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Algorithm Review: Deletion
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Mechanisms Used for 
Concurrency



 
Java.util.concurrent.locks.ReentrantLock


 

Fairness parameter


 

My own experience


 

try {
reentrantLock.lock();
do some stuff;

}
finally{

reentrantLock.unlock();
}



 
Volatile keyword



Mechanisms Used for 
Concurrency



 
Atomic variables
insertionCount=new AtomicInteger();
insertionCount.incrementAndGet();



 
CyclicBarrier
insertionStart=new CyclicBarrier(numOfInserters,

new Runnable() {
public void run() {

insertionStartTime.set(System.nanoTime());
}

});



Code Refinement


 

All possible cases are explicitly stated.


 

Lock won’t be acquired until we do 
immediately need it.



Testing



 
Input


 

A huge number of random integers generated 
by Java.util.Random.



 

Read into memory before running the essential 
concurrent code.
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Overhead of the concurrent implementation



Result of Throughput



Overhead of the Concurrent 
Implementation



Looking Ahead


 
ReentrantLock


 

Strongly suggested by Java API and Java 
Concurrency in Practice. 

try {
aReentrantLock.lock();
do some stuff;

}
finally{

aRentrantLock.unlock();
}
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Thank you very much!
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