
A Concurrent Stack

Task
Implement the abstract data type Stack such that multiple
threads can perform the operations push and pop concurrently.

Lock the Whole Stack

Using a semaphore or a monitor.

Stack : moni tor
begin

. . .
procedure push (number : i n t)
begin

. . .
end
procedure pop (r e s u l t number : i n t)
begin

. . .
end
. . .

end

Locks: Number and Granularity

Reducing the number and length of sequentially executed code
sections is crucial to performance. In the context of locking, this
means

reducing the number of locks acquired, and
reducing lock granularity, a measure of the number of
instructions executed while holding a lock.

Lock the First Node

Implement the stack as a linked list and only lock the first node
of the list.

Memory Contention

This solution suffers from memory contention: an overhead in
traffic in the underlying hardware as a result of multiple threads
concurrently attempting to access the same locations in
memory. If the lock protecting the node is implemented in a
single memory location, as many simple locks are, then in order
to acquire the lock, a thread must repeatedly attempt to modify
that location.

Blocking

In any solution that uses locks, if a thread that holds a lock is
delayed, then all other threads attempting to get the lock are
also delayed. Therefore, this (and the previous) solution is
called blocking.

Do Not Lock

Instead of locks, use synchronization instructions, such as
compare-and-swap (CAS) and load-linked/store-conditional
(LL/SC). All modern processors provide such instructions.

Compare-And-Swap (CAS)

The operation CAS(variable, expected, new) atomically
loads a value of variable,
compares that value to expected,
assigns new to variable if the comparison succeeds, and
returns the old value of variable.

Distributed Computing

The graduate course CSE 6117 entitled Distributed Computing
studies non-blocking algorithms and their properties in detail.

