
The Java Memory Model

March 30, 2011

The Java Memory Model



Sources

Jeremy Manson and Brian Goetz. JSR 133 (Java Memory
Model) FAQ. February 2004.

Jeremy Manson, William Pugh and Sarita V. Adve. The
Java Memory Model. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages , pages 378–391, Long Beach,
CA, USA, January 2005. ACM.

James Gosling, Bill Joy, Guy Steele and Gilad Bracha. The
Java Language Specification. Chapter 17.
Addison-Wesley, Reading, MA, USA, 2nd edition, 2000.

The Java Memory Model



What is a Partial Order?

Definition

Let X be a set. A binary relation ⊑ on X is a partial order if for
all x , y and z ∈ X ,

x ⊑ x ,

if x ⊑ y and y ⊑ x then x = y , and

if x ⊑ y and y ⊑ z then x ⊑ z.

The Java Memory Model



Partial Orders

The standard less-than-or-equal relation ≤ on the real
numbers.

The relation ·divides· on the natural numbers.

The inclusion relation ⊆ on the powerset of a given set.

The Java Memory Model



Partial Orders

{a,b, c}

{a,b}

⊆

{a, c}

⊆

{b, c}

⊆

{a}

⊆ ⊆

{b}

⊆ ⊆

{c}

⊆⊆

∅

⊆ ⊆ ⊆

The Java Memory Model



What is a Total Order?

Definition

Let X be a set. A binary relation ⊑ on X is a total order if for all
x , y and z ∈ X ,

if x ⊑ y and y ⊑ x then x = y ,

if x ⊑ y and y ⊑ z then x ⊑ z, and

x ⊑ y or y ⊑ x .

The Java Memory Model



Total Orders

The standard less-than relation < on the real numbers.

The lexicographic order on words.

The Java Memory Model



Formal Specification of the JMM

An action is described by a tuple 〈t , k , v〉 where

t is the threads performing the action,
k is the kind of action:

volatile read;
volatile write;
non-volatile read;
non-volatile write;
lock;
unlock;
special synchronization actions;
thread divergence actions;
external actions,

v is the variable or monitor involved in the action.

The Java Memory Model



Examples

〈T0,non-volatile write, x〉

〈T0,non-volatile write, y〉

〈T1,non-volatile read, x〉

〈T1,non-volatile write, y〉

〈T2,non-volatile read, y〉

〈T2,non-volatile write, x〉

are actions.

The Java Memory Model



Formal Specification of the JMM

Synchronization actions include

locks,

unlocks,

reads of volatile variables, and

writes to volatile variables.

The Java Memory Model



Formal Specification of the JMM

An execution is described by a tuple 〈P,A,
po
→,

so
→,W ,V 〉 where

P is the program,

A is the set of actions,
po
→ is the program order, which for each thread t , is a total
order over all actions performed by t in A,
so
→ is the synchronization order, which is a total order over
all synchronization actions in A,

W is the write-seen function, which for each read r in A,
gives W (r), the write action seen by r in the execution,

V is the value-written function, which for each write w in A,
gives V (w), the value written by w in the execution.

The Java Memory Model



The Synchronizes-With Order

The synchronizes-with order is defined in terms of the
synchronization order.

For each unlock action u and lock action ℓ, if u.v = ℓ.v and
u so
→ ℓ then u sw

→ ℓ.

For each volatile read r and volatile write w , if r .v = w .v and
w so

→ r then w sw
→ r .

Recall that a.v is the variable or monitor involved in the action a.

The Java Memory Model



Transitive Closure

Definition

The reflexive and transitive closure closure(R) of a binary
relation R on X is the smallest binary relation on X such that

closure(R) contains R,
for all x , y ∈ X , if x R y then x closure(R) y ,

closure(R) is reflexive
for all x ∈ X , x closure(R) x ,

closure(R) is transitive
for all x , y z ∈ X , if x closure(R) y and y closure(R) z then
x closure(R) z.

The Java Memory Model



The Happens-Before Order

The happens-before order is defined in terms of the program
order and the synchronizes-with order.

hb
→= closure(

po
→ ∪

sw
→).

The Java Memory Model



Example

a1

a2

b1 c1

b2 c2

The Java Memory Model



Example

a1 a2 b1 b2 c1 c2

a1 • • •
a2 • •
b1 •
b2

c1 •
c2

The Java Memory Model



Example

a1 a2 b1 b2 c1 c2

a1 • • • • • •
a2 • • • • •
b1 • •
b2 •
c1 • •
c2 •

The Java Memory Model



The Sufficient Synchronization Order

The sufficient synchronization order is defined in terms of the
program order, the synchronizes-with order and the
happens-before order.

The sufficient synchronization order ssw
→ is the smallest subset R

of sw
→ such that

hb
→= closure(

po
→ ∪R).

The Java Memory Model



Example

a1

a2

b1 c1

b2 c2

The Java Memory Model



Formal Specification of the JMM

An execution 〈P,A,
po
→,

so
→,W ,V 〉 is well-formed if the following

conditions are true:

Each read of a variable x sees a write to x . All reads and
writes of volatile variables are volatile actions.

The synchronization order is consistent with the program
order.

The execution obeys intra-thread consistency.

The execution obeys synchronization-order consistency.

The execution obeys happens-before consistency.

The Java Memory Model



Formal Specification of the JMM

Each read of a variable x sees a write to x . All reads and writes
of volatile variables are volatile actions.

For all reads r ∈ A, we have that W (r) ∈ A and W (r).v = r .v .
The variable r .v is volatile if and only if r is a volatile read, and
the variable W (r).v is volatile if and only if W (r) is a volatile
write.

Recall that W is the write-seen function, which for each read r
in A, gives W (r), the write action seen by r in the execution.
Also recall that a.v is the variable involved in action a.

The Java Memory Model



Formal Specification of the JMM

The synchronization order is consistent with the program order.

For all actions a1 a2 ∈ A, it is not the case that a1
po
→ a2 and

a2
so
→ a1.

The Java Memory Model



Formal Specification of the JMM

The execution obeys intra-thread consistency.

“For each thread t , the actions performed by t in A are the
same as would be generated by that thread in program-order in
isolation, with each write w writing the value V (w), given that
each read r sees/returns the value V (W (r)). Values seen by
each read are determined by the memory model.”

The Java Memory Model



Formal Specification of the JMM

The execution obeys synchronization-order consistency.

For each volatile read r ∈ A, it is not the case that r so
→ W (r)

and there does not exist a write w such that w .v = r .v and
W (r) so

→ w so
→ r .

Recall that W is the write-seen function, which for each read r
in A, gives W (r), the write action seen by r in the execution.
Also recall that a.v is the variable involved in action a.

The Java Memory Model



Formal Specification of the JMM

The execution obeys happens-before consistency.

For each read r ∈ A, it is not the case that r hb
→ W (r) and there

does not exist a write w such that w .v = r .v and
W (r) hb

→ w hb
→ r .

Recall that W is the write-seen function, which for each read r
in A, gives W (r), the write action seen by r in the execution.
Also recall that a.v is the variable involved in action a.

The Java Memory Model



Formal Specification of the JMM

An execution 〈P,A,
po
→,

so
→,W ,V 〉 satisfies the causality

requirements if there exist
sets of actions C0, C1, . . . such that

C0 = ∅,
Ci ⊂ Ci+1,
A =

⋃
i Ci ,

well-formed executions 〈Pi ,Ai ,
poi→,

soi→,W ,V 〉

such that . . .

The Java Memory Model



Formal Specification of the JMM

. . .

Ci ⊆ Ai ,
hbi→ and hb

→ agree on Ci ,
soi→ and so

→ agree on Ci ,

Vi and V agree on Ci ,

Wi and W agree on Ci ,

for each read r ∈ Ai \ Ci−1, we have that Wi(r)
hbi→ r ,

for each read r ∈ Ci \ Ci−1, we have that Wi(r) ∈ Ci−1 and
W (r) ∈ Ci−1,

for all actions x , y , z ∈ Ai , if x
sswi→ y

hbi→ z and z ∈ Ci \ Ci−1

then x
swj
→ y for all j ≥ i ,

for all actions x , y ∈ Ai , if y ∈ Ci , x is an external action
and x

hbi→ y then x ∈ Ci .

The Java Memory Model


