
The Java Memory Model

March 16, 2011

The Java Memory Model



Sources

Jeremy Manson and Brian Goetz. JSR 133 (Java Memory
Model) FAQ. February 2004.
Jeremy Manson, William Pugh and Sarita V. Adve. The
Java Memory Model. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages , pages 378–391, Long Beach,
CA, USA, January 2005. ACM.
James Gosling, Bill Joy, Guy Steele and Gilad Bracha. The
Java Language Specification. Chapter 17.
Addison-Wesley, Reading, MA, USA, 2nd edition, 2000.

The Java Memory Model



What is a Memory Model?

A memory model defines necessary and sufficient conditions
for knowing that writes to memory by other processors are
visible to the current processor, and writes by the current
processor are visible to other processors.

The Java Memory Model



Why do we Need a Memory Model?

Local memory (caches, registers, and other hardware and
compiler optimizations) can improve performance
tremendously, but it presents a host of new challenges. What,
for example, happens when two processors examine the same
memory location at the same time? Under what conditions will
they see the same value? A memory model provides answers
to these questions.

The Java Memory Model



Synchronized Methods/Blocks

After we exit a synchronized block, we release the monitor,
which has the effect of flushing the cache to main memory, so
that writes made by this thread can be visible to other threads.

Before we can enter a synchronized block, we acquire the
monitor, which has the effect of invalidating the local processor
cache so that variables will be reloaded from main memory. We
will then be able to see all of the writes made visible by the
previous release.

The Java Memory Model



Volatile

Each read or write of a volatile field acts like "half" a
synchronization, for purposes of visibility.

Each read of a volatile will see the last write to that volatile by
any thread; in effect, they are designated by the programmer as
fields for which it is never acceptable to see a "stale" value as a
result of caching or reordering.

The Java Memory Model



Volatile

class Volatile
{

private int value;
private volatile boolean initialized;

public void write(int value)
{

this.value = value;
this.initialized = true;

}

public void use()
{

if (this.initialized)
{

// write has been invoked
...

}
}

The Java Memory Model



What is a Partial Order?

Definition
Let X be a set. A binary relation v on X is a partial order if for
all x , y and z ∈ X ,

x v x ,
if x v y and y v x then x = y , and
if x v y and y v z then x v z.

The Java Memory Model



Partial Orders

The standard less-than-or-equal relation ≤ on the real
numbers.
The relation ·divides· on the natural numbers.
The inclusion relation ⊆ on the powerset of a given set.

The Java Memory Model



What is a Total Order?

Definition
Let X be a set. A binary relation v on X is a total order if for all
x , y and z ∈ X ,

if x v y and y v x then x = y ,
if x v y and y v z then x v z, and
x v y or y v x .

The Java Memory Model



Total Orders

The standard less-than relation < on the real numbers.
The lexicographic order on words.

The Java Memory Model


