A Symmetric Concurrent B-Tree
Algorithm

Overview: B-Link Tree

Introduced by Lehman & Yao, 1981. Merge operation (to
balance after deletions) added by Lanin & Shasha, 1986.

Like a B+ tree, actual keys are in leaf nodes. “Separators”
in internal nodes are for navigation only.

Contains extra links (“rightlinks” and “outlinks”) so that
threads searching for something will still be able to find it
if the tree is reconfigured during their search.

— This allows it to use less locking than other types of concurrent
B-tree algorithm.

112 --» 3 | 4

Example of a B-Link Tree (diagram from Lanin & Shasha):

fast pointer Root with only one separator (formerly

had more). Skipped by using anchor’s

anchor top pointer fast pointer in place of actual root.
h=4, =3 |)
S T empty node
; (formerly contained keys)
outlink (link from an
(L~ C,l" g -..d‘m
empty node to a
non-empty node)
- b, e g —l m-Jo

/

ab|bl=—

/dé N

fg |gt={ij |jF=klmmf~n |+

rightlinks

Some nodes are only
(link all nodes in a level)

accessible through
rightlinks.

Structure Properties

e Form s less strict than a normal B-tree or B+ tree.

* Most important properties:
— All keys in each level must be sorted.
— All leaves must be on the same level.

— No key can move left after tree modification, or appear to
the left of where an above separator indicates.

— If a key is located (or moved) farther to the right, it can be
found by following rightlinks.

e A search can be started at any level.

— Starting at the leaf level is equivalent to searching a sorted
list.

Implementation

 The original algorithm, written in 1986 with
Pascal in mind, is structured in a very non-
object oriented way.

— E.g. Static methods call other static methods
which in turn call other static methods, with
enumerator parameters that choose their
behavior.

e My implementation is a combination of
object-oriented and non-object-oriented
techniques.

| empty ‘ ‘ ouﬂink| ‘ rightsep ‘ ‘ rightlink ‘

check-key | ‘ IucI-<| ‘unluck‘

find

‘ maove-right ‘

locate-leaf

search

Mode
bdolean

@
8 8 g E
o oQ Zz
Z 2
—_——) e —— e — ||||D.u|| IIIIIIIIIIIIII _——_——— e e e e —_——_——— [_——t] — -
: = £=
4
@ Q
= =]
=) Q
Z 2
=
@ o
3 o
=) =]
e e r—1- "~ 1T~ =7 "1"-""-""---—-—-- Y e 2 0or —
L s
o
| 0O]
B < =
(=] L L
Z| 74
| |
k=1 o)
L 5 g
o
R) B — -4 -—--f-———- t——-— Fofl—————+———1 — |-
=]
(=]
bt

search

int

int

Original Algorithm

method.)

int, Node, irlt
MNode, int

Node, int

Java Implementation

e Many methods in the original algorithm take
only a Node, or Node & lock type, as a
parameter.

* For my implementation, these were
assembled into Node objects.

* Most other static methods were placed in a
BLinkTree object.

Implementation: Concurrency

The algorithm details a fine-grained locking
scheme, using read and write locks.

— Recall: The purpose of the algorithm is to minimize locking.

This was translated directly to Java using
ReentrantReadWritelock.

CyclicBarrier was used to coordinate threads during
testing.

Synchronized methods were used for things external to
the algorithm itself.

— E.g. Writing to System.out, verifying correctness of the
structure.

Java Implementation: Classes
(shows methods from original algorithm only)

ModeValuePair «enumeration» «enumeration»
node : Node LockType Task
Nod value : int READ, WRITE ADD, REMOVE Thread
ode .
package::java.lang
nodelock: ReentrantReadWriteLock
rightlink: Node
outlink: Node
check_key(int) : boolean Anchor A dThread
numberofchildren() : int anchorlock : ReentrantReadWriteLock - Task menlie TR
rightsep() : int fast: Node) E'S i —
empty() : boolean L~ fastHeight : int Sﬁ_ﬁ'd' ”F\|Dd Critic
outlink() : Node top : Node tDDfI'Ieig_;ht : ir?t anchor : Anchor
i i : topHeight : int . < yai
[L:gam!::;ﬁdeh;?;j'ebnalean le 2 -1 descent : Stack<NodeValuePair> run() : void
- . ock(LockType) tree : BLinkTree
too _sparse() : boolean unlock(LockType) —
lock(LockType) run() : void
unlock(LockType)
spamns
BLinkTree
hor : Ancho
LeafMode InternalMode Anenor - £Anenor

keys : Vector<integer=
singleLeafSep :int

downlinks : Vector<Mode=
separators : Vector<Integer=

critic : Critic

add_key(int) - boolean
remove_key(int)

add_link(int, Node) : boolean
find(int, int) : NodeValuePair

leftmostchild() : Node

remove_|ink(int, Node) : boolean
rightsep(Mode) : int

search(int) : boolean
insert{int) : boolean
delete(int) : boolean

add_or_remove_link(Task, int, Node, Node, int, Stack<=NodeValuePair=) : boolean

grow() : void

locate intemal(int, int, Stack<NodeValuePair=) : Node
locate_leafiint, LockType, Stack<MNodeValuePair=) : LeafMNode
normalize(Node, Stack<ModeValuePair=, int) : void

Correctness Testing

The most important factor is that every item in the tree can be
found at all stages of the tree’s life, including while it is being
modified by other threads.

Each test run was started with a set of odd numbers inserted into
the tree.

About 50% of the threads searched for these numbers during initial
testing and during the performance tests.

Insertion and deletion were made to only modify even numbers, so
that the search threads would always find what they were looking
for, provided the code was correct.

Any time a search thread did not find a key, it kept a record of this.
The total number of keys not found was counted after each test.

After initial debugging was complete, every single test run finished
without any un-found keys.

Performance Testing

e Used:

— MTL
— My PC (4 core, 4GB RAM)

e Tested against:

— Sequential version
e All locks and thread-spawning were removed.

— No-merge version
e Merge operation was removed.
* Tree is not rebalanced to correct for nodes that have too few
keys after deletion.

e Similar to Lehman & Yao’s original B-link algorithm, which
this algorithm was based on.

B-tree with merge:

Variables

Size of nodes = 8
Number of threads
Number of cores
Size of tree

Maximum key in tree

— Affects maximum size (no duplicate keys)
Proportion of threads for each of:

— Search

— |Insert
— Delete

average throughput (operations/millisecond)

350

300

250

200

150

100

50

Average Throughput

——=concurrent - no merge

—concurrent

16

number of cores

20

24

28

average throughput (operations/millisecond)

700

600

500

400

300

200

100

Average Throughput

(including sequential)

——concurrent - no merge
——concurrent
sequential
12 16 20 24 28

number of cores

average throughput (operations/millisecond)

900

800

700

600

500

400

300

200

100

Throughput Using 1 Core

B No Merge

® Concurrent

m Sequential

average throughput (operations/millisecond)

Increasing Number of Deleted Keys
(maximum key: 100, keys/thread: 100, with 10 search threads and 20 threads total)
1200

- Concurrent - No Merge

——Concurrent

Sequential
1000

800

600

400

~—t—t—F—1 1T
4 l 1 I Y
200 I , L —1
1 T I :
1 . T
0
0 1 2 3 4 5 6 7 8 9

number of delete threads (out of 20)

Questions?

	A Symmetric Concurrent B-Tree Algorithm
	Overview: B-Link Tree
	Slide Number 3
	Structure Properties
	Implementation
	Slide Number 6
	Java Implementation
	Implementation: Concurrency
	Java Implementation: Classes�(shows methods from original algorithm only)
	Correctness Testing
	Performance Testing
	Slide Number 12
	Variables
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

