
A Symmetric Concurrent B-Tree
Algorithm

Article: Vladimir Lanin and Dennis Shasha
Presentation: Elise Cormie

Introduction: B-trees

• Search trees with order t.
• Support search, insert, and delete.
• Except root, all nodes contain between t and 2t keys.
• Each node has between 0 and 2t+1 children. Links to

children are located to either side of each key.
• All leaves are at the same depth.
• Use: Minimize disk accesses by making leaves store a

many keys, which are all loaded together into memory.
• Generally used to store large amounts of data.

Example: Tree with order 2

• Minimum keys per non-root node: 2.
• Maximum: 4

• Each key can have a child to its right and to its left.
• The left subtree contains only keys smaller than the

parent key. The right contains only larger keys.

Insertion and Split
• Insertion finds the leaf node where a key should be

located, and splits full nodes as necessary to allow new
elements to be inserted.

• Split - Ascending version: Starts at a full leaf node where
a new element should be placed, and propagates up the
tree.
– Most common algorithm (?).

• Split - Descending version: Executed on any full node
insertion encounters while descending the tree,
guaranteeing it will be able to insert the new element
once it finds the correct leaf.
– Does not need to follow any child→parent links. More

efficient.
– Maximum number of keys must be odd instead of even (min

t-1, max 2t-1) so each full node has a median to split around.

Insertion/Split (Ascending)
Insert 9…

Have reached
leaf node,
must insert
here.

Split propagates upwards through
full nodes.

Deletion

• Similar to insertion, a bit more complicated.
• Different cases for internal/leaf nodes,

deleting a key that separates two children,
deleting a key in a node that already has the
minimum number of keys, merging nodes, etc.

• Can be done either while ascending (from the
node that a key has been deleted from), or
descending (to find that node).

B+ tree

• Like a B-tree, except all actual keys and data
are stored in leaves.

• Interior nodes only contain keys, to index the
keys in the leaf nodes.

Approaches to Parallelization

1. Writers exclusively lock entire subtrees, starting
at the highest node that might be modified.

2. “Optimistic” writers place read-locks on the
subtrees they descend, assuming they will be
able to insert/delete without propagating
change up the tree. They place an exclusive lock
only on one node they want to modify. If they
end up having to propagate changes upwards to
other nodes, they go back and re-do the descent
using exclusive locks.

3. Using proactive, descending approach to
insert/delete, writers can exclusively lock
nodes they need to modify and then release
them as they descend further, knowing they
won’t have to modify them again. (Less of
the tree is locked at once.)

4. Add extra links to allow data to be found
even when the tree is in an invalid or
changed state. Fewer locks then need to be
used.

B-link Trees

• The algorithm in this article is based on one by Lehman
& Yao, where “rightlinks” are introduced to B+ trees,
creating “B-link” trees.

• Data should only move to the right in a B-link tree.
• Data being searched for can end up to the right of

where it is expected while the tree is being modified.
• Rightlinks link each node in a level, from left to right.

So if an element is not found where it is expected, the
search can continue in the next node of the level.

• This allows fewer locks to be used, and removes the
need to lock entire subtrees.

Split leaf to insert 3. Concurrently, search for 4.

4 ≤ 4, so go to left child and
search for 4.

Meanwhile, the node has
been split. This node no
longer contains 4!

Follow rightlink and
continue searching. 4 is
found.

The Article
• Uses the concept of adding extra links from Lehman &

Yao.
• Lehman & Yao’s algorithm did not include concurrent

merge operations, so their tree would end up
unbalanced unless the entire tree was locked while
exclusive balancing procedures were performed.

• In this article, Lanin & Shasha use the linking idea, but
add another type of link (“outlink”) and concurrent
merging procedures. Their algorithm thus keeps the b-
tree balanced.

• Their simulations show it to be an improvement on the
previous algorithms mentioned.

	A Symmetric Concurrent B-Tree Algorithm
	Introduction: B-trees
	Example: Tree with order 2
	Slide Number 4
	Insertion and Split
	Slide Number 6
	Deletion
	B+ tree
	Approaches to Parallelization
	Slide Number 10
	B-link Trees
	Slide Number 12
	The Article

