
Concurrent Red-Black Trees

Franck van Breugel

DisCoVeri Group, York University, Toronto

March 7, 2011

Franck van Breugel Concurrent Red-Black Trees

Red-Black Tree

A red-black tree is a binary search tree the nodes of which are
coloured either red or black and

the root is black,
every leaf is black,
if a node is red, then both its children are black,
for every node, every path from that node to a leaf contains
the same number of black nodes.

[Bayer, 1972] and [Guibas and Sedgewick, 1978]

3

1

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

� �

1 add (3) ;
2 add (1) ;
3 (add (2) | | p r i n t (con ta ins (1)))
� �

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

� �

1 add (3) ;
� �

3

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

� �

1 add (3) ;
2 add (1) ;
� �

3

1

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree
� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))
� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree
� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))
� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree
� �

1 add(3);
2 add(1);
3 (add(2) | | print(contains(1)))
� �

3

1

2

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

Can we reproduce this interleaving?

Intel Pentium M processor, 1.6 GHz, Windows XP
Prints true: 1000000, prints false: 0

Two Intel Pentium 4 processors, 3 GHz, Linux 2.6.9
Prints true: 999997, prints false: 3

Eight Intel Xeon processors, 2.66 GHz, Linux 2.6.9
Prints true: 1000000, prints false: 0

Two AMD Athlon 64 X2 Dual Core processors, 2.2 GHz,
Linux 2.6.9
Prints true: 999999, prints false: 1

MTL
Prints true: 999947, prints false: 53

Franck van Breugel Concurrent Red-Black Trees

Three Implementations

〈〈interface〉〉
Set〈T〉

contains(T) : boolean
add(T) : boolean

RedBlackTree〈T〉

Franck van Breugel Concurrent Red-Black Trees

The Monitor Solution

1 package moni tor ;
2

3 public class RedBlackTree<T extends Comparable<T>>
4 implements Set<T>
5 {
6 public synchronized boolean con ta ins (T element)
7 {
8 . . .
9 }

10

11 public synchronized boolean add (T element)
12 {
13 . . .
14 }
15 }

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

〈〈interface〉〉
ReadWriteLock

readLock() : Lock
writeLock() : Lock

ReentrantReadWriteLock
Lock

lock()
unlock()

2

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

1 private ReadWriteLock lock ;
2

3 public RedBlackTree ()
4 {
5 th is . lock = new ReentrantReadWriteLock () ;
6 . . .
7 }
8

9 public boolean con ta ins (T element)
10 {
11 th is . lock . getReadLock () . lock () ;
12 . . .
13 th is . lock . getReadLock () . unlock () ;
14 }
15 . . .

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

Processes lock the nodes of the red-black tree in three different
ways:

ρ-lock: lock to read

α-lock: lock to exclude writers

ξ-lock: exclusive lock

Although a node can be locked by multiple processes, there are
some restrictions.

ρ α

ξ

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

ρ
ξ

0
ρ

α

1
ρ

α

2
ρ

α

. . .

α
ξ

0 ρ 1 ρ 2 ρ
. . .

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

1 public class Node<T>
2 {
3 private i n t con ta ine rs ;
4 private i n t s t a t e ;
5 private boolean w r i t i n g ;
6

7 public void readLock () { . . . }
8 public void readUnlock () { . . . }
9 public void wr i teLock () { . . . }

10 public void writeUnock () { . . . }
11 public void exclusiveLock () { . . . }
12 public void exclusiveUnlock () { . . . }
13 }

Franck van Breugel Concurrent Red-Black Trees

Throughput

Franck van Breugel Concurrent Red-Black Trees

Looking Ahead

Plan

debug the implementation that locks individual nodes and
measure its throughput

verify some properties, such as deadlock freedom, of all
three concurrent implementations by means of Java
PathFinder

Franck van Breugel Concurrent Red-Black Trees

