
A Symmetric Concurrent B-Tree 
Algorithm

Part 2: Implementation



Overview: B-Link Tree
• Introduced by Lehman & Yao, 1981. Merge operation (to 

balance after deletions) added by Lanin & Shasha, 1986.
• Like a B+ tree, actual keys are in leaf nodes. “Separators” 

in internal nodes are for navigation only.
• Contains extra links (“rightlinks” and “outlinks”) so that 

threads searching for something will still be able to find it 
if the tree is reconfigured during their search.
– This allows it to use less locking than other types of concurrent 

B-tree algorithm.



anchor top pointer

fast pointer

empty node
(formerly contained keys)

outlink (link from an 
empty node to a 
non-empty node)

rightlinks
(link all nodes in a level)

Some nodes are only 
accessible through 

rightlinks.

Example of a B-Link Tree (diagram from Lanin & Shasha):

Root with only one separator (formerly 
had more). Skipped by using anchor’s 

fast pointer in place of actual root.



Structure Properties

• Form is less strict than a normal B-tree or B+ tree.
• Most important properties:

– All keys in each level must be sorted.
– All leaves must be on the same level.
– No key can move left after tree modification, or appear to 

the left of where an above separator indicates.
– If a key is located (or moved) farther to the right, it can be 

found by following rightlinks.
• A search can be started at any level.

– Starting at the leaf level is equivalent to searching a sorted 
list.



Implementation

• The original algorithm, written in 1986 with 
Pascal in mind, is structured in a very non-
object oriented way.
– E.g. Static methods call other static methods 

which in turn call other static methods, with 
enumerator parameters that choose their 
behavior.

• My implementation is a combination of 
object-oriented and non-object-oriented 
techniques.



Original Algorithm: search
(Each box represents a static 
method.)



Java Implementation

• Many methods in the original algorithm take 
only a Node, or Node & lock type, as a 
parameter. 

• For my implementation, these were 
assembled into Node objects.

• Most other static methods were placed in a 
BLinkTree object.



Implementation: Concurrency

• The algorithm details a fine-grained locking 
scheme, using read and write locks.
– Recall: The purpose of the algorithm is to minimize locking.

• This was translated directly to Java using 
ReentrantReadWriteLock.

• CyclicBarrier was used to coordinate threads during 
testing.

• Synchronized methods were used for things external to 
the algorithm itself.
– E.g. Writing to System.out, verifying correctness of the 

structure.



Java Implementation: Classes
(shows methods from original algorithm only)



Correctness Testing
• The most important factor is that every item in the tree can be 

found at all stages of the tree’s life, including while it is being 
modified by other threads.

• Each test run was started with a set of odd numbers inserted into 
the tree.

• About 50% of the threads searched for these numbers during initial 
testing and during the performance tests.

• Insertion and deletion were made to only modify even numbers, so 
that the search threads would always find what they were looking 
for, provided the code was correct.

• Any time a search thread did not find a key, it kept a record of this.
• The total number of keys not found was counted after each test.
• After initial debugging was complete, every single test run finished 

without any un-found keys.



Performance Testing
• Used:

– MTL
– My PC (4 core, 4GB RAM)

• Tested against:
– Sequential version

• All locks and thread-spawning were removed.
– No-merge version

• Merge operation was removed.
• Tree is not rebalanced to correct for nodes that have too few 

keys after deletion.
• Similar to Lehman & Yao’s original B-link algorithm, which 

this algorithm was based on.



B-tree with merge:

B-tree without merge:



Variables

• Size of nodes = 8
• Number of threads
• Number of cores
• Size of tree
• Maximum key in tree

– Affects maximum size (no duplicate keys)
• Proportion of threads for each of:

– Search
– Insert
– Delete



0

50

100

150

200

250

300

350

4 8 12 16 20 24 28

av
er

ag
e 

th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/m
ill

is
ec

on
d)

number of cores

Average Throughput
concurrent - no merge

concurrent



0

100

200

300

400

500

600

700

4 8 12 16 20 24 28

av
er

ag
e 

th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/m
ill

is
ec

on
d)

number of cores

Average Throughput
(including sequential)

concurrent - no merge

concurrent

sequential



0

100

200

300

400

500

600

700

800

900

av
er

ag
e 

th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/m
ill

is
ec

on
d)

Throughput Using 1 Core

No Merge Concurrent Sequential



0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e 

th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/m
ill

is
ec

on
d)

number of delete threads (out of 20)

Increasing Number of Deleted Keys
(maximum key: 100, keys/thread: 100, with 10 search threads and 20 threads total)

Concurrent - No Merge

Concurrent

Sequential



Questions?


	A Symmetric Concurrent B-Tree Algorithm
	Overview: B-Link Tree
	Slide Number 3
	Structure Properties
	Implementation
	Slide Number 6
	Java Implementation
	Implementation: Concurrency
	Java Implementation: Classes�(shows methods from original algorithm only)
	Correctness Testing
	Performance Testing
	Slide Number 12
	Variables
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

