
  

Concurrent Algorithm to Globally 
Balance a Binary Search Tree

Mohammed-Ali Khan

Department of Computer Science and Engineering, York University,
4700 Keele Street, Toronto, M3J 1P3

Ontario, Canada

m23khan@cse.yorku.ca

Presented on: March 14, 2011

mailto:m23khan@cse.yorku.ca


  

Agenda

● Brief review of Balancing Algorithms (S and P1)
● Thread synchronization - synchronized method
● Performance Analysis (Average Run Time)
● Conclusion



  

A Binary Search Tree



  

Balancing Binary Tree
●  Using a sequential algorithm (algorithm S) or a 
parallel algorithm (algorithm P1), balance a given 
binary search tree.



  

Sequential Algorithm S
● Utilizes the concept of 'folding' to simultaneously balance the 
left and right sub tree.

● In case of tree with odd # of nodes, folding value is the median 
of ordered set of key values (after tree traversal).

● In case of tree with even # of nodes, the folding value becomes 
(# of nodes / 2) + 1.

● Key idea is that if we know the position of element K in left 
subtree, we can determine position of counterpart element K+M 
in right subtree. 



  

Parallel Algorithm P1

● Just as in sequential algorithm S, the balancing procedure 
first defines the root of the balanced tree equal to the 
median element of the set of nodes.

● The set of nodes to be balanced are split into two subsets 
and each forms a balanced subtree (left and right) 
concurrently. The process is recursive in nature in that the 
process continues (splitting/balancing concurrently) until 
there are no more elements left to split.



  

Visualizing Concurrency for P1



  

Thread Synchronization for P1
● Simply tag all methods containing thread sensitive code with the 
keyword synchronized.

● Since every object in Java has one built-in lock and built-in 
condition variable, for every method tagged 'synchronized', 
whenever it is called, the calling object owns the lock of the 
'synchronized' method until it returns from the method and 
therefore unlocks the method.

●If a synchronized method is called but another object has 
already acquired a lock on it, the caller is automatically 
deactivated and it needs to wait until the object which owns the 
lock on synchronized method has released it.

●Synchronized keyword ensures that the lock/try/finally/unlock 
processes are automatically implemented for the built-in lock.



  

Thread Synchronization for P1

Operational Flow...

● There are 3 parts for using synchronized methods for 
concurrency. As always, we use a class object which 
implements Runnable interface to provide us with the run() 
method and to execute thread-sensitive code. 

● However, since I needed to retrieve data from the 
Runnable object, Java has another interface called 'Callable' 
which implements a call() method which can return values.



  

Thread Synchronization technique
Part 1:
Tag the method containing thread sensitive code with the 
keyword 'synchronized' and add keyword 'volatile' to any 
instance variable in that class which would be shared 
among threads.
i.e...

public class AlgorithmP1{

  public AlgorithmP1{counter = 0;}

  public synchronized int GROW() {counter++;}
  
  private volatile int counter; }



  

Thread Synchronization technique
Part 2:
Create an object which implements Callable interface 
(implement the call() method which will in turn call the 
synchronized method in AlgorithmP1.java)
i.e...

public class RunnableP1{

  public RunnableP1(AlgorithmP1 aObj)
  { anObj = aObj;}

  public Integer call() {
    int theCount = anObj.GROW();
    return theCount;}}



  

Thread Synchronization technique
Part 3:

Create object(s) of type Callable and assign them object(s) 
of class which implements Callable. 

Since we can't pass Callable into a Thread for execution, we 
use ExecutorService object instead (in my case, a thread 
pool). 

This in turns gives you a Future object on which you can call 
the get() method - get() method will return the value from 
call() AND it acts like join() for threads.



  

Thread Synchronization technique
Part 3 (continued)...

public class BalancingAlgorithms throws Exception {

  public void P1() {
    ExecutorService threadPool = 
ExecutorService.newFixedThreadPool(3);

    Callable<Integer> call1 = new RunnableP1(aP1Obj);
   Future<Integer> future1 = threadPool.submit(call1);

  int firstVal = call1.get();}

  private AlgorithmP1 aP1Obj;}



  

Performance Analysis
Machines used for performance analysis:

● MTL's 32 core machine with 12 GB memory specified in 
job card.

●   Each test executed 20 times (first 5 trials discarded) 
and the parallel algorithm was executed with 20, 32, 
and 96 threads.

● Intel(R) Core(TM)2 Duo CPU T8100 @ 2.10 GHz with 2.00 
GB RAM.

●   Each test executed 20 times (first 5 trials discarded) 
and the parallel algorithm was executed with 40 
threads.



  

Performance Analysis (MTL)



  

Performance Analysis (MTL)



  

Performance Analysis (laptop)



  

Conclusion
● Java has various methods for thread synchronization and 
perhaps using methods involving explicit locking/unlocking 
might result in better run time.

● Instead of tagging the entire method as 'synchronized' 
further effort can be made to tag a subset of statements 
inside the concurrent method with 'synchronized' for finer 
grained locking.

● Based on analysis, the sequential algorithm (S) seems to 
be much more efficient.



  

References

● Cay Horstmann. BiG JAVA. 2nd Edition. John Wiley & Sons, Inc., 2006.

● S. Sitharama Iyengar and Hsi Chang. Efficient algorithms to globally balance 
a binary search tree. Communications of the ACM, 27(7):695–702, July 1984.

● John Zukowski. "Using Callable to Return Results From Runnables" 
ORACLE. 03 December 2007.  Web. 05 Mar. 2011. 
<http://blogs.sun.com/CoreJavaTechTips/entry/get_netbeans_6>.



  

QUESTIONS...


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

