
Java PathFinder

Nastaran Shafiei
Department of Computer Science and Engineering

York University, Toronto, Canada

Monday, March 21, 2011

Outline

Need to Verify Software

Model Checking

Java PathFinder

Listeners

Summary

Monday, March 21, 2011

Need to Verify Software

Our lives are affected by software

Software is unreliable
Created by human

Paul A. Strassmann, former CIO of Xerox :software can easily
rate among the most poorly constructed, unreliable and least
maintainable technological artifacts ever invented by man.

Errors could be very costly
NIST: software errors cost U.S. economy $59.5 billion annually

 There are many examples of costly bugs in the history

Monday, March 21, 2011

Software Verification Methods

Their goal is to check that software behaves in a way
such that its properties are satisfied

In general, they cannot prove the correctness of the
software

Rice’s Theorem: no algorithm exists that can always decide
whether code satisfies some non-trivial property

They can still have a significant impact by detecting
errors

Examples: Testing & Model Checking

Monday, March 21, 2011

running

Testing Process

providing input

observing outputIt is a widely used techniques
i.e. 30%to 50% of projects costs

It can be used for all kinds of software

Monday, March 21, 2011

Weakness of Testing

To achieve code coverage, as the size of the code
increases the test cases in general become very complex

if (condition_1)
{...}
else if (condition_2)
{...}
else if (condition_3)
{...}
.
.
.
else if (condition_n)
{...}

Monday, March 21, 2011

t3

Weakness of Testing

Have no control over the scheduling of the concurrent
components

It is nearly impossible to capture all potential execution of
the code

It is very hard to reproduce the error

t1 t2 t3

t2

t3 t2

t3t1 t1 t2

t3 t1 t1t2

t1 || t2 || t3

Monday, March 21, 2011

Model Checking

Automatically that examines all possible system states
in a systematic way to check if desired properties are
satisfied

Why model checking?
It considers all possible executions of the code
It is automated
It does not require a high level of expertise
It provides counterexamples
It is not specific to certain properties

Monday, March 21, 2011

Model Checking

Automatically that examines all possible system states
in a systematic way to check if desired properties are
satisfied

Why model checking?
It considers all possible executions of the code
It is automated
It does not require a high level of expertise
It provides counterexamples
It is not specific to certain properties comparing to

testing

Monday, March 21, 2011

Model Checking Techniques

Based on the way of representing the states

Explicit (e.g. Java PathFinder, SPIN)

Deal with individual states

Use graph algorithms to create and explore the state space

Symbolic (e.g. SLAM, SMV)

Deal with sets of states

Represent the states and transitions symbolically

. . .

Monday, March 21, 2011

Model Checking Techniques

Based on the way of representing the states

Explicit (e.g. Java PathFinder, SPIN)

Deal with individual states

Use graph algorithms to create and explore the state space

Symbolic (e.g. SLAM, SMV)

Deal with sets of states

Represent the states and transitions symbolically

. . .

our main focus

Monday, March 21, 2011

Model Checkers

Model-Based

Accept the model of the system as an input

Verify only the design of the system

e.g. SPIN

System-Based

Accept the actual system as an input

Verify both the design and implementation of the system

e.g. Java PathFinder

Monday, March 21, 2011

Model Checking Process

model-
based? modelling

properties
specification

running

analysis

yes

no

Monday, March 21, 2011

Java PathFinder (JPF)

An explicit-state system-based model checker that
checks the Java bytecode

JPF

error
traceproperties

0: iconst_2
1: istore_1
2: iload_1
3: sipush 1000
6: if_icmpge 440
9: iconst_2
10: istore_2
11: iload_2
12: iload_1
 ...

for (int i = 2; i < 1000; i++)
 {
 for (int j = 2; j < i; j++)
 {
 if (i % j == 0)
 continue outer;
 }
 System.out.println (i);
 }
)

JAVAC

Java Program Bytecode

Monday, March 21, 2011

History of JPF

1999: Started at NASA
Translator from Java to Promela

2000: Re-factored as JVM, Why?
Promela cannot represents all features of Java.

Java source code is not always available.

2005: Open sourced on Sourceforge
2009: Move to their own server, Mercurial

http://babelfish.arc.nasa.gov/trac/jpf

Today, is a mature tool, 100s of active users, more than
100 downloads monthly

Monday, March 21, 2011

http://babelfish.arc.nasa.gov/trac/jpf
http://babelfish.arc.nasa.gov/trac/jpf

JPF Main Components

JPF consists of two major components

JPF

JVM

Search

Monday, March 21, 2011

JPF is a JVM

JPF can be considered as a VM for Java bytecodes
Executes all bytecode instructions generated by a Java compiler

JPF

target
application

Monday, March 21, 2011

JPF is a JVM

JPF can be considered as a VM for Java bytecodes
Executes all bytecode instructions generated by a Java compiler

JPF

Java
application

target
application

Monday, March 21, 2011

JPF is a JVM

JPF can be considered as a VM for Java bytecodes
Executes all bytecode instructions generated by a Java compiler

target
application

JPF

host JVM

Java
application

Monday, March 21, 2011

JPF is a JVM

JPF can be considered as a VM for Java bytecodes
Executes all bytecode instructions generated by a Java compiler

target
application

JPF

host JVM

OS

Java
application

Monday, March 21, 2011

JPF is a Special JVM

Considers all execution paths

Checks for certain properties
Unhandled exception

e.g. NullPointerException, Assertion Violation, ...

Deadlock
i.e. threads mutually wait for each other to progress

(Data) race
Conflicting access to the a variable

Linear Temporal Logic properties

Monday, March 21, 2011

Example

int i;
boolean b;

b = (new Random()).nextBoolean();

if(b)
 i = 1;
else
 i = 0;

assert(i==1);

Monday, March 21, 2011

Example

(i=?,b=?)

(i=?,b=true)

(i=1,b=true)

b ← true

i ← 1

int i;
boolean b;

b = (new Random()).nextBoolean();

if(b)
 i = 1;
else
 i = 0;

assert(i==1);

Monday, March 21, 2011

Example

int i;
boolean b;

b = (new Random()).nextBoolean();

if(b)
 i = 1;
else
 i = 0;

assert(i==1);

(i=?,b=?)

(i=?,b=true)

(i=1,b=true)

(i=?,b=false)

(i=0,b=false)

b ← falseb ← true

i ← 0i ← 1

Report Error
Monday, March 21, 2011

State Space

By executing, state space is generated.

State
JVM state

Info of each thread, Static/Dynamic info

Choices

Scheduling choice

Data choice, e.g. (new Random()).nextBoolean()

Transition
Sequence of bytecode instructions leads from one state to another

state

choice

state

...
transition

Monday, March 21, 2011

Which way to go?

? ?
? ?

?

Monday, March 21, 2011

Which way to go?

? ?
? ?

?

determined
by Search

Monday, March 21, 2011

Search Component

Search: driver for JVM

Chooses from the transitions leading out of the state

Different search algorithm

Depth-First Search (DFS)

Breadth-First Search (BFS)

RandomSearch: behaves like a normal JVM and searches until
certain number of executions

Heuristic: i.e. gives priority to the states

...

Monday, March 21, 2011

JVM & Search

JVM

+ forward()
+ backtrack()
+ restore(VMState state)

Search

+ search()

BFSHeuristic

+ search()+ search()

DFSearch

Monday, March 21, 2011

Listeners

Using listeners, JPF can be easily extended

Example: race detectors

Listeners register with JVM and Search components by
implementing VMListener & SearchListener interfaces

Components notify listeners about occurrence of certain
events

Wide range of events are considered

e.g. instructionExecuted, searchStarted, choiceGeneratorSet

Monday, March 21, 2011

JPF Listeners

target
application

JPF

host JVM

JVM

Search

Listener

execution event notification

search event notification

Monday, March 21, 2011

PreciseRaceDetector

Used to detect (data) races

What is race?

Arises in concurrent programs

Simultaneous access to a variable

Access is conflicting:

At least one write access

state

T1: putfield f T2: getfield f

Monday, March 21, 2011

PreciseRaceDetector

Race occurs if
There is a scheduling choice
Threads, T1 and T2, are accessing a shared variable
(T1.isWriting() || T2.isWriting())

public class PreciseRaceDetector extends
PropertyListenerAdapter
{
 . . .
 public void choiceGeneratorSet(JVM vm)
 {
 . . .
 }
 . . .
}

Monday, March 21, 2011

jpf.properties

Used to change the JPF configuration from default

Property: key = value

e.g. set search to RandomSearch:

search.class = gov.nasa.jpf.search.RandomSearch

e.g. make JPF to find races:!

listener = gov.nasa.jpf.listener.PreciseRaceDetector

Monday, March 21, 2011

More about JPF Project

jpf-core:
containing the basic VM and modelchecking infrastructure.

Number of classes: 945

Number of source lines (without comments): 47190

How to run JPF using command line?
jpf +classpath=. targetClassName

Do NOT run JPF on indigo or red

Where to put your jpf.properties file?
In the directory that you run jpf

Monday, March 21, 2011

Summary

Software verification tools are essential

Model checking is an automatic technique to
verify software systems

A tool to verify Java code: JPF

One of the interesting features of JPF is using
listeners

Monday, March 21, 2011

Example

Example: Dining Philosophers

P1

P5

P2

P3

P4

fork2

fork3

fork4
fork5

fork1

Monday, March 21, 2011

Example

Example: Dining Philosophers

P1

P5

P2

P3

P4

fork2

fork3

fork4

fork5

fork1

Monday, March 21, 2011

Example

Example: Dining Philosophers

P1

P5

P2

P3

P4

fork2

fork3

fork4

fork5

fork1

Monday, March 21, 2011

Example

Example: Dining Philosophers

P1

P5

P2

P3

P4

fork2

fork3

fork4

fork5

fork1

Deadlock

Monday, March 21, 2011

