
A Symmetric Concurrent B-Tree Algorithm:
Java Implementation

Elise Cormie

Department of Computer Science and Engineering, York University
4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3

Abstract. In their paper entitled A Symmetric Concurrent B-Tree Al-
gorithm, Vladimir Lanin and Dennis Shasha introduce a deadlock-free
concurrent B-tree algorithm which preserves the symmetric properties of
the B-tree and requires minimal locking. This paper presents a Java im-
plementation of the algorithm. Its performance is compared to a sequen-
tial version, and a version similar to the earlier algorithm it was based
on. It is tested for errors using randomized tests and Java PathFinder.

1 Introduction

1.1 About B-trees

B-trees are common tree-based data structures. They are normally used when
large amounts of data must be stored and efficiently searched. They can be
searched in logarithmic time, like other types of tree. However, unlike trees with
only one item per node, B-trees have many items in each node which can be
loaded into memory at the same time. This reduces the number of hard disc
accesses required to search the tree.

A B-tree has an order, t, and each non-root node contains between t and 2t
keys. Each key can have a child to its right and to its left. Children are shared
between neighboring keys. Generally, left children contain keys smaller than the
parent key, and right children contain larger keys. The tree should be symmetric,
with all leaves on the same level.

Example:

1.2 B-tree Variants

A B+ tree only stores keys in leaf nodes. Internal nodes contain numbers to
organize and navigate to the required keys, but do not store the keys or data
themselves.

Example:



2

A B-link tree is a concurrent tree based on the B+ tree. The idea was intro-
duced by Lehman and Yao in [1]. It adds additional links between the nodes of
a B+ tree, to allow processes to retrieve data that has been moved during write
operations. This reduces the amount of locking required. The B-link tree is the
basis of the algorithm discussed in this paper.

Example:

1.3 Restructuring the Tree

To use the language of the readers-writers problem, search will be referred to
as a read operation, and insert and delete as write operations. After adding or
removing a key, write operations may have to restructure the tree to preserve its
symmetry and ensure the correct number of keys in each node. This restructuring
can be done while descending the tree, as described in [2, Ch. 18]. In this case,
the nodes must have an odd number of keys, t − 1 to 2t − 1. More commonly,
restructuring is done by ascending the tree and propagating changes upwards
after the node that needs to be inserted to or deleted from is found. Trees that
restructure in this manner have between t and 2t keys per node.

1.4 Previous Concurrent B-trees

Prior to Lanin and Shasha’s work, there were a few different approaches to B-
tree concurrency. The intuitive approach, first discussed by Bayer and Schkolnik
[3] and Samadi [4], is to have writers exclusively lock entire subtrees starting at
the highest node that might be modified. This allows modifications to be done
safely, but limits the amount of concurrency by preventing access to large parts
of the tree.

In [3], Bayer and Schkolnik describe an approach in which optimistic writers
place only read-locks on the subtrees they descend, assuming they will be able to
insert or delete without propagating change up the tree. They place an exclusive
lock only on the one node they need to insert into or delete from. If the node
becomes too large or small and the tree must be re-balanced, they repeat the
descent using exclusive locks. This provides improved performance compared to
the approach in [3], since most of the time the tree will not need to be re-balanced
after a write operation.

In [5], Mond and Raz used the descending approach to insertion and deletion,
described in [2, Ch. 18]. In a concurrent setting, writers can exclusively lock nodes



3

they need to modify and then release them as they descend further, as they will
not need to modify them again. This allows less of the tree to be locked at any
particular time.

Lehman and Yao, in [1], added extra links to the B+ tree to create the B-link
tree. Their algorithm allows data to be found in this tree even when it is in an
invalid or changing state, meaning fewer nodes need to be locked. They did not
include concurrent operations to re-balance the tree after deletion.

It should also be noted that shortly before Lanin and Shasha published their
algorithm, a very similar one was independently created and published by Sagiv
[6].

2 Lanin and Shasha’s Algorithm

The concurrent B-tree algorithm by Lanin and Shasha improves upon the B-
link tree in [1] by adding a concurrent merge operation to balance the tree after
deletion.

Unlike Lehman and Yao’s algorithm, which assumes atomic node access,
locking in Lanin and Shasha’s algorithm is done using read-locks and write-locks
on individual nodes. Read-locks can be held by multiple processes at the same
time, while write-locks are exclusive. A process will not need to hold more than
one read-lock or write-lock at a time, except deletion which may hold two write-
locks while restructuring the tree. It is also shown to be deadlock-free in [7, p.
383-385].

Lanin and Shasha implemented their algorithm and tested it against the al-
gorithm in [5] with and without optimistic descents, and two algorithms from
[3]. It was shown to be faster than these other algorithms. The speedup became
less pronounced as the size and number of the tree’s nodes increased, though
it still performed slightly better on all trees [7, p. 385-386]. After this algo-
rithm was published, the relative performance of it and others was analyzed
more thoroughly by Shasha and Johnson [8] and by Srinivasan and Carey [9].
Both studies found that B-link-based algorithms, such as this one, performed
significantly better than other types of concurrent algorithms.

In the remainder of this section, the algorithm will be summarized with select
pseudocode. More complete pseudocode is available in [7, Appendix].

2.1 Definitions

The list below shows the definitions needed to understand the algorithm and
pseudocode. They are mostly summarized from [7, p. 382]. Figure 1 shows an
example from the article, which illustrates many of these definitions.

d: a downlink, n: a node

– internal node : Consists of a rightlink to the node to its right on the same
level, and a sequence of downlinks.

– separator :



4

• Internal nodes: Numbers (called keys in most other sources) which divide
the range of keys located within the downlinks to either side of them.

• Leaf nodes: A leaf node has only one separator. It corresponds to the
rightmost separator of its internal parent node, which marks the upper
limit of keys stored in the leaf.

– downlink : Link from an internal node to a node in the level below.
– rightsep(d) : Separator to the immediate right of d.
– rightsep(n) : The rightmost separator in n.
– leftsep(d) : Separator to the immediate left of d. If d is the leftmost downlink

in its node n, then this is defined as the rightmost separator in n’s left
neighbor node, or −∞ if n is the leftmost node and has no left neighbor.

– leftsep(n) : For the leftmost downlink d in n: leftsep(n) = leftsep(d). If n is
empty and has an outlink pointing to n′, then leftsep(n) = leftsep(n’)

– coverset(n) : The range of key values covered by the node n: {x|leftsep(n) <
x ≤ rightsep(n)}.

1) The top pointer. 2) The fast pointer. 3) A downlink. 4) And empty
node. 5) An outlink. 6) A rightlink. 7) A leaf’s only separator.

A possible legal state of a B-link structure.

Fig. 1. A B-link tree, of the type created by Lanin and Shasha’s algorithm, which
illustrates several components of the structre. From [7, p. 382].

2.2 Locating Keys

Search, insert, and delete all start by using locate to find the leaf node where the
key to be found/inserted/deleted should be. Once the node is found, insert and
delete place a write-lock on the node, while search places a read-lock instead.

Lanin and Shasha refer to the point where search, insert and delete actually
read or modify the keys in question as their decisive operations. For search, the
decisive operation simply checks if a key exists within the leaf that has been
read-locked. For insert and delete, the decisive operation is adding or removing,
respectively, the desired key in the leaf that the operation has write-locked.



5

2.3 Normalization

When keys are inserted or deleted, nodes may end up having too many or too
few keys. Normalization of a node, part of the process that is elsewhere reffered
to as restructuring or rebalancing of the tree, is used to remedy the situation.

Nodes are split when they have too many keys, and merged when they have
too few keys. These operations can cause changes that propagate up the tree,
and could possibly affect the entire subtree containing the initial node up to the
root. The easiest way to avoid problems with these operations in a concurrent
setting is to lock the entire subtree of the node being modified.

This algorithm avoids locking such a large portion of the tree, in part, by
performing splits and merges in two separate stages:

Stage 1: Half-Split or Half-Merge Half-merge and half-split are called by
the normalize function, which obtains a write-lock on a node before calling them,
and releases the lock afterward.

A half-split, where a node n is split into two nodes n and nright, moves data
from n but does not modify n’s parent. After a half-split, n and nright can still
be considered part of the same node, though their structure has been changed
so that they are actually two separate nodes linked together.

A half-merge is where nodes nleft and nright are merged into nleft. The data
from nright is moved into nleft, and the downlink that previously pointed to
nright is changed to point to nleft. nright is left empty at the end of this step,
and is given an outlink that points to nleft.

Once a half-split or half-merge is performed, the locks on the nodes can be
released, as the structure at this point will be operational.

Pseudocode (derived from the description in [7, Appendix]):

1. half-split(n, nright: node pointers){
2. nright.rightlink = n.rightlink;
3. n.rightlink = nright;
4. move right half of keys in n to nright;
5. if(n and nright are leaves){
6. n.rightsep = largest key in n;
7. nright.rightsep = largest key in

nright;
8. }
9. return n.rightsep;

10. }

1. half-merge(nleft, nright: node pointers){
2. temp = nleft.rightsep;
3. move all keys from nright to end of

nleft;
4. nleft.rightlink = nright.rightlink;
5. nright.empty = true;
6. nright.outlink = nleft;
7. if(nleft is a leaf){
8. nleft.rightsep = largest key in

nleft;
9. }

10. return temp;
11. }

Stage 2: Add-Link or Remove-Link This step completes the process be-
gun by half-split or half-merge. Locks must already be held on the nodes being
modified before these methods are used.

Add-link is done after the half-split of node n into n and nright. Let s =
rightsep(n). Find the node p for which s ∈ coverset(p). (This is usually known



6

due to the earlier locate operation. Another locate can be done if the tree has
changed.) Insert a downlink to the new node n into the correct (sorted) location
in p, and insert s to the left of this downlink.

Remove-link is done along with the half-merge of nodes nleft and nright into
nleft. Before half-merge, take the rightmost separator s from nleft. The node
p in which s ∈ coverset(p) is the parent. After half-merge, remove s, and the
downlink to the newly-empty nright, from p.

2.4 Changing The Root Level

New top levels can be created by splitting the root node. However, when a root
node becomes too small or empty, Lanin and Shasha found that removing it was
difficult. It is left in the tree, and may be re-used later. A process called the critic
continually runs in the background. It keeps track of, and stores in the anchor,
a pointer to the fast level (see Figure 1), the highest level with more than one
downlink. This is the highest useful level to start searching. Because this tree
contains rightlinks between the nodes of each level, searches do not need to start
at the actual root of the tree. In fact, they can start at any level and achieve the
correct results, albeit less efficiently if they start at a lower level.

3 Java Implementation

3.1 Program Structure

One challenge of implementing this algorithm in Java is that the original is
written in a non-modular, non-object-oriented way, with many static methods
which must be called in the correct sequence for locking to work. It also contains
a finely-grained locking system, and many methods assume a lock is held when
they are called (see Figure 2).

In this Java implementation, some object-oriented techniques are used, but
many things remain from the original algorithm which would normally be con-
sidered bad Java programming practice. For example, some methods assume
locks are held before they are called, and others use parameters to determine
method behavior instead of polymorphism.

Figure 2 shows a sequence diagram of the original search method, which is
similar to insert and delete. From the method calls shown in Figure 2, it is
evident that many of the original methods take only a single node, or a node
and a lock type, as parameters. So in this Java version, these static methods
have been replaced by instance methods in Node objects. Most of the remaining
methods have been grouped into a BLinkTree object. Figure 3 shows a UML
class diagram of the Java objects used in this implementation.

The algorithm also requires some methods to spawn new threads. These
threads ascend the tree, starting at a leaf node and working their way up, to
re-balance it. For this purpose an AscendThread class has been created, which
extends Thread. These AscendThreads are launched by the BLinkTree class.



7

Fig. 2. A pseudo-sequence diagram of Lanin and Shasha’s search method from [7,
Appendix]. The boxes in the top row represent static methods rather than objects.

The Critic, which runs continuously in the background and keeps track of the
highest useful node of the tree, has been similarly implemented as a class that
extends Thread. The Critic is started when a BLinkTree is created. It can be
terminated manually by a method in the BLinkTree class, so that the program
does not run forever.

3.2 Data Structures

The most important Java structure that was created is the Node class, which
contains all the static methods from the original algorithm that relate to an
individual node. Within Node, the built-in Java Vector is used to store data.
Using an array might be more efficient. However, Vector allows for easy inser-
tion/deletion from the middle of the sequence without shifting the remaining
keys. Java also has built-in methods to sort and count the contents of Vectors,
both of which are frequently used by the program. Furthermore, in this particu-
lar B-tree algorithm it is possible for a Node to have many extra keys added to
it, which will afterwards be removed when the tree is balanced. If arrays were
used, allocation of a new array and copying of old contents, or some equivalent
solution, would be required for the arrays to expand beyond their maximum
capacity.



8

Fig. 3. A UML diagram showing the class structure of this Java implementation. This
diagrams shows only methods that are part of the original algorithm.

3.3 Concurrency

To achieve concurrency, the original algorithm used only two types of lock:
read-locks and write-locks. The original pseudocode contains the static meth-
ods lock(Node, LockType) and unlock(Node, LockType), which take a node and
the type of lock (read or write) as parameters. In the Java program, these have
been replaced by the instance methods lock(LockType) and unlock(LockType)
of the Node class. The Node objects each contain their own instance of the
built-in Java lock class java.util.concurrent.locks.ReentrantReadWriteLock to
produce the correct locking behavior. The lock-anchor(LockType) and unlock-
anchor(LockType) methods were treated similarly.

To ensure that all threads started at the same time during testing, CyclicBar-
rier was used.

4 Randomized Testing

4.1 Comparison Algorithms

For comparison, a sequential version of this Java program was created. It is like
the concurrent version except all locks were removed, and all instances of threads
being launched were replaced by calls to sequential methods.

A version without the merge operation, similar to the algorithm in [1], was
also created. Though it is certain that at some point a B-tree without any type
of merge will become very sparse and will be less efficiently searched than a
balanced B-tree, it is interesting to see how much overhead Lanin and Shasha’s
addition of the merge operation creates before this occurs.



9

4.2 Correctness Testing

The structure of the B-link tree is less strict than a normal B-tree, and many
characteristics that would be incorrect in a standard B-tree are allowed in the
B-link tree. The most important properties that must be true at all times are:
all leaves are on the same level; all keys are sorted; and no thread can end up to
the right of the location it is searching for.

The essential determinant of correctness is that every key in the tree can be
found at any point in the tree’s life, including all stages of modification. It is thus
important to test the correctness of the tree while other threads are changing
it. Correctness testing was therefore integrated into the performance tests, as
follows:

Whenever the program was run, a number of threads did nothing but search
for a list of randomly-generated odd numbers, which were added to the tree
beforehand. Threads that were assigned to insert or delete only used even num-
bers, so the odd numbers sought would be unaffected. Thus, if the algorithm
was correct, every time a search thread tried to find a key it should have been
successful. Any unsuccessful search would have meant an error in the algorithm
or implementation.

After initial debugging was completed, no test runs of the program had any
search threads fail to find their keys. Since many tests were done, including tests
on a 32-core machine, this shows that the algorithm and implementation are
quite reliable.

4.3 Performance Testing

Hardware Used Tests that used varying numbers of cores were done on the
Intel R© Manycore Testing Lab’s 32-core Linux machine. Other tests were done
using a Windows 7 x64 PC with an AMD Phenom 4-core processor and 4GB of
RAM.

Test: Scalability by Number of Cores For this test, the algorithm was run
with four threads per processor, and a consistent proportion of threads of each
type (50% search, 25% insert, 25% delete).

The results are shown in Figure 4 and Figure 5. The standard deviation of
the measurements is fairly high, but it remained consistent as more tests were
performed. Data from the sequential algorithm has been omitted from the first
graph so that the error bars are more clearly visible.

The results show that the algorithm scales well as the number of processors
increases. The version without merge performs significantly better in this type
of tree, as does the sequential version. Even though the performance of the se-
quential version, of course, does not increase with a higher number of processors,
the performance of the concurrent algorithm stops increasing after about 24 pro-
cessors, and is only barely within the range of the sequential algorithm’s. The
performance gain achieved by removing the merge operation is fairly significant



10

Fig. 4. Results of throughput scalability tests, sequential algorithm omitted. Error bars
represent standard deviation.

here (though it is expected to decrease for larger, sparser trees), but its scaling
behavior is the same: the performance stops increasing after about 20-24 cores.

Test: Overhead of Concurrency Figure 6 shows the results of tests on the
Manycore computer using only one core. The number and proportion of threads
are the same as in the section above. This gives an idea of how much overhead
is required for the concurrent portions of the algorithms, compared to the se-
quential version where the concurrency is removed. Error bars show standard
deviation.

Despite the high standard deviation, it is evident that concurrency requires
significant overhead. This explains the improvement in throughput when using
the sequential algorithm, though with enough cores the concurrent algorithms
eventually achieve similar performance.

Test: Increasing Tree Sparsity The tests above show that Lanin and Shasha’s
merge operation creates noticeable overhead, decreasing its performance com-
pared to Lehman and Yao’s algorithm without merge. However, it is clear that
the B-link tree without merge will be outperformed by Lanin and Shasha’s tree
in some situations. After a number of keys have been deleted, searches should
be operating on sparser trees in the version of the algorithm without a merge
operation, which should negatively impact their efficiency.

To verify this, tests were done in which the starting size of the tree was
the same for each test, but the number of keys that the program attempted to
delete was increased (since keys to insert and delete were generated randomly,
not all deletions were successful). After the insertions and deletions were finished,
searches were performed and timed.



11

Fig. 5. Results of throughput scalability tests, including the sequential algorithm. Error
bars represent standard deviation.

Results are shown in Figure 7. They indicate that searches done in a tree
created by the algorithm with merge are, in fact, faster than searches done in
the tree created without merge, once enough keys are deleted to make that tree
sparse.

5 Java PathFinder Testing

To more thoroughly test the correctness of the code, the model checking program
Java PathFinder (JPF) was used. It tests all possible thread interleavings to
ensure that errors cannot occur.

5.1 Code Changes

So that JPF could more efficiently test the code, portions that existed only for
performance testing were removed. The JPF version no longer records execution
time or writes data to files. All CyclicBarriers were also removed; these were
included to create a higher probability of errors due to thread interleaving, which
is not helpful to JPF.

A while loop from the original algorithm was changed to a for loop that
runs at most five times. The original loop normally runs only once, but could
run forever. Exiting early only delays balancing of the tree, and improves JPF’s
performance. Another part of the original algorithm, the Critic, was removed
entirely. It adds many more potential thread interleavings, but has little impact
on the algorithm.

To reduce the JPF state space, Verify.beginAtomic() and Verify.endAtomic()
are used for the code before and after the operations of interest. Furthermore,



12

Fig. 6. Results of tests using only one core of the Intel Manycore machine. Error bars
represent standard deviation.

the size of the tree nodes was set to two. This small node size triggers tree
re-balancing after very few keys are changed, which allows JPF to test the re-
balancing portions of the algorithm on trees of a manageable size.

Many possible errors already cause Java exceptions, and will be detected by
JPF. For other types of error, such as incorrect return values, assert statements
were added. The use of assert is different for each test method, and is described
in more detail later.

5.2 Properties, Listeners and Search Strategies

The PreciseRaceDetector listener was used to find data races. NoDeadlockProp-
erty and NoUncaughtExceptionsProperty were the properties used. It seems that
even when a program always deadlocks and never terminates during a normal
execution, JPF’s test on that program can actually terminate and report no
errors unless NoDeadlockProperty is specified.

Alternate search strategies used were DFSSearch and BFSHeuristicSearch.
Since only one search strategy can be used per execution, only these two alternate
search strategies were attempted, and only on select tests for which the default
strategy ran out of memory before finding any errors.

5.3 Tests Performed

Insertion Threads Only This method was created to test the insertion method,
including the split operation that re-balances the tree if too many keys occur
in a single node. The method works as follows: A number of insertion threads
is chosen. Each thread is given a unique number to insert. Insert returns a
boolean indicating whether the insertion was successful. Assert is used on this



13

Fig. 7. Results of tests in which searches were performed after deleting an increasing
number of keys from the tree. Error bars show standard deviation.

return value to check that it is always true, since all insertions should complete
successfully.

JPF successfully tested this method using two and three insertion threads
with no errors. With one thread, JPF ran out of memory.

Deletion Threads Only This method was written to test deletion from the
tree, and the re-balancing via the merge operation introduced in [7]. It works as
follows: A number of deletion threads is chosen. Each deletion thread is given
a random, unique number to delete, which is added to the tree before testing
begins. The delete operation returns a boolean indicating whether it was suc-
cessful. If the item was in the tree and only one thread was attempting to delete
it, as is the case in this test, this return value should always be true. Assert is
used to check this.

Using this method, JPF quickly found errors in which the delete operation
returned false when it should have returned true. Upon examination, whenever
this occurred the tree did, in fact, have the key removed. This shows that the
deletion completed successfully, but its return value was incorrect. This incorrect
value originates in a very simple method used by the delete function, shown
below. keys is a Vector<Integer> object, and a lock is already held on the node
before the method is called.

public boolean remove_key(int value) {

if (keys.contains(value)) {

keys.removeElement(value);

return true;



14

} else

return false;

}

}

The reason the method above could return false when an element is removed
from keys is unclear. Debugging was attempted using the ExecTracker listener,
but more expertise is required to interpret those results correctly.

All Thread Types This method allows any combination of insert, delete or
search threads to be tested, and checks whether searches return the correct
results. As mentioned earlier, search results are an important indicator of tree
correctness. Many types of invalid tree state could result in a search being unable
to find a key in the tree.

For this method, the numbers of insert, search and delete threads are chosen.
Each search thread is randomly assigned an odd number to search for, which
is added to the tree before the threads are started so that the search should
always return true. Each remove thread is randomly assigned an even number
to remove. This number is added to the tree before the threads begin, to ensure
that the removal will actually take place. Each insert thread is randomly assigned
an even number to insert. Assert statements are used to verify that all searches
return true.

The results are summarized in Table 1. Tests using only insertion or deletion
did not find any errors. It appears that these methods alone do not interfere
with searches. However, using one insertion, one deletion, one search, and the
BFSHeuristic search strategy, a serious error was quickly found: A search for a
key in the tree did not find that key. Since insertions and deletions alone do not
seem to cause this problem, the error must result from the combination of insert,
delete and search together.

This error was checked for throughout performance testing and was never
encountered. It was also not found by the default search strategy before JPF
ran out of memory. The error is therefore very uncommon. A large variety of
problems with the tree could be the cause of this type of error, so at the moment
the cause has not been determined.

number of threads: JPF results
insert delete search

1 0 1 finished with no errors
0 1 1 finished with no errors
2 0 1 out of memory, no errors found
0 2 1 error found: incorrect return value from delete
1 1 1 error found with BFSHeuristic: search cannot find key in tree

Table 1. Results when JPF was run with various combinations of insert, delete and
search threads.



15

6 Conclusion

The algorithm created by Lanin and Shasha in [7] was successfully implemented
in Java.

Randomized performance tests show that the implementation’s throughput
scales fairly well as the number of processors increase. It has high overhead,
however, and may only gain a performance advantage over a sequential B-tree
when the number of processors available is very high (over 24 or so).

The randomized correctness testing did not find any errors. However, some
errors were found using Java PathFinder. Their exact causes have yet to be
discovered. Fortunately, they seem unlikely to occur with normal use of the
code.

7 Acknowledgements

Thanks to the Intel R©Manycore Testing Lab (www.intel.com/software/manycoretestinglab)
for the use of their systems.

References

1. Lehman, P.L., Yao, S.B.: Efficient locking for concurrent operations on B-trees.
ACM Transactions on Database Systems 6(4) (December 1981) 650–670

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2nd edn. MIT Press, Cambridge, Massachusetts (2001)

3. Bayer, R., Schkolnick, M.: Concurrency of operations on B-trees. Acta Informatica
9(1) (1977) 1–21

4. Samadi, B.: B-Trees in a system with multiple users. Information Processing Letters
5(4) (1976) 107–112

5. Mond, Y., Raz, Y.: Concurrency control in B+-trees databases using preparatory
operations. In: Proceedings of the 11th international conference on Very Large Data
Bases - Volume 11, VLDB Endowment (1985) 331–334

6. Sagiv, Y.: Concurrent operations on B*-trees with overtaking. Journal of Computer
and System Sciences 33(2) (October 1986) 275–296

7. Lanin, V., Shasha, D.: A symmetric concurrent B-tree algorithm. In: Proceedings of
1986 ACM Fall joint computer conference, Los Alamitos, CA, USA, IEEE Computer
Society Press (1986) 380–389

8. Johnson, T., Sasha, D.: The performance of current B-tree algorithms. ACM Trans-
actions on Database Systems 18(1) (March 1993) 51–101

9. Srinivasan, V., Carey, M.J.: Performance of B+ tree concurrency control algorithms.
The VLDB Journal 2(4) (October 1993) 361–406


