
More on
Java PathFinder

Nastaran Shafiei
Department of Computer Science and Engineering

York University, Toronto, Canada

Monday, March 28, 2011

Overview

JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

Monday, March 28, 2011

Overview

JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

Functionality of JPF can be extended through its
listeners

Monday, March 28, 2011

Overview

JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

Functionality of JPF can be extended through its
listeners

Examples:
PreciseRaceDetector

Monday, March 28, 2011

Overview

JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

Functionality of JPF can be extended through its
listeners

Examples:
PreciseRaceDetector
ExecTracker

Monday, March 28, 2011

Overview

JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

Functionality of JPF can be extended through its
listeners

Examples:
PreciseRaceDetector
ExecTracker
StateSpaceDot

Monday, March 28, 2011

Overview

JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

Functionality of JPF can be extended through its
listeners

Examples:
PreciseRaceDetector
ExecTracker
StateSpaceDot
SimpleDot
...

Monday, March 28, 2011

Dealing with Data Choices

The Verify class can get control over choices

The Verify class contains methods for creating choice
generators for built-in Java types

Monday, March 28, 2011

Dealing with Data Choices

The Verify class can get control over choices

The Verify class contains methods for creating choice
generators for built-in Java types

Examples:

Verify.getBoolean()

Verify.getInt(min,max)

Verify.getIntFromSet (1, 190, 390, 401)

Verify.getDoubleFromSet(-42.0, 0.0, 42.0)

Monday, March 28, 2011

State Space Explosion

Main issue in model checking

Usually caused by non-determinism

• Thread non-determinism • Data non-determinism

…T1 T2 Tn

i.e. the state space size can be exp.
in the # of threads

…

e.g. i = (new Random()).nextInt();

i=0i=-231 i=231-1
…

Monday, March 28, 2011

State Space Explosion

Consider

T1: α11 α12 ... α1n

T2: α21 α22 ... α2m

Monday, March 28, 2011

State Space Explosion

Consider

T1: α11 α12 ... α1n

T2: α21 α22 ... α2m

How many interleavings?

Monday, March 28, 2011

State Space Explosion

Consider

T1: α11 α12 ... α1n

T2: α21 α22 ... α2m

How many interleavings?

The same as the number of ways to choose n elements among a
set of n+m

⎛m+n⎞
⎝ n ⎠ =

(m+n)!

n! m!

Monday, March 28, 2011

State Space Explosion

Consider
T1: α11 α12 ... α1n

T2: α21 α22 ... α2n

T3: α21 α22 ... α2n

Tk: αk1 αk2 ... αkn

...

Monday, March 28, 2011

State Space Explosion

Consider
T1: α11 α12 ... α1n

T2: α21 α22 ... α2n

T3: α21 α22 ... α2n

Tk: αk1 αk2 ... αkn

How many interleavings?

...

Monday, March 28, 2011

State Space Explosion

Consider
T1: α11 α12 ... α1n

T2: α21 α22 ... α2n

T3: α21 α22 ... α2n

Tk: αk1 αk2 ... αkn

How many interleavings?

...

⎛ 2n ⎞ ⎛ 3n ⎞ ⎛ 3n ⎞ ⎛ kn ⎞
⎝ n ⎠ ⎝ n ⎠ ⎝ n ⎠ . . . ⎝ n ⎠

Monday, March 28, 2011

n! (3n)!

State Space Explosion

(2n)!
n! n!

×
n! (2n)!

×

⎛ 2n ⎞ ⎛ 3n ⎞ ⎛ 4n ⎞ ⎛ kn ⎞
⎝ n ⎠ ⎝ n ⎠ ⎝ n ⎠ . . . ⎝ n ⎠ =

× . . . ×
n! ((k-1)n)!

(3n)! (4n)! (kn)!

Monday, March 28, 2011

n! (3n)!

State Space Explosion

(2n)!
n! n!

×
n! (2n)!

×

⎛ 2n ⎞ ⎛ 3n ⎞ ⎛ 4n ⎞ ⎛ kn ⎞
⎝ n ⎠ ⎝ n ⎠ ⎝ n ⎠ . . . ⎝ n ⎠ =

× . . . ×
n! ((k-1)n)!

(3n)! (4n)! (kn)!
= (kn)!

(n!)k

Monday, March 28, 2011

n! (3n)!

2n+1 ... 3n
1 ... n

State Space Explosion

(2n)!
n! n!

×
n! (2n)!

×

⎛ 2n ⎞ ⎛ 3n ⎞ ⎛ 4n ⎞ ⎛ kn ⎞
⎝ n ⎠ ⎝ n ⎠ ⎝ n ⎠ . . . ⎝ n ⎠ =

× . . . ×
n! ((k-1)n)!

(3n)! (4n)! (kn)!
= (kn)!

(n!)k

1 ... n
1 ... n

n+1 ... 2n
× × × . . . ×

(k-1)n+1 ... kn
1 ... n 1 ... n

Monday, March 28, 2011

2n+1 ... 3n
1 ... n

State Space Explosion

⎛ 2n ⎞ ⎛ 3n ⎞ ⎛ 4n ⎞ ⎛ kn ⎞
⎝ n ⎠ ⎝ n ⎠ ⎝ n ⎠ . . . ⎝ n ⎠ =

1 ... n
1 ... n

n+1 ... 2n
× × × . . . ×

(k-1)n+1 ... kn
1 ... n 1 ... n

≥ (2n)k-1

≥ 2n ≥ 2n

n! (3n)!
(2n)!
n! n!

×
n! (2n)!

× × . . . ×
n! ((k-1)n)!

(3n)! (4n)! (kn)!
= (kn)!

(n!)k

= 1 ≥ 2n

Monday, March 28, 2011

2n+1 ... 3n
1 ... n

State Space Explosion

⎛ 2n ⎞ ⎛ 3n ⎞ ⎛ 4n ⎞ ⎛ kn ⎞
⎝ n ⎠ ⎝ n ⎠ ⎝ n ⎠ . . . ⎝ n ⎠ =

1 ... n
1 ... n

n+1 ... 2n
× × × . . . ×

(k-1)n+1 ... kn
1 ... n 1 ... n

≥ (2n)k-1

≥ 2n ≥ 2n

⇒ The number of interleavings is exponential in n and k

n! (3n)!
(2n)!
n! n!

×
n! (2n)!

× × . . . ×
n! ((k-1)n)!

(3n)! (4n)! (kn)!
= (kn)!

(n!)k

= 1 ≥ 2n

Monday, March 28, 2011

State Space Explosion

0

25000

50000

75000

100000

125000

150000

1 2 3 4 5

18 83 2216

19175

124821

number of threads

Example: ReaderWriter program
st

at
e

sp
ac

e
si

ze

Monday, March 28, 2011

Partial Order Reduction (POR)

Reduce the number of orderings to be analyzed

Based on identifying the independent actions

Correctness criterion (TS: original system, TS’: reduced system)

1. TS & TS’ are equivalent with respect to the desired property p

TS p iff TS’ p

2. TS’ should be smaller than TS

Monday, March 28, 2011

Partial Order Reduction (POR)

Example

T1: α (x=1)
T2: β (y=1)
T3: γ (z=1)

Monday, March 28, 2011

Partial Order Reduction (POR)

Example

T1: α (x=1)
T2: β (y=1)
T3: γ (z=1)

α

α

α

α

β

β

ββ

γ

γ

γ

γ β

Monday, March 28, 2011

Partial Order Reduction (POR)

Example

T1: α (x=1)
T2: β (y=1)
T3: γ (z=1)

Analyzing 1 ordering instead of 3!

α

β

γ

Monday, March 28, 2011

Partial Order Reduction (POR)

Generalization: Analyzing 1 ordering, instead of n!

Reduced system: grows linearly in n

Original system: grows exp. in number of components

Assumption

No synchronizations are involved, e.g. shared variables

The property of interest is independent of intermediate states

Monday, March 28, 2011

JPF Reduction Techniques

Partial order reduction (POR)

Garbage collection

State compression

Monday, March 28, 2011

POR of JPF

Based on combining a sequence of bytecode instructions
in a thread that do not have any effects outside it

On accessing fields, JPF performs some tests to decide to
break the transition, e.g.

Does not break the transition,

if the field is protected by lock

if the field is defined as final

if the field belongs to an immutable object

...

Monday, March 28, 2011

POR of JPF

Example,
T1: α1 α2
T2: β1 β2

Monday, March 28, 2011

POR of JPF

Example,
T1: α1 α2
T2: β1 β2

β1

β2 β1

α1

α2

β1

β2

β2

α2

α2

α1

α1

Monday, March 28, 2011

POR of JPF

Example,
T1: α1 α2
T2: β1 β2

α1: read a final field
α2 : write to a non-shared field

β1: read a final field
β2: write to a non-shared field

β1

β2 β1

α1

α2

β1

β2

β2

α2

α2

α1

α1

Monday, March 28, 2011

POR of JPF

Example,
T1: α1 α2
T2: β1 β2

α1: read a final field
α2 : write to a non-shared field

β1: read a final field
β2: write to a non-shared field

β1β2 α1α2

β1β2α1α2

Monday, March 28, 2011

The Effect of JPF POR

0

1200000

2400000

3600000

4800000

6000000

producer/consumer reader/writer

st
at

e
sp

ac
e

si
ze

enabled POR
disabled POR

(3 threads) (4 threads)

Monday, March 28, 2011

Garbage Collection

Based on mark and sweep algorithm
Marking phase: marks all the objects referenced by the current
state

Sweeping phase: removes all the objects that have not been
marked

Example: Without garbage collection, model checking the
following code leads to infinite number of states

while(true)
{
 new Object();
}

Monday, March 28, 2011

State Compression

JPF uses the collapse method originally used in SPIN

Basic idea: a transition may change only a small part of
the state

Static Area Dynamic Area Thread List

ThreadInfo

Frame

Fields

Monitor

Fields

Monitor

Fields
Pool

Monitor
Pool

Frame
Pool

ThreadInfo
Pool

Monday, March 28, 2011

Control the # Interleavings

Using the Verify class to control the number of threads
interleavings that JPF has to explore

Make a part of the code atomic

Verify.beginAtomic();

Verify.endAtomic();

executed by JPF
in one transition

Monday, March 28, 2011

Control the # Interleavings

Restrict the search

If the provided expression evaluates to true, JPF does not
continue to execute the current path, and backtracks to the
previous non-deterministic choice point.

Verify.ignoreIf(boolean_expression);

Monday, March 28, 2011

Questions?

Monday, March 28, 2011

