Nastaran Shafiei

Department of Computer Science and Engineering
York University, Toronto, Canada

Monday, March 28, 2011

Overview

e |PF can be considered as a Java virtual machine that can
execute the target application in all possible ways

Monday, March 28, 2011

Overview

o JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

o Functionality of JPF can be extended through its
listeners

Monday, March 28, 2011

Overview

o JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

o Functionality of JPF can be extended through its
listeners

o Examples:

o PreciseRaceDetector

Monday, March 28, 2011

Overview

o JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

o Functionality of JPF can be extended through its
listeners

o Examples:
o PreciseRaceDetector

o ExecTracker

Monday, March 28, 2011

Overview

e JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

o Functionality of JPF can be extended through its
listeners

o Examples:
o PreciseRaceDetector
o ExecTracker

» StateSpaceDot

Monday, March 28, 2011

Overview

e JPF can be considered as a Java virtual machine that can
execute the target application in all possible ways

o Functionality of JPF can be extended through its
listeners

o Examples:
o PreciseRaceDetector
o ExecTracker
» StateSpaceDot
o SimpleDot

Monday, March 28, 2011

Dealing with Data Choices

e The Verify class can get control over choices

The Verify class contains methods for creating choice
generators for built-in Java types

Monday, March 28, 2011

Dealing with Data Choices

The Verify class can get control over choices

The Verify class contains methods for creating choice
generators for built-in Java types

Examples:
Verity.getBoolean()

o Verify.getInt(min,max)
Verity.getIntFromSet (1, 190, 390, 401)

Verity.getDoubleFromSet(-42.0, 0.0, 42.0)

Monday, March 28, 2011

State Space Explosion

e Main issue in model checking
e Usually caused by non-determinism

e Thread non-determinism e Data non-determinism

i.e. the state space size can be exp. e.g. i = (new Random()).nextInt();
in the # of threads

& 2

XS j=-231 / 30 \ j=231-1

@ O

Monday, March 28, 2011

State Space Explosion

Consider

T1: o11 12 ... O1n

Tz: Or1 022 ... Oom

State Space Explosion

Consider

T1: o11 12 ... O1n

Tz: Or1 022 ... Oom

How many interleavings?

State Space Explosion

o Consider

—

f1: o11 12 ... O1n

—

fz: Or1 022 ... Oom

e How many interleavings?

The same as the number of ways to choose n elements among a
set of n+m

(m;n) (m-+n)!

n! m!

Monday, March 28, 2011

State Space Explosion

Consider
T1: O 1o 0n
Tz: Olr1 022 ... Oon

T3: Ol21 022 ... Oon

Vi o 007Gl

State Space Explosion

Consider
T1: O 1o 0n
Tz: Olr1 022 ... Oon

T3: Ol21 022 ... Oon
Tw: 0kt Ok ... Okn

How many interleavings?

Monday, March 28, 2011

State Space Explosion

o Consider
T1: O 1o 0n
Tz: Olr1 022 ... Oon

T3: Ol21 022 ... O2n
Vi e oo 0l

e How many interleavings?

o

State Space Explosion

Gl

(2n)! (3n)! : (4n)! - : (kn)!

X

nlnt- nb2n)t nA3n) e (k-1)n)!

State Space Explosion

Gl

20)! : (3r)! . (3n)! o (kn)! (kn)!
nln! nl®)! n8n)! ! (BDo) (nl)k

State Space Explosion

Gl

20)! : (3r)! . (3n)! o (kn)! > (kn)!
n! n! n! 2n)! n&n)! - n! (KKXn)! - (n!)k
2n e ontlr o on ; 2n+1 ... 3n ’ - (k-1)n+1 ... kn

il e bty T een }.2n

State Space Explosion

Gl

20)! : (3r)! . (3n)! o (kn)! k)]
nin! n/®) n'&) = qf (K=Hn)! (nh)k
= ’ n+l .. 2n ; 2n+1 ... 3n . (k-1)n+1 ... kn > (2n)kl
T iy een L.n
\ L gt J . J
Y Y Y Y

State Space Explosion

Gl

20)! : (3r)! . (3n)! o (kn)! (kn)!

n'n! n!'Ra)! n&n) n! ((K-Hn)! (n!)k
l.n ntl.2n 2n41..3n (eDotlokn o,
1..n I n 1 7n 1L
\ Bt Jie J N y
Y Y Y X,
= > Jn > 2n > 2n

=> The number of interleavings is exponential in n and k

Monday, March 28, 2011

State Space Explosion

o Example: ReaderWriter program

150000

124821

125000

100000

75000

state space size

50000

25000

0

number of threads

Monday, March 28, 2011

Partial Order Reduction (POR)

e Reduce the number of orderings to be analyzed
o Based on identifying the independent actions

o Correctness criterion (TS: original system, TS’: reduced system)

1. TS & TS’ are equivalent with respect to the desired property p
ISEp it dSkEp
2. TS’ should be smaller than TS

Monday, March 28, 2011

Partial Order Reduction (POR)

Example

T1: a (x=1)

To: B (y=1)
17 Y (ZZl)

Partial Order Reduction (POR)

Example

T1: a (x=1)
T B (y=1) LG
17 Y (ZZl)

Partial Order Reduction (POR)

Example
T1: a (x=1)
Ta: B (y=1) b
T3: Y (ZZl) 0
N

Analyzing 1 ordering instead of 3!

Partial Order Reduction (POR)

e Generalization: Analyzing 1 ordering, instead of n!
o Reduced system: grows linearly in n
e Original system: grows exp. in number of components

o Assumption
e No synchronizations are involved, e.g. shared variables

o The property of interest is independent of intermediate states

Monday, March 28, 2011

JPF Reduction Techniques

Partial order reduction (POR)
Garbage collection

State compression

POR of JPF

e Based on combining a sequence of bytecode instructions
in a thread that do not have any effects outside it

e On accessing fields, JPF performs some tests to decide to
break the transition, e.g.

e Does not break the transition,
o if the field is protected by lock

o if the field is defined as final

e if the field belongs to an immutable object

{:} LN

Monday, March 28, 2011

POR of JPF

Example,

Tk a1 O2
T12: 1 P2

e Example,
T1: o1 ao
T12: 1 P2

POR of JPF

POR of JPF

o Example, Q

T1: a1 ap

P1 o
T2: 1 B2 B> Q a1 Pi Q 0
e 01:read a final field <>Ot1 p2 Q 02 Q

o 0o : write to a non-shared field Q Q -

e P1: read a final field = Q -

e [3». write to a non-shared field

POR of JPF

o Example,
T1: o1 o

12: p1 B2 B1f> Q ol1002
e 01: read a final field Q
0102 P12
» 0 : write to a non-shared field Q

e [1: read a final field

» [32. write to a non-shared field

Monday, March 28, 2011

state space size

The Effect of JPF POR

6000000

4300000

3600000

2400000

1200000

producer / consumer

(3 threads)

B cenabled POR

disabled POR

¥

WX
\.j!*_‘
=AY

reader / writer

(4 threads)

Monday, March 28, 2011

Garbage Collection

e Based on mark and sweep algorithm

e Marking phase: marks all the objects referenced by the current
state

e Sweeping phase: removes all the objects that have not been
marked

o Example: Without garbage collection, model checking the
following code leads to infinite number of states

while(true)

1
new Object();

}

Monday, March 28, 2011

State Compression

JPF uses the collapse method originally used in SPIN

Basic idea: a transition may change only a small part of

the state
[Static Area | (Dynamic Area) [Thread List |
Fields Fields ThreadInfo
Monitor Monitor Frame
J 7,

Fields Monitor Frame ThreadInfo
Pool Pool Pool Pool

Monday, March 28, 2011

Control the # Interleavings

Using the Verify class to control the number of threads
interleavings that JPF has to explore

. Make a part of the code atomic

Verify.beginAtomic();

s

executed by JPF

2 1N one transition

—

Verify.end Atomic();

Monday, March 28, 2011

Control the # Interleavings

o Restrict the search

» If the provided expression evaluates to true, JPF does not
continue to execute the current path, and backtracks to the
previous non-deterministic choice point.

Verity.ignorelf(boolean_expression);

Monday, March 28, 2011

Monday, March 28, 2011

