
An Efficient Algorithm for 
Concurrent Priority Queue 
Heaps -- Implementation

Shouzheng Yang
CSE6490A

Class Presentation 2
Mar 14, 2011



Outline



 
Algorithm Review



 
Implementation


 

Class diagram


 

Mechanisms used for concurrency


 

Implementation refinement



 
Testing


 

Input


 

Results


 

Analysis



Algorithm Review: Deletion



Algorithm Review: Insertion



Class Diagram



Mechanisms Used for 
Concurrency



 
Java.util.concurrent.locks.ReentrantLock


 

Fairness parameter


 

My own experience


 

try {
reentrantLock.lock();
do some stuff;

}
finally{

reentrantLock.unlock();
}



 
Volatile keyword



Mechanisms Used for 
Concurrency



 
Atomic variables
insertionCount=new AtomicInteger();
insertionCount.incrementAndGet();



 
CyclicBarrier
insertionStart=new CyclicBarrier(numOfInserters,

new Runnable() {
public void run() {

insertionStartTime.set(System.nanoTime());
}

});



Code Refinement


 

All possible cases are explicitly stated.


 

Lock won’t be acquired until we do 
immediately need it.



Testing



 
Input


 

A huge number of random integers generated 
by Java.util.Random.



 

Read into memory before running the essential 
concurrent code.



 
Experiment


 

Correctness


 

Throughput


 

Overhead of the concurrent implementation



Result of Throughput



Overhead of the Concurrent 
Implementation



Looking Ahead


 
ReentrantLock


 

Strongly suggested by Java API and Java 
Concurrency in Practice. 

try {
aReentrantLock.lock();
do some stuff;

}
finally{

aRentrantLock.unlock();
}



Reference



 
Hunt, G., Michael, M., Parthasarathy, S., Scott, 
M.: An efficient algorithm for concurrent 
priority queue heaps. Information Processing 
Letters 60(3) 151-157 ISSN: 0020-0190 1996, 
Elsevier. 



 
Java™ Platform Standard Ed. 6 API



 
Joshua Bloch Joseph Bowbeer David Holmes 
Brian Goetz, Tim Peierls and Doug Lea. Java 
concurrency in practice. page 282, 2006.



Thank you very much!


	An Efficient Algorithm for Concurrent Priority Queue Heaps -- Implementation
	Outline
	Algorithm Review: Deletion
	Algorithm Review: Insertion 
	Class Diagram
	Mechanisms Used for Concurrency
	Mechanisms Used for Concurrency
	Code Refinement
	Testing
	Result of Throughput
	Overhead of the Concurrent Implementation
	Looking Ahead
	Reference 
	幻灯片编号 14

