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What is a Memory Model?

A memory model defines necessary and sufficient conditions
for knowing that writes to memory by other processors are
visible to the current processor, and writes by the current
processor are visible to other processors.
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Why do we Need a Memory Model?

Local memory (caches, registers, and other hardware and
compiler optimizations) can improve performance
tremendously, but it presents a host of new challenges. What,
for example, happens when two processors examine the same
memory location at the same time? Under what conditions will
they see the same value? A memory model provides answers
to these questions.
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Synchronized Methods/Blocks

After we exit a synchronized block, we release the monitor,
which has the effect of flushing the cache to main memory, so
that writes made by this thread can be visible to other threads.

Before we can enter a synchronized block, we acquire the
monitor, which has the effect of invalidating the local processor
cache so that variables will be reloaded from main memory. We
will then be able to see all of the writes made visible by the
previous release.
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Volatile

Each read or write of a volatile field acts like "half" a
synchronization, for purposes of visibility.

Each read of a volatile will see the last write to that volatile by
any thread; in effect, they are designated by the programmer as
fields for which it is never acceptable to see a "stale" value as a
result of caching or reordering.
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Volatile

class Volatile
{

private int value;
private volatile boolean initialized;

public void write(int value)
{

this.value = value;
this.initialized = true;

}

public void use()
{

if (this.initialized)
{

// write has been invoked
...

}
}
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What is a Partial Order?

Definition
Let X be a set. A binary relation v on X is a partial order if for
all x , y and z ∈ X ,

x v x ,
if x v y and y v x then x = y , and
if x v y and y v z then x v z.
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Partial Orders

The standard less-than-or-equal relation ≤ on the real
numbers.
The relation ·divides· on the natural numbers.
The inclusion relation ⊆ on the powerset of a given set.
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What is a Total Order?

Definition
Let X be a set. A binary relation v on X is a total order if for all
x , y and z ∈ X ,

if x v y and y v x then x = y ,
if x v y and y v z then x v z, and
x v y or y v x .
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Total Orders

The standard less-than relation < on the real numbers.
The lexicographic order on words.
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