Wait Depth Limited Concurrency Control

Steven Xu
January 31, 2011
Introduction

- Processing power has improved more significantly than data access times.
- Higher data contention follows from the greater ability for concurrency.
- Algorithms must be developed to increase transaction throughput.
Previous Solutions

- Optimistic restart methods
 - No locking is used.
 - After performing a transaction, the retrieved information is then verified.
 - If the retrieved information is not valid, the transaction could be restarted.
 - If it is valid, then all other transactions sharing the same resources could be restarted.

[Franaszek et al., 1991]
Quadratic effect

- Transactions that access more resources often take longer.
- This increases the chance that it is restarted.
Paper

- Part of the IBM Research Division
WDL(d)

- WDL(d) is a class of methods that limit the depth of the tree waiting on a transaction to a depth of d.

\[d = 2 \]
WDL(1)

- WDL(1) is mainly of interest:
 - Transactions can only be waiting on other running transactions
 - Avoids deadlock
Particular Method of WDL(1)

- T' waits on T.
 - If \(L(T') \geq L(T) \) and for all \(i, L(T') \geq L(T'_i) \), restart T.
 - Otherwise, restart T'.

- If \(L(T_n) \geq L(T) \) and \(L(T_n) \geq L(T') \), restart T.
 - Otherwise, restart T'.

- If \(L(T') \geq L(T'_n) \) and for all \(i, L(T') \geq L(T'_{i_n}) \), restart \(T_n \).
 - Otherwise, restart T'.
Future

Tasks
- Implement WDL(1)
- Implement other concurrency control methods
- Compare their performance under different situations

Challenges
- Associating abstract concepts with their concrete counterparts
- Develop system of common resources fit for all algorithms