits between performance and used number of colors
- Schneider and Wattenhofer 2010
 - Algorithm for *distributed* symmetry breaking

Colors	Time
$\Delta + 1$	$O(\log \Delta + \sqrt{\log n})$
$O(\Delta + \log n)$	$O(\log \log n)$
$O(\Delta + log^{1+1/log^*n}n)$	$O(log^*n)$
$O(\Delta log^{(c)}n + log^{1+1/c} n)$	0(1)

Related Work (4)

- Online coloring
 - Approximation
 - Heuristic algorithms used to produce proper graph coloring which is not necessarily minimal
 - Immediately colors vertices of G taken from list without looking ahead or changing colors already assigned
 - Any online algorithm lower bounds (Halldórsson and Szegedy 1994):

Deterministic	Randomized
$\geq O\left(\frac{2n}{\log^{n^2}}\right)$	$\geq 0\left(\frac{n}{16log^{n^2}}\right)$

Related Work (5)

- First-Fit (FF) simplest of all online coloring algorithms
- Assigns smallest possible integer as color to current vertex of G (Gyárfás and Lehel 1988)
- Appears extensively with *interval graphs*
 - Interval graph captures intersection relation for some set of intervals on real line
 - E.g. resource requests arrive dynamically in unpredictable order
 - FF allocates lowest color to current interval that respects constraints imposed by colored intervals

Related Work (6)

- How bad is FF compared to optimal coloring?
 - *χ_{FF}(G)* maximum number of colors used for colorings of G
 produced by FF for all orderings of vertices of G
 - $\chi(G)$ chromatic number of G
 - Performance ratio of FF: $R_{FF} = \chi_{FF}(G)/\chi(G)$
 - Recent findings: $5 \le \chi_{FF}(G) \le 8$
 - Wan *et al.* (2010) used FF for First-Fit scheduling as an approximation algorithm for minimum latency beaconing schedule

Sequential FF (1)

- Umland (1998) demonstrates a 2-step sequential FF algorithm:
 - (1) Build(L_i, v_j): Determine a list L_i of all possible colors for v_i, i.e. exclude colors already used by vertices v_j, j < i adjacent to v_i
 - L_i -- a boolean array (possibility list of v_i) with property:

• $L_i[k] = false \leftrightarrow \exists v_j \text{ such that } j < i, (v_i, v_j) \in E \text{ and } f(v_j) = k$

(2) Color(L_i, v_i): Determine the smallest of all possible colors for v_i, i.e. look for the smallest entry in L_i where L_i[k] = true and assign color k to v_i

Sequential FF (2)

Algorithm 1 $\text{Build}(L_i, v_j)$

Require: must be executed before $Color(L_i, v_j), \forall j < i$ and requires L_i initialized **Ensure:** $L_i[k] = false \Leftrightarrow \exists v_j$ such that $j < i, (v_i, v_j) \in E, f(v_j) = k$

- 1: for all n in v_i .neighbours do
- 2: if $n.index > v_i.index$ then

3:
$$L_{n.index}[v_i.color] \leftarrow false$$

- 4: **end if**
- 5: end for

Algorithm 2 $Color(L_i, v_i)$

Require: must be executed before $Build(L_j, v_i), \forall j > i$ **Ensure:** v_i has the first color unused by neighbours

- 1: for k = 0 to L_i .length do
- 2: if $L_i[k] = true$ then
- 3: $v_i.color \leftarrow k$
- 4: break
- 5: end if
- 6: end for

 $L_1 = \{t, t, t, t\}, k=0$

 $L_4 = \{ f, t, t, t \} \qquad \qquad L_6 = \{ f, t, t, t \} \qquad \qquad L_6 = \{ f, t, t, t \}$

 $L_2 = \{t, t, t, t\}, k=0 \qquad L_4 = \{f, t, t, t\} \qquad L_6 = \{f, t, t, t\} \qquad L_6 = \{f, t, t, t\}$

24

 $L_{2} = \{t, t, t, t\}, k=0 \qquad L_{4} = \{f, t, t, t\} \qquad L_{6} = \{f, f, t, t\} \qquad L_{6} = \{f, f, t, t\} \qquad L_{6} = \{f, f, t, t\}$

 $L_2 = \{t, t, t, t\}, k=0 \qquad L_4 = \{f, t, t, t\}, k=1 \qquad L_6 = \{f, f, t, t\} \qquad L_6 = \{f, f, t, t\}$

 $L_2 = \{t, t, t, t\}, k=0 \qquad L_4 = \{f, t, t, t\}, k=1 \qquad L_6 = \{f, f, t, t\} \qquad L_6 = \{f, f, f, t\}$

27

 $L_2 = \{t, t, t, t\}, k=0 \qquad L_4 = \{f, t, t, t\}, k=1 \qquad L_6 = \{f, f, t, t\}, k=2 \qquad L_6 = \{f, f, f, t\}$

 $L_2 = \{t, t, t, t\}, k=0 \qquad L_4 = \{f, t, t, t\}, k=1 \qquad L_6 = \{f, f, t, t\}, k=2 \qquad L_6 = \{f, f, f, f\}$

29

 $L_2 = \{t, t, t, t\}, k=0 \qquad L_4 = \{f, t, t, t\}, k=1 \qquad L_6 = \{f, f, t, t\}, k=2 \qquad L_6 = \{f, f, f, f\}, k=4$

30

Parallel FF (1)

Figure 2: Parallel first fit with 5 vertices and 5 processors.

Parallel FF (2)

- Problem
 - Requires same number of cores as there are vertices in G
- Generalized algorithm
 - Processors $P_1, \dots, P_n (1 \le N \le n), n$ vertices
 - Every processor colors whole subgraph with n/N instead of single vertex unlike
 - Possibility lists prepared on previous processors
 - $Build(L_i, V_j)$ excludes colors of *all* vertices $V_j = \{v_{1+(j-1)n/N}, ..., v_{jn/N}\}$ in jth subgraph from L_i which will be
 - later by another processor

Generalized Parallel FF (1)

Figure 3: Generalized parallel first fit (16 vertices, 4 processors).

Generalized FF (2)

- Rougly 50% of resources not used
 - Speedup is not expected to exceed half the number of cores
 - Still good for this type of algorithm
- Implementation
 - Share graph among cores
 - Flow of control over L_i (illustrated by arrows) can be implemented by passing tokens from thread to thread
 - CSP
 - No need to transfer entire list

Umland's Results

Plan(1)

- Umland ran algorithm on SPARC 40 MHz and 128 MB RAM in 1998
 - 2000 vertices, 999001 edges
 - 1001 colors
 - 30 seconds
- Implement generalized parallel algorithm
- Determine graph of comparable size for modern hardware
- Run with different number of threads and observe speedup or improvements in total time
- DEMO TIME!!

Questions?

- [1] Daniel Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22:251-256, April 1979.
- [2] N. Christodes. An algorithm for the chromatic number of a graph. 14(1):38-39, 1971.
- [3] Tom Davis. The mathematics of sudoku. http://geometer.org/mathcircles/sudoku.pdf, 2008. [Online; accessed January 30, 2011].
- [4] Keith Devlin. Last doubts removed about the proof of the four color theorem. http://www.maa.org/devlin/devlin_01_05.html, January 2005. [Online; accessed January 30, 2011].
- [5] A. Gyárfás and J. Lehel. On-line and rst t colorings of graphs. Journal of Graph Theory, 12(6):217-227, 1988.
- [6] Magnús M. Halldórsson and Mario Szegedy. Lower bounds for on-line graph coloring. Theoretical Computer Science, 130:163-174, 1994.
- [7] David Koes and Seth Copen Goldstein. An analysis of graph coloring register allocation. Technical Report CMU-CS-06-111, Carnegie Mellon University, March 2006.
- [8] Dániel Marx. Graph coloring problems and their applications in scheduling. Periodica Polytechnica Ser.El. Eng., 48(1-2):5-10, 2004.
- [9] N. Narayanaswamy and R. Babu. A note on rst-t coloring of interval graphs. Order, 25:4-53, 2008.10.1007/s11083-008-9076-6.
- [10] Sriram V. Pemmaraju, Rajiv Raman, and Kasturi Varadarajan. Buer minimization using max-coloring. In Proceedings of the 15th annual ACM-SIAM symposium on Discrete algorithms, SODA '04, pages 562-571, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.
- [11] Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry breaking. In Proceeding of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, PODC '10, pages 257266, New York, NY, USA, 2010. ACM.
- [12] David A. Smith. The First-Fit Algorithm Uses Many Colors on Some Interval Graphs. PhD thesis, Arizona State University, United States, 2010.
- [13] Thomas Umland. Parallel graph coloring using JAVA. In Architectures, Languages and Patterns for Parallel and Distributed Applications, pages 211-218. IOS Press, 1998.
- [14] Peng-Jun Wan, Zhu Wang, Hongwei Du, Scott C.-H. Huang, and Zhiyuan Wan. First-t scheduling for beaconing in multihop wireless networks. In Proceedings of the 29th conference on Information communications, INFOCOM'10, pages 2205-2212, Piscataway, NJ, USA, 2010. IEEE Press.
- [15] Eric W. Weisstein. Four-color theorem. http://mathworld.wolfram.com/Four-ColorTheorem.html. [Online; accessed January 30, 2011].
- [16] Eric W. Weisstein. Interval graph. http://mathworld.wolfram.com/IntervalGraph.html. [Online; accessed January 30, 2011].
- [17] Herbert S. Wilf. Backtrack: An o(1) expected time algorithm for the graph coloring problem. Information Processing Letters, 18(3):119121, 1984.
- [18] Hamid Zarrabi-Zadeh. Online coloring co-interval graphs. Scientia Iranica, 12(6):17, 2009.