
A Symmetric Concurrent B-tree
Algorithm

JPF Testing of Java Implementation

Notes on JPF Testing
 Generally, JPF concluded within 3-4 minutes, or else ran

out of memory after 3.5 hours.
 If I say “JPF ran too long,” it means that it ran for long

enough that it didn’t seem like it would finish without
running out of memory, so instead of waiting 3 hours to
see what happened, I stopped it and tried something
different.

 In some cases, using fewer threads actually ran longer
than more threads.
 For instance, doing the tests with delete or insert only ran too

long with 1 thread, but the same tests on 2 & 3 threads
finished quickly.

Code Omissions

 JPF took too long to run on the code used for
performance testing.
 I.e. ran for hours, then ran out of memory.

 Things used only for performance testing were removed
 E.g. timing, CyclicBarriers

 A while loop that could potentially run forever was
turned into a for loop.

 The Critic was removed.
 Size of tree nodes set to 2, so re-balancing happens with

very few elements.

Code Modifications Specific to JPF

 Preparation steps, before threads are actually run, were
made atomic
 E.g. creating the threads and pre-inserting some values into the

tree before actually running the test threads.
 Used Verify.beginAtomic(), Verify.endAtomic().
 Big improvement in JPF run time.

 Verify.getInt() was attempted for randomly-selected
values, but took too long even when only a small number
of integers, eg 5, were possible choices.

 Assert statements were added (details later)

Used For All Tests
 Listeners:
 PreciseRaceDetector

 Properties:
 NotDeadlockedProperty
 NoUncaughtExceptionsProperty

Configuration Testing
 Errors in the various properties being tested for (false

assertions, NoDeadlockProperty, data races) were
purposely added to the code.

 Errors added were detected immediately.

Test Method 1: All Thread Types
 Number of insert, search and delete threads are chosen.
 Each search thread is randomly assigned an odd number

to search for, which is added to the tree.
 Search should always return true.
 Assert statement is used so that JPF will detect an error if a

search returns false.
 Each remove thread is assigned a random even number to

remove.
 This number is added to the tree, so that the remove

actually occurs.
 Each insert thread is given a random even number to

insert.

Results
 Various combinations of 4 threads or fewer, including at

least one search thread (since search errors are the most
important), were used.

 Only one combination of 4 threads finished, after 2.5
hours, without running out of memory.
 1 insert, 2 remove, 1 search: no errors

 2 threads always finished with no errors.
 About half of the combinations of 3 threads finished with

no errors. The others ran out of memory.

Test Method 2: Delete Only
 A number of deleting threads is chosen.
 The threads are each given a random, unique key to

delete.
 These keys are added to the tree in advance.
 The delete operation returns a boolean indicating

whether the deletion happened or not.
 Assert is used on this value. (Should be true.)

Results
 Errors were found at the assertion statement: The

remove operation returned false when it should have
returned true.

 The tree, upon examination, did have the values removed.
 Error therefore seemed to be in the return value.
 The error did not always occur when more values were

added to the tree in advance.

…results continued
 This return value is passed back from a very simple method

(where keys is a Vector<Integer>, and a lock is already held on
the node containing it):

 Making this method synchronized did not fix the problem.
 This should be possible to debug with ExecTracker.
 I tried and couldn’t figure it out...

public boolean remove_key(int value) {
if (keys.contains(value)) {

keys.removeElement(value);
return true;

} else {
return false;

}
}

Test 3: Insert Only
 A number of insert threads are chosen.
 The threads are each given a random, unique number to

insert.
 The insert operation returns a boolean indicating

whether the removal happened or not.
 Assert is used on this value. (Should be true.)

Results
 Tests concluded on 2 and 3 threads with no errors.
 Tests ran too long when only 1 thread was used. (Why?)

Conclusions
 Only one error was found in the code.
 The error found is not very serious.
 It is probably implementation-specific.
 Might be fixed if I had more time to learn how to interpret the

output of ExecTracker.

 Using more than a couple threads at once, and thoroughly
testing with Verify.getInt(), took too long and caused JPF
to run out of memory. So, there may be undetected
errors.

 The code appears fairly reliable.

But...
 This morning, after writing this presentation, I tried using

the BFSHeuristic search strategy on a combination of
threads (1 of each type) that had run out of memory
using other searches.

 It quickly found a bad error: A search for something that
was in the tree returned false.

 The code isn’t as great as it seemed. Though it’s
probably good that it took so long to find a serious error.

 Observation: In all the tests I did, either JPF found an
error almost immediately, or else it concluded or ran for
hours without finding anything.

	A Symmetric Concurrent B-tree Algorithm
	Notes on JPF Testing
	Code Omissions
	Code Modifications Specific to JPF
	Used For All Tests
	Configuration Testing
	Test Method 1: All Thread Types
	Results
	Test Method 2: Delete Only
	Results
	…results continued
	Test 3: Insert Only
	Results
	Conclusions	
	But...

