
A Symmetric Concurrent B-tree
Algorithm

JPF Testing of Java Implementation

Notes on JPF Testing
 Generally, JPF concluded within 3-4 minutes, or else ran

out of memory after 3.5 hours.
 If I say “JPF ran too long,” it means that it ran for long

enough that it didn’t seem like it would finish without
running out of memory, so instead of waiting 3 hours to
see what happened, I stopped it and tried something
different.

 In some cases, using fewer threads actually ran longer
than more threads.
 For instance, doing the tests with delete or insert only ran too

long with 1 thread, but the same tests on 2 & 3 threads
finished quickly.

Code Omissions

 JPF took too long to run on the code used for
performance testing.
 I.e. ran for hours, then ran out of memory.

 Things used only for performance testing were removed
 E.g. timing, CyclicBarriers

 A while loop that could potentially run forever was
turned into a for loop.

 The Critic was removed.
 Size of tree nodes set to 2, so re-balancing happens with

very few elements.

Code Modifications Specific to JPF

 Preparation steps, before threads are actually run, were
made atomic
 E.g. creating the threads and pre-inserting some values into the

tree before actually running the test threads.
 Used Verify.beginAtomic(), Verify.endAtomic().
 Big improvement in JPF run time.

 Verify.getInt() was attempted for randomly-selected
values, but took too long even when only a small number
of integers, eg 5, were possible choices.

 Assert statements were added (details later)

Used For All Tests
 Listeners:
 PreciseRaceDetector

 Properties:
 NotDeadlockedProperty
 NoUncaughtExceptionsProperty

Configuration Testing
 Errors in the various properties being tested for (false

assertions, NoDeadlockProperty, data races) were
purposely added to the code.

 Errors added were detected immediately.

Test Method 1: All Thread Types
 Number of insert, search and delete threads are chosen.
 Each search thread is randomly assigned an odd number

to search for, which is added to the tree.
 Search should always return true.
 Assert statement is used so that JPF will detect an error if a

search returns false.
 Each remove thread is assigned a random even number to

remove.
 This number is added to the tree, so that the remove

actually occurs.
 Each insert thread is given a random even number to

insert.

Results
 Various combinations of 4 threads or fewer, including at

least one search thread (since search errors are the most
important), were used.

 Only one combination of 4 threads finished, after 2.5
hours, without running out of memory.
 1 insert, 2 remove, 1 search: no errors

 2 threads always finished with no errors.
 About half of the combinations of 3 threads finished with

no errors. The others ran out of memory.

Test Method 2: Delete Only
 A number of deleting threads is chosen.
 The threads are each given a random, unique key to

delete.
 These keys are added to the tree in advance.
 The delete operation returns a boolean indicating

whether the deletion happened or not.
 Assert is used on this value. (Should be true.)

Results
 Errors were found at the assertion statement: The

remove operation returned false when it should have
returned true.

 The tree, upon examination, did have the values removed.
 Error therefore seemed to be in the return value.
 The error did not always occur when more values were

added to the tree in advance.

…results continued
 This return value is passed back from a very simple method

(where keys is a Vector<Integer>, and a lock is already held on
the node containing it):

 Making this method synchronized did not fix the problem.
 This should be possible to debug with ExecTracker.
 I tried and couldn’t figure it out...

public boolean remove_key(int value) {
if (keys.contains(value)) {

keys.removeElement(value);
return true;

} else {
return false;

}
}

Test 3: Insert Only
 A number of insert threads are chosen.
 The threads are each given a random, unique number to

insert.
 The insert operation returns a boolean indicating

whether the removal happened or not.
 Assert is used on this value. (Should be true.)

Results
 Tests concluded on 2 and 3 threads with no errors.
 Tests ran too long when only 1 thread was used. (Why?)

Conclusions
 Only one error was found in the code.
 The error found is not very serious.
 It is probably implementation-specific.
 Might be fixed if I had more time to learn how to interpret the

output of ExecTracker.

 Using more than a couple threads at once, and thoroughly
testing with Verify.getInt(), took too long and caused JPF
to run out of memory. So, there may be undetected
errors.

 The code appears fairly reliable.

But...
 This morning, after writing this presentation, I tried using

the BFSHeuristic search strategy on a combination of
threads (1 of each type) that had run out of memory
using other searches.

 It quickly found a bad error: A search for something that
was in the tree returned false.

 The code isn’t as great as it seemed. Though it’s
probably good that it took so long to find a serious error.

 Observation: In all the tests I did, either JPF found an
error almost immediately, or else it concluded or ran for
hours without finding anything.

	A Symmetric Concurrent B-tree Algorithm
	Notes on JPF Testing
	Code Omissions
	Code Modifications Specific to JPF
	Used For All Tests
	Configuration Testing
	Test Method 1: All Thread Types
	Results
	Test Method 2: Delete Only
	Results
	…results continued
	Test 3: Insert Only
	Results
	Conclusions	
	But...

