
Visibility

p u b l i c c lass P r i n t e r extends Thread
{

p u b l i c vo id run ()
{

wh i le (! Main . ready)
System . out . p r i n t l n (" . ") ;

}
}
p u b l i c c lass Main
{

p u b l i c s t a t i c boolean ready = f a l s e ;
p u b l i c s t a t i c vo id main (S t r i n g [] args)
{

new P r i n t e r () . s t a r t () ;
Main . ready = t rue ;

}
}

Visibility

p u b l i c c lass P r i n t e r extends Thread
{

p u b l i c vo id run ()
{

wh i le (! Main . ready)
System . out . p r i n t l n (Main . number) ; / / modi f ied

}
}
p u b l i c c lass Main
{

p u b l i c s t a t i c boolean ready = f a l s e ;
p u b l i c s t a t i c i n t number = 0; / / new
p u b l i c s t a t i c vo id main (S t r i n g [] args)
{

new P r i n t e r () . s t a r t () ;
Main . ready = t rue ;
Main . number = 1; / / new

}
}

Visibility

Synchronized methods and blocks can be used to guarantee
that one thread sees the effects of another in a predictable
manner. When thread A executes a synchronized block, and
subsequently thread B enters a synchronized block guarded by
the same lock, the values of variables that were visible to A
prior to releasing the lock are guaranteed to be visible to B
upon acquiring the lock.

Software . . .

. . . is everywhere . . .

. . . yet is full of bugs.

Bugs

“A computer malfunction at Bank of New York
brought the Treasury bond market’s deliver-
ies and payments systems to a near stand-
still for almost 28 hours . . . it seems that the
primary error occurred in a messaging sys-
tem which buffered messages going in and
out of the bank. The actual error was an
overflow in a counter which was only 16 bits
wide, instead of the usual 32. This caused
a message database to become corrupted.
The programmers and operators, working un-
der tremendous pressure to solve the prob-
lem quickly, accidentally copied the corrupt
copy of the database over the backup, instead
of the other way around.”
Wall Street Journal, November 25, 1985

Bank of New York

Bugs

“The Soviet Mars probe was mistakenly or-
dered to commit suicide when ground control
beamed up a 20 to 30 page message in which
a single character was inadvertently omitted.
The change in program was required because
the Phobos 1 control had been transferred
from a command center in the Crimea to
a new facility near Moscow. The changes
would not have been required if the controller
had been working the computer in Crimea.
The commands caused the spacecraft’s solar
panels to point the wrong way, which would
prevent the batteries from staying charged, ul-
timately causing the spacecraft to run out of
power.”
comp.risks, September 13,1988

Phobos 1

Bugs

“On 4 June 1996, the maiden flight of the
Ariane 5 launcher ended in a failure. Only
about 40 seconds after initiation of the flight
sequence, at an altitude of about 3700 me-
ters, the launcher veered off its flight path,
broke up and exploded. . . . The reason why
the active SRI 2 did not send correct attitude
data was that the unit had declared a failure
due to a software exception. . . . The data con-
version instructions (in Ada code) were not
protected from causing an operand error, al-
though other conversions of comparable vari-
ables in the same place in the code were pro-
tected.”
Report of the Ariane Inquiry Board

Ariane 5

Bugs

“To correct an anomaly that caused inaccu-
rate results on some high-precision calcula-
tions, Intel Corp. last week confirmed that it
had updated the floating-point unit (FPU) in
the Pentium microprocessor. The company
said that the glitch was discovered midyear
and was fixed with a mask change in recent
silicon. “This was a very rare condition that
happened once every 9 to 10 billion operand
pairs,” said Steve Smith, a Pentium engineer-
ing manager at Intel.”
EE Times, November 7, 1994

Pentium

Bugs

“One of the more startling problems concerned the program’s
handling of the Greenwich meridian. The National Airspace
Package, designed by IBM’s Federal Systems division, contains
a model of the airspace it controls, that is, a map of the airlanes
and beacons in the area. But, because the program was
designed for air traffic control centres in the US, the designers
had taken no account of a zero longitude; the deficiency
caused the computer to fold its map of Britain in two at the
Greenwich meridian, plonking Norwich on top of Birmingham.”

Peter H. Roosen-Runge. Software Verification Tools. 2000.

Bugs

“In November 1992, the computerized dispatch system for the
London (England) Ambulance Service, broke down suddenly
and ‘locked up altogether’, leaving calls for assistance which
had already been stored in the system unavailable, and forcing
a taxing and cumbersome return to a manual, paper-based
dispatch system. Luckily, the breakdown occurred in early
morning hours, so that there were no severe consequences for
patients.”

Peter H. Roosen-Runge. Software Verification Tools. 2000.

Bugs

“A clear example of the risks of poor pro-
gramming and verification techniques is the
tragic story of the Therac-25—one in a se-
ries of radiation therapy machines developed
and sold over a number of years by Atomic
Energy Canada Limited (AECL). As a direct
result of inadequate programming techniques
and verification techniques, at least six pa-
tients received massive radiation overdoses
which caused great pain and suffering and
from which three died.”

Peter H. Roosen-Runge. Software Verification Tools. 2000.

Therac-25

The Cost of Bugs

“The cost of software bugs to the U.S. economy is estimated at
$60 billion per year.”

National Institute of Standards and Technology, 2002

Testing

input
// Code

output
//

Provide the input.
Run the code.
Compare the output with the expected output.

White Box Testing

input
// public class . . .

output
//

Black Box Testing

input
// Code

output
//

Terminology

Test case: an input that satisfies the precondition.

Test suite/test vector: a collection of test cases.

Which Test Cases?

Likely cases (black box and white box testing).
Boundary cases (black box and white box testing).
Cases that cover all execution paths (white box testing
only).

How to Provide the Test Cases?

Enter the test cases manually.
Read the test cases from files.
Generate the test cases by an app.
Use a testing framework such as JUnit.

How to Determine the Expected Result?

Use a different solution to the problem that is known to be
correct.
Use an approximate solution to the problem.
. . .

How to Compare the Result with the Expected Result?

Check it manually.
Read the expected result from a file.
Generate the expected result by an app.
Use a testing framework such as JUnit.

Sometimes, it is much easier checking that the output is correct
than computing the output. For example, it is much easier
checking that a list of elements is sorted than sorting a list of
elements.

